2025年6月4日 23:37 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第9期 >1573-1588. DOI:10.13430/j.cnki.jpgr.20231125001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
野生大豆与栽培大豆几丁质酶基因鉴定及其表达分析
DOI:
10.13430/j.cnki.jpgr.20231125001
CSTR:
作者:
  • 张华

    张华

    河北农业大学农学院/华北作物改良与调控国家重点实验室/华北作物种质资源研究与利用教育部重点实验室/ 河北省作物种质资源重点实验室,保定 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李娜

    李娜

    河北农业大学农学院/华北作物改良与调控国家重点实验室/华北作物种质资源研究与利用教育部重点实验室/ 河北省作物种质资源重点实验室,保定 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邢馨竹

    邢馨竹

    河北农业大学农学院/华北作物改良与调控国家重点实验室/华北作物种质资源研究与利用教育部重点实验室/ 河北省作物种质资源重点实验室,保定 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邵振启

    邵振启

    河北农业大学农学院/华北作物改良与调控国家重点实验室/华北作物种质资源研究与利用教育部重点实验室/ 河北省作物种质资源重点实验室,保定 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李喜焕

    李喜焕

    河北农业大学农学院/华北作物改良与调控国家重点实验室/华北作物种质资源研究与利用教育部重点实验室/ 河北省作物种质资源重点实验室,保定 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张彩英

    张彩英

    河北农业大学农学院/华北作物改良与调控国家重点实验室/华北作物种质资源研究与利用教育部重点实验室/ 河北省作物种质资源重点实验室,保定 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

河北农业大学农学院/华北作物改良与调控国家重点实验室/华北作物种质资源研究与利用教育部重点实验室/ 河北省作物种质资源重点实验室,保定 071001

作者简介:

研究方向为大豆遗传育种与分子生物学,E-mail: zhanghua0316@163.com

通讯作者:

李喜焕,研究方向为大豆遗传育种与分子生物学,E-mail : lixihuan@hebau.edu.cn
张彩英,研究方向为大豆遗传育种与分子生物学,E-mail: zhangcaiying@hebau.edu.cn

中图分类号:

基金项目:

河北省现代农业产业技术体系建设专项资金(HBCT2024060204)


Identification and Expression Analysis of Chitinase Genes in Wild and Cultivated Soybeans
Author:
  • ZHANG Hua

    ZHANG Hua

    College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Hebei Key Laboratory of Crop Germplasm Resources,Baoding 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Na

    LI Na

    College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Hebei Key Laboratory of Crop Germplasm Resources,Baoding 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XING Xinzhu

    XING Xinzhu

    College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Hebei Key Laboratory of Crop Germplasm Resources,Baoding 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHAO Zhenqi

    SHAO Zhenqi

    College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Hebei Key Laboratory of Crop Germplasm Resources,Baoding 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Xihuan

    LI Xihuan

    College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Hebei Key Laboratory of Crop Germplasm Resources,Baoding 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Caiying

    ZHANG Caiying

    College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Hebei Key Laboratory of Crop Germplasm Resources,Baoding 071001
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Hebei Key Laboratory of Crop Germplasm Resources,Baoding 071001

Fund Project:

Foundation project: Hebei Agriculture Research System (HBCT2024060204)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    几丁质酶是以几丁质等为底物的糖基水解酶(GH,glycosyl hydrolases),在植物生长发育及抵御逆境中发挥重要功能。然而,大豆几丁质酶基因的组织表达模式及对逆境的响应尚不清楚,影响了其在遗传改良中的应用。本研究分别鉴定野生大豆与栽培大豆几丁质酶基因,并分析其表达模式。结果发现,野生大豆与栽培大豆分别含62个和55个几丁质酶基因,位于17条和18条染色体上;进化树分析发现,117个基因分为5类,其中类群III与类群V属于GH18亚家族,类群I、类群II与类群IV属于GH19亚家族;启动子分析发现,几丁质酶家族成员包含响应激素及逆境胁迫顺式作用元件。栽培大豆几丁质酶基因表达分析发现,其在不同组织及抗病耐逆等过程差异表达,其中Gm.01G142400和Gm.13G346700等在接种花叶病毒的抗病品种叶片中诱导表达,Gm.03G254300和Gm.20G164600等在低磷胁迫的磷高效品种根系中诱导表达,Gm.08G259200和Gm.19G245400等在低磷胁迫根瘤中诱导表达;野生大豆几丁质酶基因表达分析发现,其在不同组织及耐盐过程差异表达,其中Gs.02G002604和Gs.02G002940等在盐胁迫耐盐品种叶片中诱导表达。以上结果为挖掘利用几丁质酶基因奠定了基础。

    关键词:几丁质酶;野生大豆;栽培大豆;基因家族;表达模式
    Abstract:

    Chitinase is a kind of glycosyl hydrolases (GH) which hydrolyzes the chitin and other polymers. Chitinase plays an important function in the plant growth and development, as well as in the resistant process to diverse stresses. However, the tissue expression patterns and responses to diverse stresses of chitinase genes in soybean are still unclear, which seriously limited its application in genetic improvement. In this study, the chitinase family genes were identified in the wild soybean (Glycine soja Sieb. and Zucc.) and cultivated soybean (Glycine max(L.)Merr.), and the expression patterns were also analyzed. The results showed that 62 and 55 chitinase genes were identified in the wild soybean and cultivated soybean, which located on 17 and 18 chromosomes, respectively. The phylogenetic tree analysis showed that the chitinase genes were divided into five categories, with Class III and Class V belonging to the GH18 subfamily, while Class I, Class II and Class IV belonging to the GH19 subfamily. Further analysis found many cis-acting elements in the promoter regions of chitinase genes responding to various plant hormones and stresses.Further gene expression analyses in cultivated soybean showed that the chitinase genes presented differential expressions in different tissues and under different stress conditions. Among these genes, Gm.01G142400 and Gm.13G346700 were strongly induced in the leaves of resistant variety after soybean mosaic virus inoculation, Gm.03G254300 and Gm.20G164600 were induced in soybean roots after low phosphorus treatment, and Gm.08G259200 and Gm.19G245400 were induced in soybean nodules under low phosphorus condition. Gene expression analysis in wild soybean showed that the chitinase genes presented differential expressions in different tissues and after salt stress, among which Gs.02G002604 and Gs.02G002940 were highly induced in the leaves of tolerant variety after salt treatment. These results provide important references for further utilizing the chitinase genes in soybean genetic improvement.

    Key words:chitinases;wild soybean;cultivated soybean;gene family;expression analysis
    参考文献
    [1] Bhattacharya D, Nagpure A, Gupta R K. Bacterial chitinases: Properties and potential. Critical Reviews in Biotechnology, 2007, 27(1): 21-28
    [2] Gong S S, Meng Q L, Qiao J, Huang Y F, Zhong W Q, Zhang G W, Zhang K, Li N X, Shang Y X, Li Z Y, Cai X P. Biological characteristics of recombinant arthrobotrys oligospora chitinase AO-801. Korean Journal of Parasitology, 2022, 60(5): 345-352
    [3] 夏文水, 吴焱楠. 甲壳素/壳聚糖水解酶的研究进展. 中国海洋药物, 1997, 16(2): 31-35Xia W S, Wu Y N. Recent progress in the research of chitin/chitosan hydrolases. Chinese Journal of Marine Drugs, 1997, 16(2): 31-35
    [4] Li X R, Wajjiha B, Zhang P H, Dang Y J, Prasad R, Wei Y, Zhang S H. Serendipita indica chitinase protects rice from the blast and bakanae diseases. Journal of Basic Microbiology, 2023, 63(7): 734-745
    [5] Hamid R, Khan M A, Ahmad M, Ahmad M M, Abdin M Z, Musarrat J, Javed S. Chitinases: An update. Journal of Pharmacy and Bioallied Sciences, 2013, 5(1): 21-29
    [6] Rawat S, Ali S, Mittra B, Grover A. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. Biotechnology Reports, 2017, 13: 72-79
    [7] Jiao Z L, Su P P, Li Y, Zhao W J, Yang L B, Sun C Q, Xiu J F, Shang X L, Guo G. Identification and function analysis of chitinase 2 gene in housefly, Musca domestica. Comparative Biochemistry & Physiology, 2022, 259: 110717
    [8] Cantarel B L, Coutinho P M, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy):An expert resource for Glycogenomics. Nucleic Acids Research, 2009, 37: 233-238
    [9] Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi G, Iwasaki H, Ohnuma T, Fukamizo T. A plant class V chitinase from a cycad (Cycas revoluta):Biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology, 2009, 19(12): 1452-1461
    [10] Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer A H, Skriver K, Fukamizo T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta, 2011, 234(1): 123-137
    [11] Price N P J, Momany F A, Schnupf U, Naumann T A. Structure and disulfide bonding pattern of the hevein-like peptide domains from plant class Ⅳ chitinases. Physiological & Molecular Plant Pathology, 2015, 89(1): 25-30
    [12] 蔡培原, 陈祥贵. 微生物几丁质酶研究概况及其在食品工程中的应用. 四川食品与发酵, 2008, 44(3): 41-45Cai P Y, Chen X G. Development and application of chitinase in food engineering. Sichuan Food and Fermentation, 2008, 44(3): 41-45
    [13] Nakazaki T, Tsukiyama T, Okumoto Y, Kageyama D, Naito K, Inouye K, Tanisaka T. Distribution, structure, organ-specific expression, and phylogenic analysis of the pathogenesis-related protein-3 chitinase gene family in rice (Oryza sativa L.). Genome, 2006, 49(6): 619-630
    [14] Vaghela B, Vashi R, Rajput K, Joshi R. Plant chitinases and their role in plant defense: A comprehensive review. Enzyme and Microbial Technology, 2022, 159: 110055
    [15] Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K K, Peng Y G, Zhou Y H, Zhu Z. Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiology, 2012, 159(4): 1440-1452
    [16] Maglovski M, Gregorova Z, Rybansky L, Meszaros P, Moravcikova J, Hauptvogel P, Adamec L, Matusikova I. Nutrition supply affects the activity of pathogenesis-related beta-1,3-glucanases and chitinases in wheat. Plant Growth Regulation, 2017, 81: 443-453
    [17] Hong, J K, Hwang B K. Promoter activation of pepper class Ⅱ basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta, 2006, 223(3): 433-448
    [18] Park C H, Kim S, Park J Y, Ahn I P, Jwa N S, Im K H, Lee Y H. Molecular characterization of a pathogenesis-related protein gene encoding a class Ⅲ chitinase in rice. Molecules and Cells, 2004, 17(1): 144-150
    [19] 潘晓雪, 胡明瑜, 王忠伟, 苏梅, 雷开荣, 吴红, 蒋晓英. 水稻几丁质酶基因家族的全基因组鉴定及表达分析. 植物生理学报, 2022, 58(4): 746-756Pan X X, Hu M Y, Wang Z W, Su M, Lei K R, Wu H, Jiang X Y. Genome-wide analysis of the rice chitinases gene family and their expression profiles under different stress treatments. Plant Physiology Journal, 2022, 58(4): 746-756
    [20] Yu C S, Chen Y C, Lu C H, Huang J K. Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 2006, 64(3): 643-651
    [21] Petersen T N, Brunak S, Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8(10): 785-786
    [22] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874
    [23] Chu J H, Li W L, Piao D R, Kong Y B, Du H, Lin F, Li X H, Zhang C Y. Mining of a major QTL and novel genes conferring resistance to SC3 and SC7 strains in soybean. Plant Breeding, 2021, 140: 851-859
    [24] Kong Y B, Wang B, Du H, Li W L, Li X H, Zhang C Y. GmEXLB1, a soybean expansin-like B gene, alters root architecture to improve phosphorus acquisition in Arabidopsis. Frontiers in Plant Science. 2019, 10: 808
    [25] Xing X Z, Du H, Yang Z W, Li X H, Kong Y B, Li W L, Zhang C Y. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC Plant Biology, 2022, 22: 161
    [26] Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. The Plant Journal, 2010, 63(1): 86-99
    [27] 魏志园, 王宇, 司增志, 魏莱, 温晓蕾, 乔亚科, 李桂兰, 张锴. 盐碱胁迫下野生大豆CBL-CIPK通路表达分析. 核农学报, 2021, 35(8): 1783-1793Wei Z Y, Wang Y, Si Z Z, Wei L,Wen X L, Qiao Y K, Li G L, Zhang K. Analysis of CBL-CIPK pathway proteins in wild soybean with saline-alkali stress. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1783-1793
    [28] Yang Z Q, Luo C F, Pei X X, Wang S B, Huang Y M, Li J W, Liu B H, Kong F J, Yang Q Y, Fang C. SoyMD:A platform combining multi-omics data with various tools for soybean research and breeding. Nucleic Acids Research, 2024, 52: 1639-1650
    [29] Kang X, Cai J J, Chen Y X, Yan Y C, Yang S T, He R Q, Wang D, Zhu Y L. Pod-shattering characteristics differences between two groups of soybeans are associated with specific changes in gene expression. Nature Reviews Cancer, 2020, 20(2): 201-210
    [30] 王克晶, 李福山. 我国野生大豆(G.soja)种质资源及其种质创新利用. 中国农业科技导报, 2000, 2(6): 69-72Wang K J, Li F S. General situation of wild soybean (G. soja) germplasm resources and its utilization of introgression into cultivated soybean in China. Review of China Agricultural Science and Technology, 2000, 2(6): 69-72
    [31] 胡小梅, 张必弦, 朱延明, 来永才, 李炜, 李琬, 毕影东, 肖佳磊, 齐宁, 林红, 刘广阳, 杨雪峰, 刘丽艳, 张俐俐. 野生大豆资源的研究与利用. 安徽农业科学, 2011, 39(22): 13311-1331Hu X M, Zhang B X, Zhu Y M, Lai Y C, Li W, Li W, Bi Y D, Xiao J L, Qi N, Lin H, Liu G Y, Yang X F, Liu L Y, Zhang L L. The studies and utilization of wild soybean (Glycine soja). Journal of Anhui Agricultural Science, 2011, 39(22): 13311-13313
    [32] 齐宁, 林红, 魏淑红, 杨雪峰, 刘广阳. 利用野生大豆资源创新优质抗病大豆新种质. 植物遗传资源学报, 2005, 6(2): 200-203Qi N, Lin H, Wei S H, Yang X F, Liu G Y. Using wild soybean resources to develop the new soybean germplasm of high quality and diseases resistance. Journal of Plant Genetic Resources, 2005, 6(2): 200-203.
    [33] Zhao C M, Hou H, Xing M G, Xue R G. Identification of stigma specific expression fragment in the promoter of a soybean chitinase class Ⅰ gene. Molecular Biology, 2023, 57(1): 83-94
    [34] Gijzen M, Kuflu K, Qutob D, Chernys J T. A class I chitinase from soybean seed coat. Journal of Experimental Botany, 2001, 52: 2283-2289
    [35] 赵艳, 沙伟, 金忠民, 张梅娟. 大豆class Ⅲ酸性内切几丁质酶基因及其启动子表达方式. 中国油料作物学报, 2013, 35(2): 221-224Zhao Y, Sha W, Jin Z M, Zhang M J. Expression pattern of soybean class Ⅲ acidic endochitinase gene and promoter. Chinese Journal of Oil Crop Sciences, 2013, 35(2): 221-224
    [36] Nekrutenko A, Makova K D, Li W H. The KA/KS ratio test for assessing the protein-coding potential of genomic regions: An empirical and simulation study. Genome Research, 2002, 12(1): 198-202
    [37] Polowick P L, Sawhney V K. In vitro floral development of oilseed rape (Brassica napus L.): The effects of pH and plant growth regulators. Journal of Experimental Botany, 1991, 42(245): 1583-1588
    [38] 郭泽西, 刘露露, 孙大运, 潘凤英, 曲俊杰, 尹玲. 查尔酮合成酶在植物抗病中的研究进展. 分子植物育种, 2023, 21(22): 7545-7553Guo Z X, Liu L L, Sun D Y, Pan F Y, Qu J J, Yin L. Progress of chalcone synthase and plant disease resistance. Molecular Plant Breeding, 2023, 21(22): 7545-7553
    [39] 吴采玉, 文春雨, 黄丽萍, 徐瑞新, 宋健. 不同颜色大豆种皮成分及抗氧化性分析. 大豆科学, 2023, 42(5): 554-564Wu C Y, Wen C Y, Huang L P, Xu R X, Song J. Analysis of seed coat composition and antioxidant activity of soybean with different colors. Soybean Science, 2023, 42(5): 554-564
    [40] 杜婷婷, 宋治华, 董碧莹, 曹红燕, 刘腾跃, 杨琬珑, 祁萌, 陈婷, 王梦莹, 孟冬, 杨清, 付玉杰. 木豆类黄酮代谢通路关键基因家族的鉴定与表达分析. 农业生物技术学报, 2021, 29(12): 2289-2303Du T T, Song Z H, Dong B Y, Cao H Y, Liu T Y, Yang W L, Qi M, Chen T, Wang M Y, Meng D, Yang Q, Fu Y J. Identification and expression analysis of key gene families in flavonoid metabolism pathway in pigeon pea (Cajanus cajan). Journal of Agricultural Biotechnology, 2021, 29(12): 2289-2303
    [41] 厉广辉, 郭鑫, 孙艳斌, 张伟男, 赵慧玲, 赵红军, 王兴军, 付春, 赵传志. 盐胁迫下不同花生品种的类黄酮含量和抗氧化酶活性. 中国油料作物学报, 2023, 45(4): 803-809Li G H, Guo X, Sun Y B, Zhang W N, Zhao H L, Zhao H J, Wang X J, Fu C, Zhao C Z. Flavonoid contents and antioxidant enzyme activities of different peanut cultivars under salt stress. Chinese Journal of Oil Crop Sciences, 2023, 45(4): 803-809.
    [42] 陈敏, 朱辉, 曹扬荣. 费氏中华根瘤菌NodD2蛋白与植物类黄酮互作的生化机制研究. 生命的化学, 2022, 42(7): 1396-1404Chen M, Zhu H, Cao Y R. Biochemical mechanism of the interaction between Sinorhizobium fredii NodD2 and plant flavonoids. Chemistry of Life, 2022, 42(7): 1396-1404
    [43] Salzer P, Bonanomi A, Beyer K, V?geli-Lange R, Aeschbacher R A, Lange J, Wiemken A, Kim D, Cook D R, Boller T. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant-microbe Interactions, 2000, 13(7): 763-777
    [44] 左豫虎, 康振生, 杨传平, 芮海英, 娄树宝, 刘惕若. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系. 植物病理学报, 2009, 39(6): 600-607Zuo Y H, Kang Z S, Yang C P, Rui H Y, Lou S B, Liu T R. Relationship between activities of β-1,3-glacanase and chitinase and resistance to phytophthora root rot in soybean. Acta Phytopathologica Sinica, 2009, 39(6): 600-607
    [45] Su Y C, Xu L P, Fu Z W, Yang Y T, Guo J L, Wang S S, Que Y X. ScChi, encoding an acidic Class Ⅲ chitinase of sugarcane, confers positive responses to biotic and abiotic stresses in sugarcane. International Journal of Molecular Sciences, 2014, 15, 2738-2760
    [46] Salzer P, Feddermann N, Wiemken A, Boller T, Staehelin C. Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: A comparison between symbiosis-specific class V and defence-related class Ⅳ chitinases. Planta, 2004, 219(4): 626-638
    [47] Dong Y, Yang X, Liu J, Wang B H, Liu B L, Wang Y Z. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 2014, 5: 3352
    [48] Sanchez-Rodriguez C, Bauer S, Hématy K, Saxe F, Ibá?ez A B, Vodermaier V, Konlechner C, Sampathkumar A, Rüggeberg M, Aichinger E, Neumetzler L, Ⅰ Burgert, Somerville C, Hauser M T, Persson S. Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. The Plant Cell, 2012, 24(2): 589-607
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张华,李娜,邢馨竹,等.野生大豆与栽培大豆几丁质酶基因鉴定及其表达分析[J].植物遗传资源学报,2024,25(9):1573-1588.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:103
  • 下载次数: 1407
  • HTML阅读次数: 57
  • 引用次数: 0
历史
  • 收稿日期:2023-11-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-02
  • 出版日期:
文章二维码
您是第5894048位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!