2025年5月20日 23:05 星期二
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2023年第24卷第3期 >864-874. DOI:10.13430/j.cnki.jpgr.20221025003 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
乌头子根膨大过程的转录组分析
DOI:
10.13430/j.cnki.jpgr.20221025003
CSTR:
作者:
  • 高静 1,2

    高静

    成都中医药大学药学院,成都 611137;成都市郫都区妇幼保健院,成都 611730
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 罗敏 1

    罗敏

    成都中医药大学药学院,成都 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘然 1

    刘然

    成都中医药大学药学院,成都 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 胡漪文 1

    胡漪文

    成都中医药大学药学院,成都 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈丽娟 1

    陈丽娟

    成都中医药大学药学院,成都 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 黄利 1

    黄利

    成都中医药大学药学院,成都 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王光志 1

    王光志

    成都中医药大学药学院,成都 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.成都中医药大学药学院,成都 611137;2.成都市郫都区妇幼保健院,成都 611730

作者简介:

研究方向为中药资源评价与开发利用,E-mail : gaojing@stu.cdutcm.edu.cn

通讯作者:

王光志,研究方向为药用植物资源研究,E-mail : wangguangzhi@cdutcm.edu.cn

中图分类号:

基金项目:

四川省科技厅应用基础研究项目(2021YJ0110)


Transcriptome Analysis of the Expanded Daughter Root of Aconitum carmichaelii
Author:
  • GAO Jing 1,2

    GAO Jing

    Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137;Chengdu Pidu District Maternal and Child Health Care Hospital, Chengdu 611730
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LUO Min 1

    LUO Min

    Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Ran 1

    LIU Ran

    Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HU Yi-wen 1

    HU Yi-wen

    Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Li-juan 1

    CHEN Li-juan

    Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Li 1

    HUANG Li

    Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Guang-zhi 1

    WANG Guang-zhi

    Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Pharmacy School of Chengdu University of Traditional Chinese Medicine, Chengdu 611137;2.Chengdu Pidu District Maternal and Child Health Care Hospital, Chengdu 611730

Fund Project:

Foundation project: Sichuan Provincial Science and Technology Department Applied Basic Research Project (2021YJ0110)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对乌头子根进行转录组测序,探讨调控乌头子根膨大的分子机制。选取乌头膨大过程的3个时间点即S1(1 d)、S2(31 d)、S3(61 d)进行转录组测序,筛选调控乌头子根膨大过程的相关差异表达基因,使用实时荧光定量聚合酶链式反应(qRT-PCR)进行验证。转录组测序组装获得73600条单基因(Unigenes);通过比较转录组分析,得到差异表达基因(DEGs)一共7555条。S2/S1(S2相对于S1)、S3/S2(S3相对于S2)、S3/S1(S3相对于S1)比较组中分别得到2560、2171、6320条DEGs。KEGG富集分析显示差异表达基因主要参与了淀粉和蔗糖代谢、植物激素信号转导、植物-病原体作用和苯丙烷生物合成等代谢途径;其中淀粉生物合成途径上调而木质素生物合成下调是膨大过程的主要事件。植物激素信号转导中生长素、脱落酸、细胞分裂素和赤霉素这些途径相关基因参与调控乌头子根膨大过程。筛选这些膨大相关途径的差异表达基因进行qRT-PCR,结果与转录组数据表达模式具有一致性。本研究首次探讨乌头子根膨大过程的动态转录变化,挖掘参与调控乌头子根膨大过程的相关候选基因,为进一步研究乌头子根发育调控分子机制提供线索。

    关键词:乌头;子根发育;膨大过程;转录组
    Abstract:

    Transcriptome sequencing was performed on the daughter root of Aconitum carmichaelii (DR) to explore the underlying molecular mechanism regulating the root expansion. DR at three time points during the expansion stages, namely S1 (1 d), S2 (31 d) and S3 (61 d), were harvested for sequencing. The identified differentially expressed genes (DEGs) were validated by real-time quantitative polymerase chain reaction (qRT-PCR). 73600 unigenes were obtained via de novo assembly, including 7555 DEGs that are differentially expressed by comparative transcriptome analysis. There were 2560, 2171 and 6320 DEGs in the three pair-wise comparison groups of S2/S1 (S2 with respect to S1), S3/S2 (S3 with respect to S2), S3/S1 (S3 with respect to S1), respectively. KEGG enrichment analysis showed that DEGs were mainly involved in starch and sucrose metabolism, plant hormone signal transduction, plant-pathogen interaction and phenylpropane biosynthesis. The genes in starch biosynthesis pathway were up-regulated and these genes in lignin biosynthesis were down-regulated, which was considered as a sign in the root expansion. The genes related to auxin, abscisic acid, cytokinin and gibberellin were involved in regulating the process of enlargement. Through testing a subset of candidate genes in these pathways using qRT-PCR, a pattern similar to that revealed by transcriptome sequencing was revealed. This study is the first to explore the dynamic transcriptional changes in the process of DR enlargement, and excavate the related genes involved in the regulation of the enlargement process, which provides clues for further research on the molecular mechanism of DR.

    Key words:Aconitum carmichaelii;daughter root development;expansion process;transcriptome
    参考文献
    [1] 国家药典委员会. 中华人民共和国药典2020年版一部. 北京: 中国医药科技出版社, 2020: 41, 201Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia 2020. Vol I. Beijing: China Medical Science Press, 2020: 41, 201
    [2] Gao J, Liu R, Luo M, Wang G. The clonal growth in Aconitum carmichaelii Debx. Plant Signaling & Behavior, 2022, 17(1): 2083818
    [3] Togari Y. A study of tuberous root formation in sweet potato. Bulletin of National Agricultural Experimental Station, Tokyo, 1950, 68: 1-96
    [4] 胡清如. 北乌头附子发育过程中的淀粉动态. 西北大学学报, 1992, 22(2): 204-208Hu Q R. Development and dynamic changes in the starch distribution of the monkshod-tuber of Aconitum kusnezoffii. Journal of Northwestern University, 1992, 22(2): 204-208
    [5] Xia Y, Gao W, Jiang Q, Li X, Huang L, Xiao P. Comparison of the physicochemical and functional properties of Aconitum carmichaelii and Aconiti lateralis Preparata starches. Starch/Sta¨rke, 2011, 63: 765-770
    [6] Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell, 2010, 22(8): 2618-2629
    [7] Hirakawa Y, Kondo Y, Fukuda H. Regulation of vascular development by CLE peptide-receptor systems. Journal of Integrative Plant Biology, 2010, 52(1): 8-16
    [8] Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 15208-15213
    [9] Kuznetsova K A, Dodueva I E, Pautov A A, Krylova E G, Lutova L A. Genetic control of storage root development. Russian Journal of Plant Physiology, 2020, 67(4): 589-605
    [10] Etchells J P, Smit M E, Gaudinier A, Williams C J, Brady S M. A brief history of the TDIF-PXY signalling module: Balancing meristem identity and differentiation during vascular development. New Phytologist, 2016, 209(2): 474-484
    [11] Scofield S, Dewitte W, Murray J A. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. The Plant Journal, 2007, 50(5): 767-781
    [12] Firon N, Labonte D, Villordon A, Kfir Y, Solis J, Lapis E. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 2013, 14(1): 460
    [13] 周桦楠, 潘家荃, 刘冠求, 万博, 王凯, 于涛. 甘薯响应冷胁迫的转录组分析. 植物遗传资源学报, 2022, 23(4): 1202-1212Zhou H N, Pan J Q, Liu G Q, Wan B, Wang K, Yu T. Transcriptome analysis of sweetpotato under low temperature stress. Journal of Plant Genetic Resources. 2022, 23(4): 1202-1212
    [14] Rüscher D, Corral J M, Carluccio A V, Klemens P A W, Gisel A, Stavolone L, Neuhaus H E, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. Journal of Experimental Botany, 2021, 72(10): 3688-3703
    [15] Utsumi Y, Tanaka M, Utsumi C, Takahashi S, Matsui A, Fukushima A, Kobayashi M, Sasaki R, Oikawa A, Kusano M, Saito K, Kojima M, Sakakibara H, Sojikul P, Narangajavana J, Seki M. Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Plant Molecular Biology, 2022, 109(3): 249-269
    [16] Ding Z, Fu L, Tie W, Yan Y, Wu C, Dai J, Zhang J, Hu W. Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava. Journal of Experimental Botany, 2020, 71(22): 7003-7017
    [17] Wang S, Wang X, He Q, Liu X, Xu W, Li L, Gao J, Wang F. Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Reports, 2012, 31(8): 1437-1447
    [18] Tang J R, Lu Y C, Gao Z J, Song W L, Wei K H, Zhao Y, Tang Q Y, Li X J, Chen J W, Zhang G H, Long G Q, Fan W, Yang S C. Comparative transcriptome analysis reveals a gene expression profile that contributes to rhizome swelling in Panax japonicus var. major. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2019, 154(4): 515-523
    [19] Immanen J, Nieminen K, Smolander O P, Kojima M, Alonso Serra J, Koskinen P, Zhang J, Elo A, Mahonen A P, Street N, Bhalerao R P, Paulin L, Auvinen P, Sakakibara H, Helariutta Y. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology, 2016, 26(15): 1990-1997
    [20] Randall R S, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee J Y, Kakimoto T, Blajecka K, Melnyk C W, Alcasabas A, Forzani C, Matsumoto-Kitano M, Mahonen A P, Bhalerao R, Dewitte W, Helariutta Y, Murray J A. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biology Open, 2015, 4(10): 1229-1236
    [21] Liu H, Zhang H, Dong Y X, Hao Y J, Zhang X S. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. New Phytologist, 2018, 217(1): 219-232
    [22] Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Research, 2009, 19(10): 1178-1190
    [23] Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal, 2012, 71(4): 684-697
    [24] Spartz A K, Lee S H, Wenger J P, Gonzalez N, Itoh H, Inze D, Peer W A, Murphy A S, Overvoorde P J, Gray W M. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. The Plant Journal, 2012, 70(6): 978-990
    [25] Kong Y, Zhu Y, Gao C, She W, Lin W, Chen Y, Han N, Bian H, Zhu M, Wang J. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiology, 2013, 54(4): 609-621
    [26] Sun J, Hui K, Guo Z, Li Y, Fan X. Cellulose and lignin contents are negatively correlated with starch accumulation, and their correlation characteristics vary across cassava varieties. Journal of Plant Growth Regulation, 2022, DOI:10.1007/s00344-022-10573-w
    [27] Singh V, Zemach H, Shabtai S, Aloni R, Yang J, Zhang P, Sergeeva L, Ligterink W, Firon N. Proximal and distal parts of sweetpotato adventitious roots display differences in root architecture, lignin, and starch metabolism and their developmental fates. Frontiers in Plant Science, 2020, 11: 609923
    [28] Wang H, Yang J, Zhang M, Fan W, Firon N, Pattanaik S, Yuan L, Zhang P. Altered Phenylpropanoid metabolism in the maize Lc-Expressed sweet potato (Ipomoea batatas) affects storage root development. Scientific Reports, 2016, 6: 18645
    [29] 史春余, 王振林, 郭风法, 余松烈. 甘薯块根膨大过程中ATP酶活性、ATP和ABA含量的变化. 西北植物学报, 2002, 22(2): 315-320Shi C Y, Wang Z L, Guo F F, Yu S L. Changes of ATPase activity, ATP and ABA content in storage roots during storage root thickening of sweet potato. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 315-320
    [30] Huang H H, Xie S D, Xiao Q L, Wei B, Zheng L J, Wang Y B, Cao Y, Zhang X G, Long T D, Li Y P, Hu Y F, Yu G W, Liu H M, Liu Y H, Huang Z, Zhang J J, Huang Y B. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Scientific Reports, 2016, 6: 27590
    [31] Razem F A, Baron K, Hill R D. Turning on gibberellin and abscisic acid signaling. Current Opinion in Plant Biology, 2006, 9(5): 454-459
    [32] Shu K, Zhou W, Chen F, Luo X, Yang W. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Frontiers in Plant Science, 2018, 9: 416
    [33] Xu X, Lammeren A A M V, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 1998, 117: 575-584
    [34] Chen P, Yang R, Bartels D, Dong T, Duan H. Roles of abscisic acid and gibberellins in stem/root tuber development. International Journal of Molecular Sciences, 2022, 23(9): 4955
    [35] 胡月清. GA3和ABA对马铃薯薯形的影响. 江苏农业科学, 2019, 47(18): 125-128Hu Y Q. Effect of GA3 and ABA on potato shape. Jiangsu Agricultural Science, 2019, 47(18): 125-128
    [36] Smetana O, Makila R, Lyu M, Amiryousefi A, Sanchez Rodriguez F, Wu M F, Sole-Gil A, Leal Gavarron M, Siligato R, Miyashima S, Roszak P, Blomster T, Reed J W, Broholm S, Mahonen A P. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 2019, 565(7740): 485-489
    [37] Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, Grunwald K, Wallner E S, Novikova D D, Levitsky V G, Agusti J, Sanchez P, Lohmann J U, Greb T. Spatial specificity of auxin responses coordinates wood formation. Nature Communications, 2018, 9(1): 875
    [38] Ben-Targem M, Ripper D, Bayer M, Ragni L. Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. Journal of Experimental Botany, 2021, 72(10): 3647-3660
    [39] Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, Hall H C, Helizon H, Jin X, Helariutta Y, Nilsson O, Polle A, Fischer U. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development, 2014, 141(22): 4311-4319
    [40] Mele G, Ori N, Sato Y, Hake S. The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes & Development, 2003, 17(17): 2088-2093
    [41] Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damen T, Joung J G, Yun J Y, Lee J H, Ragni L, Barbier De Reuille P, Ahnert S E, Lee J Y, Mahonen A P, Helariutta Y. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nature Plants, 2019, 5(10): 1033-1042
    相似文献
    引证文献
引用本文

高静,罗敏,刘然,等.乌头子根膨大过程的转录组分析[J].植物遗传资源学报,2023,24(3):864-874.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:241
  • 下载次数: 936
  • HTML阅读次数: 67
  • 引用次数: 0
历史
  • 收稿日期:2022-10-25
  • 最后修改日期:2022-12-22
  • 录用日期:
  • 在线发布日期: 2023-04-27
  • 出版日期: 2023-04-27
文章二维码
您是第5853748位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!