2025年5月21日 16:09 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第1期 >12-20. DOI:10.13430/j.cnki.jpgr.20210802001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
作物种质资源表型性状鉴定评价:现状与趋势
DOI:
10.13430/j.cnki.jpgr.20210802001
CSTR:
作者:
  • 王晓鸣

    王晓鸣

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邱丽娟

    邱丽娟

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 景蕊莲

    景蕊莲

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 任贵兴

    任贵兴

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李英慧

    李英慧

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李春辉

    李春辉

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 秦培友

    秦培友

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 谷勇哲

    谷勇哲

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李龙

    李龙

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

中国农业科学院作物科学研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

中国农业科学院科技创新工程


Evaluation on Phenotypic Traits of Crop Germplasm: Status and Development
Author:
  • WANG Xiao-ming

    WANG Xiao-ming

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QU Li-juan

    QU Li-juan

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JING Rui-lian

    JING Rui-lian

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • REN Gui-xing

    REN Gui-xing

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Ying-hui

    LI Ying-hui

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Chun-hui

    LI Chun-hui

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIN Pei-you

    QIN Pei-you

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GU Yong-zhe

    GU Yong-zhe

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Long

    LI Long

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences

Fund Project:

Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [72]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    表型是作物基因型与环境互作后呈现出来的性状,包括形态学、生育期、产量、品质、抗性等性状。作物种质资源具有丰富的遗传多样性,并经过数千年在世界不同区域驯化利用中的人工选择,形成了表型性状的多样性,构成育种家选育作物新品种的物质基础。认识和发现作物种质资源表型的多样性需要通过系统、科学的鉴定,特别是培育适应全球气候变化下环境的品种,更需在大量种质资源中发掘和利用抗旱、耐热、抗病虫、水肥高效利用等特性的材料。作物种质资源各类表型性状的鉴定需要对环境进行有效的控制,而多年多点的鉴定可以准确观察鉴定性状的变异水平或表达稳定性,是育种家准确选择和利用性状的重要依据。作物种质资源表型性状的鉴定主要采用田间鉴定、设施鉴定、仪器分析、感官鉴定的方式。近年来,作物种质资源表型性状鉴定已从单一环境、低通量、粗放型鉴定转变为多年多环境、重点性状、高通量精准型鉴定。随着组学技术、智能与信息技术的快速发展,作物种质资源的表型性状鉴定已进入一个新阶段,形成作物育种中重要性状准确快速发掘与应用的坚实基础。

    关键词:作物;种质;表型;鉴定;评价
    Abstract:

    The phenotype, as outcome of genotype that interplays with environmental factors, includes different traits such as architecture, growth stage, yield characters, quality, and resistance to biotic and abiotic stresses. After long-term natural variations in eco-system as well as domestication and cultivation in agricultural eco-system crop germplasm obtained rich genetic and phenotypic diversity, as the fundamental basis in breeding for new varieties. It is of interest to explore and understand the phenotypic diversity by scientific and systematical identification and evaluation. Identifying elite germplasm resources that showed drought and heat tolerant, disease and pest resistant, high efficient use of water and fertilizer is absolutely important to breed new varieties with environmental adaptability under global climate change. Testing for phenotypic variations under controlled environment at multiple locations for years is desirable and highly recommended. The methods for identifying phenotypic variations are conducted in the fields, facilities, instruments and with person sensory. The identification of crop germplasm traits, which were surveyed at one environment (locus) with expected low-throughput and low accuracy, has been popularly performed at multi-environments with high-throughput and precise characterization. By taking advantage of rapid development on technologies of multi-Omics, artificial intelligence, image recognition and analysis, researches on phenotypic traits of crop germplasm resource will step for a new stage, valuable for crop breeding in the future.

    Key words:crop; germplasm; phenotypic trait; identification; evaluation
    参考文献
    [1] Pareek A,SDhankher O P,SFoyer C H. Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Journal of Experimental Botany, 2020, 71(2): 451-456
    [2] Laborde D,SMartin W,SSwinnen J, Vos R. COVID-19 risks to global food security. Science, 2020,S369(6503): 500-502
    [3] Pieruschka R, Schurr U. Plant phenotyping: past, present, and future. Plant Phenomics, 2019, 1(3): 1-6
    [4] 中国农学会遗传资源学会. 中国作物遗传资源. 北京:中国农业出版社,1994:27-46Society of Crop Genetic Resources, Chinese Association of Agricultural Sciences. Crop Genetic Resources inChina. Beijing: China Agriculture Press, 1994: 27-46
    [5] 董玉琛,郑殿升. 中国作物及其野生近缘植物-粮食作物卷. 北京:中国农业出版社,2006:1-29Dong Y C, Zheng D S. SCrops and Their Wild Relatives in China: Grain Crops. Beijing: China Agriculture Press, 2006: 1-29
    [6] 刘旭. 中国作物栽培历史的阶段划分和传统农业形成与发展. 中国农史,2012,(2): 3-16Liu X. Stage division of Chinese crop cultivation history and formation of traditional agriculture. Agricultural History of China, 2012, (2): 3-16S
    [7] Laitinen R A E, Nikoloski Z. Genetic basis of plasticity inSplants. Journal of Experimental Botany, 2019, 70(3): 739-745
    [8] Lozada D N, Carter A H. Insights into the genetic architecture of phenotypic stability traits in winter wheat. Agronomy, 2020, 10(3): 368
    [9] Cortinovis G, Vittori V D, Bellucci E, Bitocchi E, Papa R. Adaptation to novel environments during crop diversification. Current Opinion in Plant Biology, 2020, 56: 203-217
    [10] Vogel E, Donat M G, Alexander L V, Meinshausen M, Ray D K, Karoly D, Meinshausen N, Frieler K. The effects of climate extremes on global agricultural yields. Environmental Research Letters, 2019, 14(5): 054010
    [11] Wu X, Feng H, Wu D, Yan S J, Zhang P, Wang W B, Zhang J,Ye J L, Dai G X, Fan Y, Li W K, Song B X, Geng Z D, YangSW L,SChenSG X,SQinSF,STerzaghiSW,SStitzerSM,SLiSL,SXiongSL Z,SYan J B, Buckler E, Yang W N,SDai M Q.SUsing high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance.SGenome Biology, 2021,S22(1):S185
    [12] Ni Z F, Li H J, Zhao Y, Peng H R, Hu Z R, Xin M M, Sun Q X. Genetic improvement of heat tolerance in wheat: recent progress in understanding the underlying molecular mechanisms. The Crop Journal, 2018, 6(1): 32-41
    [13] Lu H P, Luo T,SFu H W,SWang L,STan Y Y,SHuang J Z, Wang Q,SYe G Y,SGatehouse A M R,SLouSY G, Shu Q Y. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nature Plants, 2018, 4(6): 338-344
    [14] Fernie A R, Yan J B. De novo domestication: an alternative route toward new crops for the future. Molecular Plant, 2019, 12(5): 615-631
    [15] LiSS,STianSY H,SWuSK,SYeSY F,SYuSJ P,SZhangSJ Q,SLiuSQ,SHuSM Y,SLiSH,STongSY P,SHarberdSN P, FuSX D. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature, 2018, 560(7720): 595-600
    [16] Su J, Hu C, Yan X, Jin Y, Chen Z, Guan Q, Wang Y,SZhong D, Jansson J, Wang F, Schnürer A, Sun C. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice.SNature,S2015, 523(7562):S602-606
    [17] Guo D S,SLing X T,SZhou X G,SLi X,SWang J Y,SQiu S,SYang Y W,SZhang B L. Evaluation of the quality of a high-resistant starch and low-glutelin rice (Oryza sativa L.) generated through CRISPR/Cas9-mediated targeted mutagenesis. Journal of Agricultural and Food Chemistry, 2020, 68(36): 9733-9742
    [18] PandeySA K,SSudiniSH K,SUpadhyayaSH D,SVarshneySR K,SPandey M K. Hypoallergen peanut lines identified through large-scale phenotyping of global diversity panel: providing hope toward addressing one of the major global food safety concerns. Frontiers in Genetics, 2019, 10: 1177
    [19] WuSY M,SGuan R X,SLiu Z X,SLi R Z,SChang R Z,SQiu L J. Synthesis and degradation of the major allergens in developing and germinating soybean seed. Journal of Integrative Plant Biology,S2012, 54(1): 4-14
    [20] LiuSY,STikunovSY,SSchoutenSR E,SMarcelisSL F M,SVisserSR G F,SBovy A. Anthocyanin biosynthesis and degradation mechanisms inSsolanaceousSvegetables: a review. Frontiers in Chemistry, 2018, 6: 52
    [21] Xu Y B. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 2016, 129(4): 653-673
    [22] Millet E J, Kruijer W,SCoupel-Ledru A,SPrado S A,SCabrera-Bosquet L,SLacube S, Charcosset A, Welcker C,Svan EeuwijkSF, Tardieu F. Genomic prediction of maize yield across European environmental conditions.SNature Genetics, 2019S51: 952-956
    [23] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报,2018,44(7): 988-999Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018,44(7): 988-999
    [24] Wang Q, Liu Y Q, He J, Zheng X M, Hu J L, Liu Y L, Dai H M, Zhang Y X, Wang B X, Wu W X, Gao H, Zhang Y H, Tao X R, Deng H F, Yuan D Y, Jiang L, Zhang X, Guo X P, Cheng X N, Wu C Y, Wang H Y, Yuan L P, Wan J M. STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nature Communications, 2014, 5: 4768
    [25] Ye J R, Zhong T, Zhang D F, Ma C Y, Wang L N, Yao L S, Zhang Q Q, Zhu M, Xu M L. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Molecular Plant, 2019, 12(3): 360-373
    [26] SchneiderSH M,SLynch J P. Should root plasticity be a crop breeding target? Frontiers in Plant Science, 2020, 11: 546
    [27] Arnold P A, Kruuk L E B,SNicotra A B. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytologist, 2019, 222: 1235-1241
    [28] 李立会,李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社,2006,1-86Li L H, Li X Q. Descriptors and Data Standard for Wheat (Triticum aestivum L.). Beijing: China Agriculture Press, 2006: 1-86
    [29] 张小琼,郭剑,代书桃,任元,李凤艳,刘京宝,李永祥,张登峰,石云素,宋燕春,黎裕,王天宇,邹华文,李春辉. 玉米花期根系结构的表型变异与全基因组关联分析. 中国农业科学,2019,52(14): 2391-2405Zhang X Q, Guo J, Dai S T, Ren Y, Li F Y, Liu J B, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Wang T Y, Zou H W, Li C H. Phenotypic variation and genome-wide association analysis of root architecture at maize flowering stage. Scientia Agricultura Sinica, 2019, 52(14): 2391-2405
    [30] 段灿星,董怀玉,李晓,李红,李春辉,孙素丽,朱振东,王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定. 作物学报,2020,46(8): 1135-1145Duan C X, Dong H Y, Li X, Li H, Li C H, Sun S L, Zhu Z D, Wang X M. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition. Acta Agronomica Sinica, 2020, 46(8): 1135-1145
    [31] Liu L, Wang M N, Zhang Z W, See D R, Chen X M. Identification of stripe rust resistance loci in U.S. spring wheat cultivars and breeding line susing genome-wide association mapping and Yr gene markers. Plant Disease, 2020, 104(8): 2181-2192
    [32] Oyiga B C,SOgbonnaya F C,SSharma R C,SBaum M,SLéon J,SBallvora A. Genetic and transcriptional variations inSNRAMP-2SandSOPAQUE1Sgenes are associated with salt stress response in wheat. Theoretical and Applied Genetics, 2019, 132(2): 323-346
    [33] Sun J, Yang L M, Wang J G, Liu H L, Zheng H L, Xie D W, Zhang M H, Feng M F, Jia Y, Zhao H W, Zou D T. Identification of a cold-tolerant locus in rice (Oryza sativaSL.) using bulked segregant analysis with a next-generation sequencing strategy. Rice, 2018,S11: 24
    [34] Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell and Environment, 2019, 42(9): 2540-2553
    [35] Li L, Peng Z, Mao X G, Wang J Y, Li C N, Chang X P, Jing R L. Genetic insights into natural variation underlying salt tolerance in wheat. Journal of Experimental Botany, 2021, 72(4): 1135-1150
    [36] 余应弘,吴云天,曾翔,袁隆平. 水稻矮源遗传研究与利用. 湖南农业科学,2007,(5): 20-24Yu Y H, Wu Y T, Zeng X, Yuan L P. Present situation of utilization on rice dwarf gene resources and its research advances in molecular biology. Hunan Agricultural Sciences, 2007, (5): 20-24
    [37] 何中虎,庄巧生,程顺和,于振文,赵振东,刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1): 99-106
    [38] MaoSD H,SYu L,SChen D Z,SLi L Y,SZhu Y X,SXiao Y Q,SZhang D C,SChen C Y. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theoretical Applied Genetics, 2015, 128(7): 1359-1371
    [39] Wang C L, Zhang X P, Fan Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y, Zhang M W, Yang B, Liu Y G, Zhao K J. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Molecular Plant,S2015,S8(2): 290-302
    [40] 陈国跃,刘伟,何员江,苟璐璐,余马,陈时盛,魏育明,郑有良. 小麦骨干亲本繁 6 条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报,2013, 39(5): 827-836Chen G Y, Liu W, He Y J, Gou L L, Yu M, Chen S S, Wei Y M, Zheng Y L. Specific loci for adult-plant resistance to stripe rust in wheat founder parent Fan 6 and their genetic dissection in its derivatives. Acta Agronomica Sinica, 2013, 39(5): 827-836
    [41] 肖永贵,殷贵鸿,李慧慧,夏先春,阎俊,郑天存,吉万全,何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学,2011,44(19): 3919-3929Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Scientia Agricultura Sinica, 2011, 44(19): 3919-392
    [42] Wang X M, Zhang Y H, Xu X D, Li H J, Wu X F, Zhang S H, Li X H. Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases. The Crop Journal, 2014, 2(4): 213-222
    [43] 中国农业科学院作物科学研究所. 中国作物种质资源保护与利用10年进展. 北京:中国农业出版社, 2012,1-392Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. Progress in Conservation and Utilization of Crop Germplasm Resources During 2001-2010 in China. Beijing: China Agriculture Press, 2012, 1-392
    [44] 刘旭,张延秋. 中国作物种质资源保护与利用“十二五”进展. 北京:中国农业科学技术出版社,2016,1-583Liu X, Zhang Y Q. Progress in Conservation and Utilization of Crop Germplasm Resources During 2011-2015 in China. Beijing: China Agricultural Science and Technology Press, 2016
    [45] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报,2018, 44(7): 988-999Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999
    [46] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析. 作物学报,2019,45(10): 1468-1477Bai Y M, Li L, Wang H Y, Liu Y P, Wang J Y, Mao X G, Chang X P, Sun D Z, Jing R L. Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat. Acta Agronomica Sinica, 2019, 45(10): 1468-1477
    [47] Luo B W,STang H T,SLiu H L,SSu S Z,SZhang S Z,SWu L,SLiu D,SGao S B. Mining for low-nitrogen tolerance genes by integrating meta-analysis and large-scale gene expression data from maize. Euphytica,S2015, 206(1): 117-131S
    [48] Lu H Y, Yang Y M, Li H W, Liu Q J, Zhang J J, Yin J Y, Chu S S, Zhang X Q, Yu K Y, Lv L L, Chen X, Zhang D. Geome-wide association studies of photosynthetic traits related to phosphorus efficiency in soybean. Frontiers in Plant Science, 2018, 9: 1226
    [49] Liu Y J, Chen Q M. Tan Q H. Responses of wheat yields and water use efficiency to climate change and nitrogen fertilization in the North China plain.SFood Security,S2019, 11:S1231-1242
    [50] Deng Y P, Men C B, Qiao S F, Wang W J, Gu J F, Liu L J, Zhang Z J, Zhang H, Wang Z Q, Yang J C. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. The Crop Journal, 2020, 8(4): 534-547
    [51] Zhai K R, Deng Y W, Liang D, Tang J, Liu J, Yan B X, Yin X, Lin H, Chen F D, Yang D Y, Xie Z, Liu J Y, Li Q, Zhang L, He Z H. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice. Molecular Cell, 2019, 74(5): 996-1009
    [52] Roth M G, Webster R W, Mueller D S, Chilvers M I, Faske T R, Mathew F M, Bradley C A, Damicone J P, Kabbage M, Smith D L. Integrated management of important soybean pathogens of the United States in changingSclimate. Journal of Integrated Pest Management, 2020, 11(1): 1-28
    [53] Yu S B, Ali J, Zhang C P, Li Z K, Zhang Q F. Genomic breeding ofSgreen super rice varieties andStheir deployment inSAsia andSAfrica. Theoretical and Applied Genetics, 2020, 133(5): 1427-1442
    [54] Hawkesford M J,SGriffiths S. Exploiting genetic variation in nitrogen use efficiency for cereal crop improvement. Currenr Opinion in Plant Biology, 2019, 49: 35-42
    [55] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology, 2018, 69(1): 85-122
    [56] Yang W N, Feng H, Zhang X H, Zhang J, Doonan J H, Batchelor W D, Xiong L Z, and Yan J B. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Molecular Plant, 2020, 13(2): 187-214
    [57] Jin X L, Zarco-Tejada P J, Schmidhalter U, Reynolds M P, Hawkesford M J, Varshney R K, Yang T, Nie C W, Li Z H, Ming B, Xiao Y G, Xie Y D, Li S K. High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(1): 200-231
    [58] Volpato L,SPinto F,SGonzález-Pérez L, Thompson L G,SBorém A,SReynolds M,SGérard B,S Molero G, Rodrigues F A Jr. High throughput field phenotyping for plant height using UAV-based RGB imagery in wheat breeding lines: feasibility and validation. Frontiers in Plant Science, 2021, 12: 591587
    [59] Duan L F, Han J W, Guo Z L, Tu H F, Yang P, Zhang D, Fan Y, Chen G X, Xiong L Z, Dail M Q, Williams K,Corke F, Doonan J H, Yang W N. Novel digital features discriminate between drought resistant and droughtsensitive rice under controlled and field conditions. Frontiers in Plant Science, 2018, 9: 492
    [60] Guo Z L, Yang W N, Chang Y, Ma X S, Tu H F, Xiong F, Jiang N, Feng H, Huang C L, Yang P, Zhao H, Chen G X, Liu H Y, Luo L J, Hu H H, Liu Q, Xiong L Z. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Molecular Plant, 2018, 11(6): 789-805
    [61] Li B Q, Chen L, Sun W N, Wu D, Wang M J, Yu Y, Chen G X, Yang W N, Lin Z X, Zhang X L, Duan L F, Yang X Y. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnology Journal, 2020, 18(12): 2533-2544
    [62] Chawade A, van Ham J, Blomquist H, Bagge O, Alexandersson E, Ortiz R. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy, 2019, 9(5): 258
    [63] Kim J Y. Roadmap to high throughput phenotyping for plant breeding.SJournal of Biosystems Engineering, 2020, 45:S43-55
    [64] Qiu Q,SSun N,SBai H,SWang N,SFan Z Q,SWang Y J,SMeng Z J,SLi B,SCong Y. Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “phenomobile”. Frontiers in Plant Science, 2019, 10: 554
    [65] Teramoto S, Takayasu S, Kitomi Y, Arai?Sanoh Y, Tanabata T, Uga Y. High-throughput three-dimensional visualization ofSroot system architecture ofSrice using X-ray computed tomography. Plant Methods, 2020, 16: 66
    [66] Selvaraj M G, Valderrama M, Guzman D, Valencia M, Ruiz H, Acharjee A. Machine learning forShigh-throughput field phenotyping andSimage processing provides insight intoStheSassociation ofSaboveSand below-ground traits inScassava (Manihot esculenta Crantz). Plant Methods, 2020, 16: 87
    [67] Jiang Y, Li C Y. Convolutional neural networks for image-based high-throughput plant phenotyping: a review. Plant Phenomics, 2020, IDS4152816S
    [68] Liu S Y, Martre P, Buis S, Abichou M, Andrieu B, Baret F. Estimation of plant and canopy architectural traits using the digital plant phenotyping platform. Plant Physiology, 2019, 181(3): 881-890S
    [69] Petegrosso R, Song T C, Kuang R. Hierarchical canonical correlation analysis reveals phenotype, genotype, and geoclimate associations in plants. Plant Phenomics, 2020, ID 1969142
    [70] Djande C Y H, Pretorius C, Tugizimana F, Piater L A, Duber I A. Metabolomics: a tool for cultivar phenotyping and investigation of grain crops. Agronomy, 2020, 10(6): 831
    [71] Jia J Z, Li H J, Zhang X Y, Li Z C, Qiu L J. Genomics-based plant germplasm research (GPGR). The Crop Journal, 2015, 5(2): 166-174
    [72] Scossa F, Alseekh S, Alisdair R. Fernie A R. Integrating multi-omics data for crop improvement. Journal of Plant Physiology, 2021, 257: 153352
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晓鸣,邱丽娟,景蕊莲,等.作物种质资源表型性状鉴定评价:现状与趋势[J].植物遗传资源学报,2022,23(1):12-20.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:3678
  • 下载次数: 4808
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-02
  • 最后修改日期:2021-08-02
  • 录用日期:2021-08-16
  • 在线发布日期: 2022-01-07
  • 出版日期:
文章二维码
您是第5855712位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!