2025年5月22日 15:44 星期四
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2019年第20卷第6期 >1542-1553. DOI:10.13430/j.cnki.jpgr.20190412003 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
TrMYB308基因的克隆及在苦荞毛状根中的功能分析
DOI:
10.13430/j.cnki.jpgr.20190412003
CSTR:
作者:
  • 谈天斌 1

    谈天斌

    温州大学生命与环境科学学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 卢晓玲 1

    卢晓玲

    温州大学生命与环境科学学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张凯旋 2

    张凯旋

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 丁梦琦 2

    丁梦琦

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 廖志勇 1

    廖志勇

    温州大学生命与环境科学学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周美亮 2

    周美亮

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.温州大学生命与环境科学学院;2.中国农业科学院作物科学研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划中欧政府间合作项目(2017YFE0117600) ;国家自然科学基金面上项目(31572457)


Cloning and Functional Analysis of Transcription Factor Gene TrMYB308 in Tartary Buckwheat Hairy Roots
Author:
  • TAN Tian-bin 1

    TAN Tian-bin

    College of Life and Environmental Science, Wenzhou University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Xiao-ling 1

    LU Xiao-ling

    College of Life and Environmental Science, Wenzhou University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Kai-xuan 2

    ZHANG Kai-xuan

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DING Meng-qi 2

    DING Meng-qi

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIAO Zhi-yong 1

    LIAO Zhi-yong

    College of Life and Environmental Science, Wenzhou University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Mei-liang 2

    ZHOU Mei-liang

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Life and Environmental Science, Wenzhou University;2.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences

Fund Project:

National Key R&D Program of China (2017YFE0117600) ,National Natural Science Foundation of China (31572457)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    MYB 类转录因子广泛参与调控植物的生长发育过程,对植物次生代谢也具有重要调控作用。前期研究以 V 型紫斑白三叶为材料,通过 RNA-Seq 技术,筛选出与类黄酮合成相关的转录因子 TrMYB308。在此基础上从 V 型紫斑白三叶中克隆出 TrMYB308 基因,该基因的 CDS 全长为 921bp,编码 306 个氨基酸。亚细胞定位结果表明,TrMYB308 定位于细胞核。多序列比对和系统发育分析表明,TrMYB308 属于典型的 R2R3-MYB 转录因子,且该蛋白与红三叶 TaMYB308 和苜蓿 MtMYB308 等蛋白亲缘关系较近。表达特性分析结果表明,TrMYB308 基因在紫斑白三叶各个组织中均有表达,且其表达量受 JA 的诱导。在苦荞毛状根中异源表达 TrMYB308,结果发现转基因根系中的类黄酮代谢途径部分关键酶基因(如 FtF3H 和FtFLS)的表达量明显增加;转基因根系总黄酮的含量明显高于对照组。基于以上结果,推测 TrMYB308 可能参与类黄酮次生代谢生物合成调控。本研究为荞麦类黄酮合成分子机制探索及荞麦品质改良提供了理论依据。

    关键词:V型紫斑白三叶;MYB转录因子;类黄酮合成;次生代谢
    Abstract:

    MYB transcription factors are widely involved in the regulation of plant growth and development, and they also play important roles in secondary metabolism. In our previous study, the transcription factor TrMYB308 related to flavonoid synthesis was identified by RNA-Seq in V-type purple white clover. Based on these results, the coding sequence (CDS) of TrMYB308 gene was cloned with a length of 921bp, encoding for 306 amino acid residues. Subcellular localization analysis indicated that TrMYB308 was localized to the nucleus. Multiple sequence alignment and phylogenetic analysis indicated that TrMYB308 protein belongs to a typical R2R3-MYB transcription factor subfamily and shows sequence close similarity to TaMYB308 from Trifolium pretense and MtMYB308 from Medicago sativa. Expression analyses revealed that the transcripts of TrMYB3 were detected in all tissues and inducible under JA treatment. Heterologous expression of TrMYB308 in tartary buckwheat hairy root resulted in significant transcriptional elevation of flavonoid metabolic pathway key enzyme genes (FtF3H, FtFLS). Consistently, the content of total flavonoids in transgenic roots was significantly increased if compared to that of the non-transgenic roots. Hence, we speculated that TrMYB308 is involved in the regulation of secondary metabolic biosynthesis of flavonoids. These results provided a theoretical foundation for the genetic improvement of flavonoid content in buckwheat.

    Key words:V-type purple white clover; MYB transcription factors; flavonoid synthesis; secondary metabolism
    参考文献
    <sub>[</sub><sub>1</sub><sub>]</sub> <sub>Buer C S, Imin N, Djordjevic M A.</sub><sub> Flavonoids: New Roles for Old Molecules. Journal of Integrative</sub><sub>Plant Biology,</sub><sub> 2010, 52(1):98-111</sub>
    [2] Tohge T, Watanabe M, Hoefgen R, Fernie A R. The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48(2):123-152
    <sub>[3]</sub> <sub>Falcone Ferreyra M L, Rius S P, Casati P.</sub><sub>Flavonoids: Biosynthesis, Biological functions and Biotechnological applications. Frontiers in Plant Science, 2012,</sub><sub>3:222</sub>
    <sub>[4]</sub> <sub>Hernández I, Alegre L, Van Breusegem F, Munné-Bosch</sub><sub> S.</sub><sub> How relevant are flavonoids as antioxidants in plan</sub><sub>t</sub><sub>s</sub><sub>?</sub><sub> Trends in Plant Scien</sub><sub>ce, 2009, </sub><sub>14(3):125-</sub><sub>1</sub><sub>32</sub>
    <sub>[5]</sub> <sub>Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K.</sub><sub> Enhancement of oxidative and drought tolerance in Arabidop</sub><sub>sis by overaccumulation of antioxidant flavonoids. The Plant Journa</sub><sub>l</sub><sub>, 2014, 77(3)</sub><sub>:</sub><sub>367-</sub><sub>3</sub><sub>79</sub>
    [6] Ross J A, Kasum C M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 2002, 22(1):19-34
    [7] 姚娜, 荆礼, 郑汉,陈敏,申业.茉莉酸信号通路中的转录因子对药用植物次生代谢调控的研究进展. 中国中药杂志, 2018,43 (05):897-903
    Yao N, Jin L, Zh H, Chen M, Sh Y. Research progress of jasmonate-responsive transcription factors in regulating plant secondary metabolism. China journal of Chinese materia medica,2018, 43(5): 897-908
    <sub>[8</sub><sub>] </sub><sub>Jaakola L</sub><sub>, M??tt? K, Pirttil? A</sub><sub>M, T?rr?nen R, K?renlampi S, Hohtola A.</sub><sub>Expression </sub><sub>o</sub><sub>f genes involved in anthocyanin biosynt</sub><sub>hesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology, 2002, 1</sub><sub>30(2): 729-739</sub>
    [9] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10):573-581
    [10] Stracke R, Werber M, Weisshaar B.The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 2001, 4(5):447-456
    [11] Pauwels L, Inzé D, Goossens A. Jasmonate-inducible gene: what does it mean? Trends in Plant Science, 2009, 14(2):87-91
    [12] Spitzer-Rimon B, Marhevka E, Barkai O, Marton I, Edelbaum O, Masci T, Prathapani N K, Shklarman E, Ovadis M, Vainstein A.
    EOBII, a Gene Encoding a Flower-Specific Regulator of Phenylpropanoid Volatiles\" Biosynthesis in Petunia. The Plant Cell, 2010, 22(6):1961-1976
    [13] Ghasemi Pirbalouti A, Sajjadi S E, Parang K.A Review (Research and Patents) on Jasmonic Acid and Its Derivatives. Archiv der Pharmazie, 2014, 347(4):229-239
    <sub>[14</sub><sub>]</sub> <sub>Pérez A C, Goossens A.</sub><sub> J</sub><sub>asmonate signalling: a copycat of auxin signalling?</sub><sub> Plant, Cell Environment,2013, 36(12)</sub><sub>:</sub><sub>2071-2084</sub>
    [15] An X H, Tian Y, Chen K Q, Liu X J, Liu D D, Xie X B, Cheng C G, Cong P H, Hao Y J. MdMYB9 and MdMYB11 are involved in
    the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant and Cell Physiology, 2015, 56(4):
    650-662
    [16] Lu Y F, Chen Q, Bu Y F, Luo R, Hao S X, Zhang J, Tian J, Yao Y C. Flavonoid Accumulation Plays an Important Role in the Rust Resistance of Malus Plant Leaves. Frontiers in Plant Science, 2017, 8:1286
    [17] Boter M, Golz J F, Giménez-Iba?ez S, Fernandez-Barbero G, Franco-Zorrilla J M, Solano R. FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. Plant Cell, 2015, 27(11):3160-3174
    [18] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008,53(5):814-827
    [19] Albert N W. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes.
    Frontiers in Plant Science, 2015, 23;6:1165
    [20] 李金博. V型紫斑白三叶新品种的选育及其研究[D]. 兰州大学, 2016
    Li J B. A New Variety Breeding and Study of White Clover With Purple V-marking. Lanzhou University, 2016
    [21] Chomczynski P, Nicoletta Sacchi. Single-step method of RNA isolation by acid guanidinium thiocynate-phenol-chloroform extraction. Analytical Biochemistry, 1987, 162(1): 156-159
    [22] 李为喜,朱志华,李国营,刘方,李燕,刘三才. AlCl3分光光度法测定荞麦种质资源中黄酮的研究.植物遗传资源学报,2008, 9(4): 502-505
    Li W X, Zhu Z H, Li G Y, Liu F, Li Y, Liu S C. Study on Flavone in Buckwheat Determined by Spectrophoto metric Method. Journal of Plant Genetic Resources, 2008, 9(4): 502-505
    [23] 刘三才,李为喜,刘方,李燕,朱志华.苦荞麦种质资源总黄酮和蛋白质含量的测定与评价.植物遗传资源学报,2007(03):317-320
    Liu S C, Li W X, Liu F, Li Y, Zhu Z H. Identificaiton and Evaluation of Total Flavones and Protein Content in Tartary Buckwheat Germplasm. Journal of Plant Genetic Resources, 2007, 8(3): 317-320
    [24] Albert N W, Griffiths A G, Cousins G R, Verry I M, Williams W M.Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytologist, 2014, 13100(2):882-893
    [25] Kerry R H, Vern C, Karl F, Margaret G, Hong X, Kim R, Chris J, Susanne R. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiology, 2012, 159(3): 1204-1220
    [26] Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D.The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana. The Plant Cell, 2011, 23(5):1795-1814
    [27] Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M.Functional Differentiation of Lotus japonicus TT2s, R2R3-MYB Transcription Factors Comprising a Multigene Family. Plant Cell Physiology, 2008, 49(2):157-169.
    [28] Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore K S, Dixon R A, Udvardi M K. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1766-1771
    [29] Yao N, Jing L, Zheng H, Chen M, Shen Y. Research progress of jasmonate-responsive transcription factors in regulating plant secondary metabolism.China journal of Chinese materia medica, 2018, 43(5): 897-903
    <sub>[30]</sub><sub>Wasternack C, Strnad M.</sub><sub> Jasmonates are sign</sub><sub>als in the biosynthesis of secondary metabolites</sub><sub>-</sub><sub>Pathways, transcription factors and applied asp</sub><sub>ects - A brief review. New biotechnology, 201</sub><sub>9,</sub> <sub>25</sub><sub>(</sub><sub>48</sub><sub>)</sub><sub>:1-11</sub>
    <sub>[31]</sub> <sub>Frank B, Claude B, Sébastien C, Caroline, Brian B, Shawn D M, Axel S, Jonathan G, Jacqueline G P, Armand S, John M.</sub><sub>Subgroup 4 R2R3-MYBs in coni</sub><sub>fer trees: gene family expansion and contribution to the iso</sub><sub>prenoid- and flavonoid-oriented responses. Journal of Experimental Botany, 2010, 61(14): 3847-3864.</sub>
    <sub>[32]</sub> <sub>Mitsunami T, Nishihara M, Galis I, Alamgir K M, Hojo Y, Fujita K, Sasaki N, Nemoto K, Sawasaki T, Arimura G.</sub><sub>Overexpression of the PAP1 Transcription F</sub><sub>actor Reveals a Complex Regulation of Flavonoid and Phenylpropanoid Metabolism in Nicotiana tabacum Plants Attacked by Spodoptera l</sub><sub>itura. PLoS ONE, 2014, 9(9):</sub><sub>e108849</sub>
    <sub>[33]</sub> <sub>Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H.</sub><sub> The regu</sub><sub>latory c1 locus o</sub><sub>f Zea mays </sub><sub>encodes a protein with homolog</sub><sub>y to</sub><sub> my</sub><sub>b</sub><sub> proto-oncogene products and with structural similarities to transcriptional activators. EMBO Journal, 1987, 6(12): 3553-3558</sub>
    <sub>[34]</sub> <sub>Stracke R, Werber M, Wei</sub><sub>sshaar B.</sub><sub> The R2R3-MYB gene family i</sub><sub>n Arabidopsis th</sub><sub>aliana. Curr</sub><sub>ent Opinion in Plant Biology, 20</sub><sub>01, 4(5): 447-456</sub>
    [35] Lai Y S, Li H X, Yamagishi M. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. Frontiers in Biology, 2013, 8(6): 577-598
    [36] Gao F, Yao H, Zhao H, Zhou J, Luo X, Huang Y, Li C, Chen H, Wu Q.Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 109(3)387-396
    [37] Gao F, Zhou J, Deng R Y, Zhao H X, Li C L, Chen H, Suzuki T, Park S U, Wu Q.Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Journal of Plant Physiology, 2017, 214:81-90
    <sub>[38]</sub> <sub>Zhang K, Logacheva M D, Meng Y, Hu J, Wan D, Li L, Janovská D, Wang Z, Georgiev M I, Yu Z, Yang F, Yan M, Zhou M.</sub><sub>. Jasmonate-Responsive MYB Factors Spatiall</sub><sub>y Repress Rutin Biosynthesis in Fagopyrum Tataricum. Journal of Experimental Botany, 2018, </sub><sub>69(8):1955-1966</sub>
    <sub>[39]</sub> <sub>Zhou M, Sun Z, Ding M, Logacheva M D, Kreft I, Wang D, Yan M, Sh</sub><sub>ao J, Tang Y, Wu Y, Zhu X.</sub><sub>FtSAD2 and FtJAZ1 regulate ac</sub><sub>tivity of the FtMYB11 tr</sub><sub>anscription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. New Phytologist,</sub><sub>2017, </sub><sub>216(3):814-828</sub>
    <sub>[40]</sub> <sub>Bai Y C, Li C L, Zha</sub><sub>ng J W, Li S J, Luo X P, Yao H P, Chen H, Zhao H X, Park S U,Wu Q. </sub><sub>Characterization</sub><sub> of two tartary buckwheat R2R3-MYB</sub><sub>transcription factors and their regulation of proanthocyanidin biosynthesis. physiologia plantarum, 2014, 152(3): 431-440.</sub>
    <sub>[41]</sub> <sub>Matsui K, Oshima Y, Mitsuda N, Sakamoto S, Nishiba Y, Walker A R, Ohme-Takagi M, Robinson S P, Yasui Y, Mori M, Takami H.</sub><sub> Buckw</sub><sub>heat R2R3 MYB tra</sub><sub>nscription factor FeMYBF1 regulates</sub><sub> flavonol biosynthesis. Plant Science. 127(4):466-475.</sub>
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谈天斌,卢晓玲,张凯旋,等. TrMYB308基因的克隆及在苦荞毛状根中的功能分析[J].植物遗传资源学报,2019,20(6):1542-1553.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:1857
  • 下载次数: 2852
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-04-12
  • 最后修改日期:2019-05-22
  • 录用日期:2019-06-05
  • 在线发布日期: 2019-11-19
  • 出版日期:
文章二维码
您是第5858395位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!