2025年5月20日 20:19 星期二
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第7期 >1175-1189. DOI:10.13430/j.cnki.jpgr.20231105001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
模拟干旱胁迫下蜡杨梅幼苗根系响应5-羟色胺的转录组分析
DOI:
10.13430/j.cnki.jpgr.20231105001
CSTR:
作者:
  • 焦云 1,2

    焦云

    宁波市特色园艺作物品质调控与抗性育种重点实验室,浙江宁波 315040;宁波市农业科学研究院林业研究所,浙江宁波 315040
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 贾慧敏 3

    贾慧敏

    江西农业大学农学院, 南昌 330045
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 房聪玲 4

    房聪玲

    慈溪市林特技术推广中心, 浙江慈溪 315300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 柴春燕 4

    柴春燕

    慈溪市林特技术推广中心, 浙江慈溪 315300
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.宁波市特色园艺作物品质调控与抗性育种重点实验室,浙江宁波 315040;2.宁波市农业科学研究院林业研究所,浙江宁波 315040;3.江西农业大学农学院, 南昌 330045;4.慈溪市林特技术推广中心, 浙江慈溪 315300

作者简介:

研究方向为果树分子遗传育种与栽培技术,E-mail: jydyx@163.com

通讯作者:

中图分类号:

基金项目:

宁波市现代种业专项(2021Z008)


Transcriptomic Analysis in Morella cerifera Seedlings Root under Simulated Drought Stress in Response to 5-hydroxy-tryptamine
Author:
  • JIAO Yun 1,2

    JIAO Yun

    Ningbo Key Laboratory of Characteristic Horticultural Crops in Quality Adjustment and Resistance Breeding, Ningbo 315040,Zhejiang;Institute of Forestry, Ningbo Academy of Agricultural Sciences, Ningbo 315040,Zhejiang
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIA Huimin 3

    JIA Huimin

    College of Agronomy, Jiangxi Agricultural University, Nanchang 330045
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FANG Congling 4

    FANG Congling

    Cixi Forestry Technology Extension Center, Cixi 315300,Zhejiang
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHAI Chunyan 4

    CHAI Chunyan

    Cixi Forestry Technology Extension Center, Cixi 315300,Zhejiang
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Ningbo Key Laboratory of Characteristic Horticultural Crops in Quality Adjustment and Resistance Breeding, Ningbo 315040,Zhejiang;2.Institute of Forestry, Ningbo Academy of Agricultural Sciences, Ningbo 315040,Zhejiang;3.College of Agronomy, Jiangxi Agricultural University, Nanchang 330045;4.Cixi Forestry Technology Extension Center, Cixi 315300,Zhejiang

Fund Project:

Foundation project: The Modern Seed Industry Special Project in Ningbo(2021Z008)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    植物生长调节剂5-羟色胺(5-HT,5-hydroxy-tryptamine)已应用于农业生产,以提升作物抗旱性,然而其转录水平的分子机制尚不清楚。本研究通过转录组测序、内源激素水平和抗氧化酶活性的综合评价,探讨模拟干旱胁迫下蜡杨梅幼苗响应外源5-羟色胺的生理和分子影响机制。结果表明,50 μmol/L的5-HT处理显著提高了蜡杨梅根系中脱落酸和茉莉酸含量,而100 μmol/L的5-HT处理的结果则刚好相反。50 μmol/L的5-HT处理诱导丙二醛含量和超氧化物歧化酶活性显著升高,而过氧化氢含量则显著降低。基于上述两种浓度水平的5-羟色胺处理基因集富集分析结果表明,差异表达基因集主要包括抗氧化酶活性、氧化还原酶活性、生长素和赤霉素介导信号传导、细胞壁生物合成、木聚糖生物合成、果胶代谢、次生代谢物生物合成、苯丙烷和半乳糖醛酸代谢等。与抗氧化酶活性及激素代谢相关的差异表达基因主要为PER、LAC、DHAR和PIN等。通过加权基因共表达网络分析发现8个共表达基因模块与5-羟色胺及干旱胁迫显著相关,其中枢纽基因KAB1218346.1(LOX3)、KAB1219593.1(WRKY53)和KAB1217691.1(CZF1)主要参与激素代谢和转录调控,上述关键基因及其分子调控机制将是今后研究的重要对象。

    关键词:5-羟色胺;模拟干旱胁迫;蜡杨梅;转录组
    Abstract:

    The plant growth regulator 5-hydroxy-tryptamine (5-HT) has been used in agricultural production to improve crop drought resistance. The underlying molecular mechanisms of its transcriptional response are largely unknown. In this study, the simulated drought stress-related physiological and molecular mechanisms of exogenous 5-HT on Morella cerifera seedlings were elucidated, including transcriptome sequencing and the evaluation of endogenous hormone levels and antioxidant enzyme activity. The results demonstrated that abscisic acid (ABA) and jasmonic acid (JA) content in Morella cerifera fibrous roots significantly increased following 50 μmol/L 5-HT treatments but decreased in 100 μmol/L treatments. Both the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were significantly increased but hydrogen peroxide (H2O2) content decreased following 50 μmol/L 5-HT treatments. Based on gene set enrichment analysis (GSEA), two-concentration levels 5-HT treatments were investigated. The differential gene set terms primarily included antioxidant activity, oxidoreductase activity, auxin and gibberellin-mediated signaling, cell wall biosynthetic, phospholipid translocation, xylan biosynthetic, pectin metabolic, secondary metabolite biosynthetic, phenylpropanoid metabolic and galacturonan metabolic process. The differentially expressed genes (DEGs) related to antioxidant enzyme activity and hormone metabolism were mainly PER, LAC, DHAR and PIN. Eight sets of co-expressed gene modules were significantly correlated with 5-HT and drought stress by the weighted gene co-expression network analysis (WGCNA). The hub genes KAB1218346.1(LOX3), KAB1219593.1(WRKY53), KAB1217691.1(CZF1) were primarily associated with hormone metabolism and regulation of transcription. These key genes and their molecular regulatory mechanisms will be important targets for future research.

    Key words:5-hydroxy-tryptamine;simulated drought stress;Morella cerifera;transcriptomics
    参考文献
    [1] 王硕, 贾潇倩, 何璐, 李浩然,王红光,何建宁,李东晓,房琴,李瑞奇. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展. 中国农学通报, 2022, 38(29):31-44Wang S, Jia X Q, He L, Li H R, Wang H G, He J N, Li D X, Fang Q, Li R Q. Response mechanism of crops to drought stress and measures for improving drought resistance of crops: Research progress. Chinese Agricultural Science Bulletin, 2022, 38(29):31-44
    [2] Fadiji A E, Santoyo G, Yadav A N, Babalola O O. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 2022, 13: 962427
    [3] Arnao M B, Hernández-Ruiz J. Melatonin: Synthesis from tryptophan and its role in higher plant. Amino acids in higher plants. Wallingford UK: CAB International, 2015:390-435
    [4] Wang X N, Zhang J C, Zhang H Y, Wang X F, You C X. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. Plant Physiology and Biochemistry, 2023, 197: 107627
    [5] Meade E, Hehir S, Rowan N, Garvey M. Mycotherapy: Potential of fungal bioactives for the treatment of mental health disorders and morbidities of chronic pain. Journal of Fungi, 2022, 8(3): 290
    [6] Erland L A E, Turi C E, Saxena P K. Serotonin, Canada: Elsevier Academic Press, 2019: 23-46
    [7] 田姗姗, 李继强, 邹锡玲, 张学昆, 付桂萍, 吕燕, 曾柳, 闫蕾, 刘月, 钟燕, 杨静, 陈建军, 马海清, 程勇. 5-羟色胺对油菜幼苗干旱的缓解效应. 中国油料作物学报, 2019, 41(2): 192Tian S S, Li J Q, Zou X L, Zheng X K, Fu G P, Lv Y, Zeng L, Yan L, Liu Y, Zhong Y, Yang J, Chen J J, Ma H Q, Cheng Y. Effect of exogenous 5-hydroxy-tryptamine (5-HT) on rape (Brassica napus L.) seedling under drought stress. Chinese Journal of Oil Crop Sciences,2019, 41(2): 192
    [8] He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Ding X Y, Yong C, Zhou X L. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regulation, 2021, 94: 161-170
    [9] Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiology, 2011, 52(3): 490-508
    [10] Abbasi B H, Younas M, Anjum S, Ahmad N, Ali M, Fazal H, Hano C. Signaling and communication in Plants. Switzerland: Springer Nature Switzerland AG, 2020: 75-92
    [11] Ravishankar G A, Ramakrishna A. Serotonin and melatonin:Their functional role in plants, food, phytomedicine, and human health. CRC Press. (2016-11-28)[2023-11-20]. https://www.researchgate.net/publication/311313850
    [12] Wan J, Zhang P, Wang R, Sun L, Ju Q, Xu J. Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biology, 2018, 18: 362
    [13] Mukherjee S. Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiology and Biochemistry, 2018, 132: 33-45
    [14] Pelagio-Flores R, Ruiz-Herrera L F, Lopez-Bucio J. Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling. Physiologia Plantarum, 2016, 158(1): 92-105
    [15] Hayashi K, Fujita Y, Ashizawa T, Suzuki F, Nagamura Y, Hayano-Saito Y. Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice. Plant Journal, 2016, 85(1): 46-56
    [16] Oberle B, OliviaCole P, Frank G, Gates A, Hall B, Harvey D, Scott M E, Setterberg C, Bustetter S P. Multilevel allometric growth equations improve accuracy of carbon monitoring during forest restoration. Trees, Forests and People, 2023, 14: 100442
    [17] 汪国云, 陈炯怡, 赵岚, 赵海波,李雨珊,周超超,焦云,高中山. 蜡杨梅砧木资源利用现状和前景. 果树资源学报, 2022, 3(1):1-6Wang G Y, Chen J Y, Zhao L, Zhao H B, Li Y S, Zhou C C, Jiao Y, Gao Z S. Application status and prospect of wax bayberry as rootstock for Chinese bayberry. Journal of Fruit Resources, 2022, 3(1):1-6
    [18] Knox G. Drought-tolerant plants for north and central florida. Florida: University of Florida Cooperative Extension Service, 2005: 1-19
    [19] Jiao Y, Sha C, Xie R, Shu Q. Comparative analysis of the potential physiological and molecular mechanisms involved in the response to root zone hypoxia in two rootstock seedlings of the Chinese bayberry via transcriptomic analysis. Functional & Integrative Genomics, 2023, 23(1): 11
    [20] Xie R, Zheng L, Jiao Y, Huang X. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environmental and Experimental Botany, 2021, 192: 104647
    [21] 胡海涛, 钱婷婷, 杨玲. 基于H2DCFDA荧光探针的植物活性氧检测方法. 植物学报, 2022, 57(3): 320-326Hu H T, Qian T T, Yang L. Detection of reactive oxygen species using H2DCFDA probe in plant. Chinese Bulletin of Botany, 2022, 57 (3): 320-326
    [22] Bolger A M, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120
    [23] Lamesch P, Berardini T Z, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M. The Arabidopsis information resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 2012, 40(D1): D1202-D1210
    [24] Thimm O, Bl?sing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller L A, Rhee SY, Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 2004, 37(6): 914-939
    [25] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202
    [26] 李艳肖, 张春兰, 徐兴源, 陈艳秋, 向殿军, 刘鹏. 基于转录组学的蓖麻耐盐基因的挖掘. 植物遗传资源学报, 2023, 24(6):1778-1793Li Y X, Zhang C L, Xu X Y, Chen Y Q, Xiang D J, Liu P. Transcriptomics-assisted mining of salt-tolerant genes in Ricinus communis. Journal of Plant Genetic Resources, 2023, 24(6):1778-1793
    [27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001, 25(4): 402-408
    [28] Niu S S, Xu C J, Zhang W S, Zhang B, Li X, Wang K L, Ferguson I B, Allan A C, Chen K S. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta,2010, 231: 887-899
    [29] Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, 2013, 20(2): 254-260
    [30] 王晓娟, 李娜, 姚文强, 杨立中,王文奇. 树木抗旱生理特性及转录组调控研究进展.内蒙古农业大学学报:自然科学版, 2023, 44(5):81-88Wang X J, Li N,Yao W Q, Yang L Z, Wang W Q. Advances in drought resistance physiological characteristics and transcriptome regulation of trees. Journal of Inner Mongolia Agricultural University:Natural Science Edition, 2023, 44(5):81-88
    [31] Wang B, Liu C, Zhang D, He C, Zhang J, Li Z. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 2019, 19(1): 1-19
    [32] Ngara R, Goche T, Swanevelder D Z, Chivasa S. Sorghum’s whole-plant transcriptome and proteome responses to drought stress: A review. Life, 2021, 11(7): 704
    [33] 卫星, 王政权, 张国珍. 干旱胁迫下水曲柳苗木细根线粒体的形态及活性变化. 植物生态学报, 2010, 34(12): 1454-1462Wei X, Wang Z Q, Zhang G Z. Morphological and activity variation of mitochondria in fine roots of Fraxinus mandshurica seedling under drought stress. Chinese Journal of Plant Ecology, 2010, 34 (12): 1454-1462
    [34] 梅映学, 魏玮, 张诗婉, 张韫璐, 王金缘, 王茜, 苏昕, 马莲菊. 干旱锻炼对盐胁迫下水稻幼苗根系抗氧化酶活性的影响. 浙江农业学报, 2016, 28(8):1304-1308Mei Y X,Wei W,Zhang S W,Zhang Y L,Wang J Y,Wang Q,Su X,Ma L J. Effect of PEG pretreatment on antioxidant enzymes activity under salt stress in root of rice seedling. Acta Agriculturae Zhejiangensis, 2016, 28(8):1304-1308
    [35] Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23: 663-679
    [36] Erland L A E, Turi C E, Saxena P K. Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnology Advances, 2016, 34(8): 1347-1361
    [37] 张国芹, 牟建梅, 陈虎根. 黄秋葵果实质地变化的生化和转录组联合分析. 植物遗传资源学报, 2023, 24(1): 282-295Zhang G Q, Mou J M, Chen H G. Combined biochemical and transcriptomic analysis of the Okra fruit texture Changes. Journal of Plant Genetic Resources, 2023, 24(1): 282-295
    [38] Guo T L, Liu C H, Meng F X, Hu L, Fu X M, Yang Z H, Wang N, Jiang Q, Zhang X Z, Ma F W. The m6A reader MhYTP2 regulates MdMLO19 mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnology Journal, 2022, 20(3): 511-525
    [39] Niu Z M, Li G T, Hu H Y, Lv J J, Zheng Q W, Liu J Q, Wan D S. A gene that underwent adaptive evolution, LAC2 (LACCASE), in Populus euphratica improves drought tolerance by improving water transport capacity. Horticulture Research, 2021, 8: 88
    [40] 杨帅, 高尚珠, 卢晗, 詹亚光, 曾凡锁. 植物细胞壁形成及在非生物胁迫中的作用. 植物生理学报, 2023, 59 (7): 1251-1264Yang S, Gao S Z, Lu H, Zhan Y G, Zeng F S. Plant cell wall development and its function in abiotic stress. Plant Physiology Journal, 2023, 59 (7): 1251-1264
    [41] 陈东滨, 王茜茜, 孙智仪, 杨小英, 傅经效, 郭新梅, 宋希云. 玉米ZmXTH23的克隆、表达及其对盐胁迫和干旱胁迫的响应.农业生物技术学报, 2019, 27(9): 1533-1541Chen D B, Wang Q Q, Sun Z Y, Yang X Y, Fu J X, Guo X M, Song X Y. Cloning and Expression of ZmXTH23 in maize (Zea mays) and its response to salt and drought stress. Journal of Agricultural Biotechnology, 2019, 27(9): 1533-1541
    [42] Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2015, 66(3): 695-707
    [43] Raza A, Charagh S, García-Caparrós P, Rahman M A, Ogwugwa V H, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM Crops & Food, 2022, 13(1): 196-217
    [44] Kumar R, Bohra A, Pandey A K, Pandey M K, Kumar A. Metabolomics for plant improvement: Status and prospects. Front Plant Science, 2017,8: 1302
    [45] Xing Q, Zhang, X, Li Y, Shao Q, Cao S, Wang F, Qi H. The lipoxygenase CmLOX13 from oriental melon enhanced severe drought tolerance via regulating ABA accumulation and stomatal closure in Arabidopsis. Environmental and Experimental Botany, 2019, 167: 103815
    [46] Zhang Y, Wang K, Wang Z, Li X, Li M, Zhu F, Majeed Z, Lan X, Guan Q. The lipoxygenase gene AfLOX4 of Amorpha fruticosa L. is a potential regulator of drought stress tolerance pathways under saline and alkaline conditions. Acta Physiologiae Plantarum, 2023, 45(6): 72
    [47] Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a C3H-Tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiology, 2013, 161(3): 1202-1216
    [48] 兰孟焦, 后猛, 肖满秋, 李臣, 潘皓, 张允刚, 卢凌志, 侯隆英, 葛瑞华, 吴问胜, 李强. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展. 植物遗传资源学报, 2023, 24(5):1223-1235Lan M J, Hou M, Xiao M Q, Li C, Pan H, Zhang Y G, Lu L Z, Hou L Y, Ge R H, Wu W S, Li Q. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response. Journal of Plant Genetic Resources, 2023, 24(5): 1223-1235
    [49] 陈林英, 李佳佳, 王博, 杜婉清, 高梦雪, 刘慧, 檀淑琴, 邱丽娟, 王晓波. WRKY 转录因子在大豆响应生物和非生物胁迫中的功能研究进展. 植物遗传资源学报, 2022, 23(2): 323-332Chen L Y,Li J J, Wang B, Du W Q, Gao M X, Liu H, Tan S Q, Qiu L J, Wang X B. Research progress on the function of WRKY transcription factor response to biotic and abiotic stresses in soybean. Journal of Plant Genetic Resources, 2022, 23(2): 323-332
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

焦云,贾慧敏,房聪玲,等.模拟干旱胁迫下蜡杨梅幼苗根系响应5-羟色胺的转录组分析[J].植物遗传资源学报,2024,25(7):1175-1189.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:143
  • 下载次数: 469
  • HTML阅读次数: 49
  • 引用次数: 0
历史
  • 收稿日期:2023-11-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码
您是第5853509位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!