玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析
作者:
作者单位:

1.中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程;2.甘肃省农业科学院植物保护研究所;3.山西农业大学玉米研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

三亚崖州湾科技城管理局2020年度科技计划项目(SKJC-2020-02-001);中国农业科学院农业科技创新工程,玉米藏粮于技


Identification of Maize Germplasm Resistant to Fusarium Ear Rot and Gibberella Ear Rot and Genetic Diversity Analysis of Resistant Lines
Author:
Affiliation:

1.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement;2.Institute of Plant Protection, Gansu Academy of Agricultural Sciences;3.Maize Research Institute, Shanxi Agricultural University

Fund Project:

The Project of Sanya Yazhou Bay Science and Technology City (SKJC-2020-02-001);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences, Project for Storing Corn in Science and Technology

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    穗腐病是玉米生产上最重要的病害之一,严重影响其产量和品质,威胁人畜健康。选育和利用优良的抗穗腐病品种,是防治玉米穗腐病最为经济有效的措施。利用花丝通道注射法,在北京昌平和海南三亚两个试验点,对国内外346份玉米自交系进行了抗拟轮枝镰孢与禾谷镰孢穗腐病的鉴定与评价。综合分析2个点的抗性鉴定数据表明,对拟轮枝镰孢穗腐病表现高抗、抗病、中抗、感病和高感的材料分别为1、43、106、147和49份,占总鉴定材料的0.3%、12.4%、30.6%、42.5%和14.2%;对禾谷镰孢穗腐病表现高抗、抗病、中抗、感病和高感的材料分别为10、32、55、79和170份,占比分别为2.9%、9.3%、15.9%、22.8%和49.1%。对两种镰孢穗腐病同时表现中抗以上水平的种质共41份,其中1份(15-TL-1224)高抗2种穗腐病、2份(T351-1、18-QTL-25)对禾谷镰孢和拟轮枝镰孢穗腐病表现高抗和抗病,3份同时表现抗病,是难得的抗穗腐病资源。对上述41份抗病种质和144份感病材料进行的2种穗腐病抗性相关性分析表明,41份抗病种质对2种穗腐病的抗性相关系数为0.24,144份感病材料对2种穗腐病抗性的相关性系数为-0.16。40对多态性SSR引物在41份抗性材料中扩增出183个等位基因,多态性位点百分率(PPB)为100.00%,平均等位基因数(Na)和有效等位基因数(Ne)分别为3.7556、7.6923个,平均Nei′s基因多样性(H)、Shannon′s信息指数(I)分别为0.6596、1.4458,平均多态信息含量(PIC)为0.326,变幅为0.0513~1.0000之间。通过UPGMA聚类分析,41份抗病材料被划分为7个亚群,分别是PB亚群、Lan亚群、未知亚群、PA亚群、LRC亚群、BSSS亚群和TSPT亚群,表现出较高的遗传多样性,其中PA亚群包含的抗病种质最多。研究结果将为玉米穗腐病抗病育种中抗源的选择和利用提供参考。

    Abstract:

    Ear rot is one of the most devastating diseases in maize production in China, which seriously affects the yield and quality of maize and threatens the health of humans and animals. Breeding and using excellent ear rot resistant varieties is the most economical and effective measure to prevent and control maize ear rot. Using silk channel inoculation, 346 maize inbred lines at home and abroad were identified and evaluated for resistance to Fusarium ear rot (FER) and Gibberella ear rot (GER) (caused by Fusarium verticillioides and F. graminearum, respectively) at two sites in Changping, Beijing and Sanya, Hainan. A comprehensive analysis of the data from the two sites showed that there were 1, 43, 106, 147 and 49 accessions exhibiting high resistance (HR), resistance (R), moderate resistance (MR), susceptibility (S), and high susceptibility (HS) to FER, accounting for 0.3%, 12.4%, 30.6%, 42.5%, and 14.2% of the total 346 materials, respectively, and there were 10, 32, 55, 79, and 170 accessions exhibiting HR, R, MR, S, and HS to GER, accounting for 2.9%, 9.3%, 15.9%, 22.8%, and 49.1% of the total 346 materials, respectively. Forty-one maize inbred lines exhibited HR, R, or MR to both FER and GER. Among them, line 15-TL-1224 exhibited HR to both FER and GER, lines T351-1 and 18-QTL-25 exhibited HR to GER and R to FER, and 3 lines exhibited R to both FER and GER, which were all precious resources resistant to ear rot. The correlation analysis of FER and GER resistance among the above 41 resistant accessions and 144 susceptible germplasms was conducted. The correlation coefficient between FER and GER resistance among the 41 resistant accessions was 0.24, while that among the 144 susceptible germplasms was -0.16. Using 40 pairs of polymorphic SSR primers, 183 alleles (Na) were amplified in the 41 resistant lines, with polymorphic site percentage (PPB) of 100.00%. The average number of alleles (Na), effective allele number (Ne), Nei's gene diversity (H), and Shannon's information index (I) were 3.7556, 7.6923, 0.6596, and 1.4458, respectively. The average polymorphic information content (PIC) was 0.326, varying from 0.0513 to 1.0000 for each marker. Using UPGMA cluster analysis, the 41 resistant accessions were divided into 7 subgroups, namely PB, Lan, unknown, PA, LRC, BSSS, and TSPT, which exhibited high genetic diversity among the 41 inbred lines. The PA subgroup contained the most numerous resistant germplasms. The results would provide guidance and reference for the selection and utilization of resistance sources in breeding.

    参考文献
    相似文献
    引证文献
引用本文

夏玉生,郭成,温胜慧,等.玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析[J].植物遗传资源学报,2022,23(1):61-71.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-27
  • 最后修改日期:2021-09-16
  • 录用日期:2021-09-16
  • 在线发布日期: 2022-01-07
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司