2025年6月13日 17:50 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第9期 >1428-1440. DOI:10.13430/j.cnki.jpgr.20240303001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
水稻耐冷研究现状与黑龙江省粳稻耐冷生物育种策略
DOI:
10.13430/j.cnki.jpgr.20240303001
CSTR:
作者:
  • 张文雨 1,2

    张文雨

    长江大学农学院,湖北荆州 434025;中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室/农作物基因资源与 遗传改良国家重大科学工程,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 雷远宝 2

    雷远宝

    中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室/农作物基因资源与 遗传改良国家重大科学工程,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张云江 3

    张云江

    黑龙江省农业科学院水稻研究所,佳木斯 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭震华 3

    郭震华

    黑龙江省农业科学院水稻研究所,佳木斯 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘乃生 3

    刘乃生

    黑龙江省农业科学院水稻研究所,佳木斯 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 马文东 3

    马文东

    黑龙江省农业科学院水稻研究所,佳木斯 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邱先进 1

    邱先进

    长江大学农学院,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郑天清 2

    郑天清

    中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室/农作物基因资源与 遗传改良国家重大科学工程,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐建龙 2

    徐建龙

    中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室/农作物基因资源与 遗传改良国家重大科学工程,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.长江大学农学院,湖北荆州 434025;2.中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室/农作物基因资源与 遗传改良国家重大科学工程,北京 100081;3.黑龙江省农业科学院水稻研究所,佳木斯 154026

作者简介:

研究方向为作物遗传育种,E-mail: 1805093237@qq.com;

通讯作者:

郑天清,研究方向为水稻基因资源挖掘与育种利用,E-mail: zhengtianqing@caas.cn
邱先进,研究方向为水稻重要农艺性状遗传解析与分子育种,Email: xjqiu216@yangtzeu.edu.cn

中图分类号:

基金项目:

农业生物育种重大专项(2022ZD0400404)


Research Status on Cold Tolerance in Rice and Biotechnological Breeding Strategies for Cold-tolerant Early Geng/japonica in Heilongjiang Province
Author:
  • ZHANG Wenyu 1,2

    ZHANG Wenyu

    College of Agriculture, Yangtze University, Jingzhou 434025, Hubei;Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LEI Yuanbao 2

    LEI Yuanbao

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yunjiang 3

    ZHANG Yunjiang

    Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Zhenhua 3

    GUO Zhenhua

    Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Naisheng 3

    LIU Naisheng

    Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Wendong 3

    MA Wendong

    Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIU Xianjin 1

    QIU Xianjin

    College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Tianqing 2

    ZHENG Tianqing

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Jianlong 2

    XU Jianlong

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Agriculture, Yangtze University, Jingzhou 434025, Hubei;2.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081;3.Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026

Fund Project:

Foundation project: Biological Breeding-Major Projects(2022ZD0400404)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着全球气候变化,极端天气事件发生概率显著上升。作为我国水稻商品粮重要生产基地,黑龙江省是低温冷害频发地区,黑龙江省粳稻在苗期和生殖生长期(含孕穗期、开花期和成熟期)都容易遭遇低温胁迫。低温胁迫是黑龙江省粳稻生产的重要限制因素,提高黑龙江省粳稻品种耐冷性对保障我国粮食安全生产具有重大战略意义。本文在回顾水稻耐冷鉴定方法和遗传研究同时,通过分析黑龙江省粳稻近20年(2006-2023年)育成品种的耐冷数据发现,随着近年来审定品种数量“井喷”,品种耐冷性呈现整体下降趋势;其次,通过基于参考基因组的比较作图发现,苗期和生殖生长期耐冷性大多受独立的位点或染色体区段控制,遗传重叠(包括一因多效位点和连锁区段)比例在21%左右,其中负调控位点占比20%。对当前黑龙江省粳稻耐冷育种工作而言,针对上述遗传重叠位点/区段和负调控位点开展深入研究,将有利于进一步提高育种工作效率。在此基础上,本文提出了黑龙江省粳稻耐冷生物育种策略以及苗期与生殖生长期耐冷性同步改良的具体建议。

    关键词:黑龙江省早熟粳稻;耐冷性;遗传重叠;生物育种改良
    Abstract:

    With the global climate change, the probability of extreme weather events has significantly increased. As an important base for commercial rice production in China, Heilongjiang province is an area prone to low-temperature stresses. Geng/Japonica rice in Heilongjiang is susceptible to low-temperature stresses during both the seedling stage and the reproductive stage (including booting, flowering, and maturing stages). Low temperature stress is a key limiting factor for rice production in Heilongjiang, and improving cold tolerances of Heilongjiang Geng/japonica rice cultivars is of great strategic importance for ensuring the food production security in China. When reviewing the identification methods and genetic researches of rice cold tolerance, the authors analyzed the cold tolerance characteristics of Heilongjiang rice cultivars released in the past about 20 years (2006-2023), and found that with the "blowout" of approved cultivars in recent 5 years, the cold tolerances are going down. Secondly, through the comparative mapping based on reference genome, it was found that the cold tolerances at the seedling stage and the reproductive stage are mostly controlled by independent loci or chromosomal regions, and the proportion of genetic overlap (including both pleiotropic loci and linked regions) accounted for about 21%. Among the identified gene responsible for cold tolerances, the negative regulatory genes accounted for about 20%. For current breeding application, the above-mentioned genetic overlap loci/regions and negative regulatory genes are useful in improving the breeding efficiency. On this basis, the authors put forward specific suggestions on the simultaneous improvement of cold tolerance during the seedling stage and reproductive stage as well as strategies for the biotechnological breeding on improving the cold tolerances of early Geng/japonica rice for Heilongjiang province.

    Key words:early Geng/japonica rice (Oryza sativa L.) at Heilongjiang province;cold resistance;genetic overlap;biotechnological breeding
    参考文献
    [1] 戴陆园, 叶昌荣, 余腾琼, 徐福荣. 水稻耐冷性研究 Ⅰ. 稻冷害类型及耐冷性鉴定评价方法概述. 西南农业学报, 2002(1): 41-45Dai L Y, Ye C R, Yu T Q, Xu F R.Study on cold tolerance of rice,Oryzasativa L. I.Discription on types of cold injury and classifications of evaluation methods on cold tolerance in rice. Southwest Agricultural Journal, 2002 (1) : 41-45
    [2] 中国天气网内蒙古站. 东北冷害. 中国天气网.(2013-09-22) [2024-03-03]. http://www.weather.com.cn/neimenggu/sy/tqyw/09/1973105.shtmlChina Weather Network Inner Mongolia Station.Cold damage in Northeast China.China Weather Network.(2013-09-22) [2024-03-03]. http://www.weather.com.cn/neimenggu/sy/tqyw/09/1973105.shtml
    [3] Wang P, Liu H, Wu W, Kong F, Hu T. Future projections of rice exposure to cold stress in China throughout the 21st century. European Journal of Agronomy, 2022, 135: 126473
    [4] 熊振民, 闵绍楷, 王国梁, 程式华, 曹立勇. 早籼品种苗期耐冷性的遗传研究. 中国水稻科学, 1990(2): 75-78Xiong Z M, Min S K, Wang G L, Cheng S H, Cao L Y.Genetic study on cold tolerance of early indica rice varieties at seedling stage. Chinese Journal of Rice Science, 1990 (2) : 75-78
    [5] Zhao G Z, Liu J X, Yang S J, Yea J D, Liao X H, Su Z X, Shi R, Jiang C, Dai L Y. Effect of cold-water irrigation on grain quality traits in japonica rice varieties from Yunnan province, China. Rice Science, 2009, 16(3): 201-209
    [6] 戴陆园, 叶昌荣, 熊建华, 王怀义. 稻耐冷性鉴定评价方法. 中国水稻科学, 1999(1): 62Dai L Y, Ye C R, Xiong J H, Wang H Y. Method for identification and evaluation of cold tolerance in rice. Chinese Journal of Rice Science, 1999 (1) : 62
    [7] 韩龙植, 张三元. 水稻耐冷性鉴定评价方法. 植物遗传资源学报, 2004,5(1): 75-80Han L Z, Zhang S Y. Identification and evaluation of cold tolerance in rice. Journal of Plant Genetic Resources, 2004 ,5(1) : 75-80
    [8] 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望. 遗传, 2018, 40(3): 171-185Liu C T, Wang W, Mao B G, Chu C C.Study on low temperature tolerance of rice: Molecular physiological mechanism and breeding prospect. Genetics, 2018,40 (3): 171-185
    [9] 潘国君. 寒地粳稻育种. 北京: 中国农业出版社, 2014: 650Pan G J. Cold japonica rice breeding. Beijing : China Agricultural Publishing House, 2014: 650
    [10] 农业农村部种业管理司. 国家种业大数据平台.(2013-09-22) [2024-03-03]. http://202.127.42.47:6010/SDSite/Home/IndexDepartment of Seed Industry Management, Ministry of Agriculture and Rural Affairs.National Seed Industry Big Data Platform.(2013-09-22) [2024-03-03]. http://202.127.42.47:6010/SDSite/Home/Index
    [11] 中国水稻研究所. 国家水稻数据中心. (2024-03-03) [2024-03-03]. https://www.ricedata.cn/variety/China National Rice Research Institute. National Rice Data Center. (2024-03-03) [2024-03-03]. https://www.ricedata.cn/variety/
    [12] 苗得雨. 寒地水稻品种不同时期耐冷性比较研究. 现代农业科技, 2009(5): 155-158Miao D Y. A comparative study on the cold tolerance of rice varieties in different periods. Modern Agricultural Science and Technology, 2009 (5): 155-158
    [13] 崔迪, 杨春刚, 汤翠凤, 余腾琼, 张俊国, 曹桂兰, 阿新祥, 徐福荣, 张三元, 戴陆园, 韩龙植. 低温胁迫下粳稻选育品种耐冷性状的鉴定评价. 植物遗传资源学报, 2012, 13(5): 739-747Cui D, Yang C G, Tang C F, Yu T Q, Zhang J G, Cao G L, A X X, Xu F R, Zhang S Y, Dai L Y, Han L Z. Identification and evaluation of cold tolerance traits of japonica rice varieties under low temperature stress. Journal of Plant Genetic Resources, 2012,13 (5): 739-747
    [14] 张景龙, 孟昭河, 郑桂萍, 张群. 寒地水稻孕穗期耐冷性的鉴定. 现代化农业, 2010(4): 27-29Zhang J L, Meng Z H, Zheng G P, Zhang Q. Identification of cold tolerance of rice at booting stage in cold region. Modern Agriculture, 2010 (4): 27-29
    [15] 杨洛淼. 水稻孕穗期耐冷性QTL的遗传解析. 哈尔滨: 东北农业大学, 2018Yang L M. Genetic analysis of QTL for cold tolerance at booting stage in rice. Northeast Agricultural University, 2018
    [16] Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. Journal of Experimental Botany, 2011, 62(14): 4863-4874
    [17] Tang J, Tian X, Mei E, He M, Gao J, Yu J, Xu M, Liu J, Song L, Li X, Wang Z, Guan Q, Zhao Z, Wang C, Bu Q. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. The Plant Cell, 2022, 34(11): 4495-4515
    [18] Zhang M X, Zhao R R, Huang K, Huang S Z, Wang H T, Wei Z Q, Li Z, Bian M D, Jiang W Z, Wu T, Du X L. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. The Plant Journal, 2022, 112(2): 383-398
    [19] Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiology, 2009, 150(1): 244-256
    [20] Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal, 2004, 37(1): 115-127
    [21] Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiology, 2010, 153(1): 145-158
    [22] Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008, 67(1-2): 169-181
    [23] Huang L, Hong Y, Zhang H, Li D, Song F. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biology, 2016, 16(1): 203
    [24] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324
    [25] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over‐expression of a single Ca2+‐dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal, 2001, 23(3): 319-327
    [26] Lu G W, Wu F Q, Wu W X, Wang H J, Zheng X M, Zhang Y H, Chen X L, Zhou K N, Jin M N, Cheng Z J, Li X Y, Jiang L, Wang H Y, Wan J M. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. The Plant Journal, 2014, 78(3): 468-480
    [27] Xia C, Liang G, Chong K, Xu Y. The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice. Nature Communications, 2023, 14(1): 3104
    [28] Zhang Z, Li J, Pan Y, Li J, Zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W, Yu J, Sun X, Li G, Ding Y, Ma L, Shen S, Dai L, Zhang H, Yang S, Guo Y, Li Z. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 2017, 8:14788
    [29] Liu J, Liu J, He M, Zhang C, Liu Y, Li X, Wang Z, Jin X, Sui J, Zhou W, Bu Q, Tian X. OsMAPK6 positively regulates rice cold tolerance at seedling stage via phosphorylating and stabilizing OsICE1 and OsIPA1. Theoretical and Applied Genetics, 2023, 137(1): 10
    [30] Lou Q, Guo H, Li J, Han S, Khan N U, Gu Y, Zhao W, Zhang Z, Zhang H, Li Z, Li J. Cold‐adaptive evolution at the reproductive stage in Geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9. The Plant Journal, 2022, 111(4): 1032-1051
    [31] Mei E, Tang J, He M, Liu Z, Tian X, Bu Q. OsMKKK70 negatively regulates cold tolerance at booting stage in rice. International Journal of Molecular Sciences, 2022, 23(22): 14472
    [32] Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 160(6): 1209-1221
    [33] Ji L X, Zhang Z F, Liu S, Zhao L Y, Li Q, Xiao B Z, Suzuki N, Burks D J, Azad R K, Xie G S. The OsTIL1 lipocalin protects cell membranes from reactive oxygen species damage and maintains the 18∶3‐containing glycerolipid biosynthesis under cold stress in rice. The Plant Journal, 2023, 117(1): 72-91
    [34] Zhao J, Wang S, Qin J, Sun C, Liu F. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. Plant Biotechnol Journal, 2019, 18(3): 756-769
    [35] Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Reports, 2011, 30(3): 399-406
    [36] Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Science, 2010, 179(1-2): 97-102
    [37] 李继龙. 水稻孕穗期耐冷QTL的精细定位与克隆.北京: 中国农业大学, 2018Li J L. Fine mapping and cloning of cold tolerance QTL at booting stage in rice. Beijing: China Agricultural University, 2018
    [38] Li J L, Zeng Y W, Pan Y H, Zhou L, Zhang Z Y, Guo H F, Lou Q J, Shui G H, Huang H G, Tian H, Guo Y M, Yuan P R, Yang H, Pan G J, Wang R Y, Zhang H L, Yang S H, Guo Y, Ge S, Li J J, Li Z C. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. New Phytologist, 2021, 231(3): 1056-1072
    [39] Mao D H, Xin Y Y, Tan Y J, Hu X J, Bai J J, Liu Z Y, Yu Y L, Li L Y, Peng C, Fan T, Zhu Y X, Guo Y L, Wang S H, Lu D P, Xing Y Z, Yuan L P, Chen C Y. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proceedings of the National Academy of Sciences, 2019, 116(9): 3494-3501
    [40] Yang L, Lei L, Wang J, Zheng H, Xin W, Liu H, Zou D. qCTB7 positively regulates cold tolerance at booting stage in rice. Theoretical and Applied Genetics, 2023, 136(6): 135
    [41] Xu Y, Wang R, Wang Y, Zhang L, Yao S. A point mutation in LTT1 enhances cold tolerance at the booting stage in rice. Plant, Cell & Environment, 2020, 43(4): 992-1007
    [42] Gu S, Zhang Z, Li J, Sun J, Cui Z, Li F, Zhuang J, Chen W, Su C, Wu L, Wang X, Guo Z, Xu H, Zhao M, Ma D, Chen W, Natural variation in OsSEC13 HOMOLOG 1 modulates redox homeostasis to confer cold tolerance in rice. Plant Physiology, 2023, 193(3): 2180-2196
    [43] Shen Y, Cai X, Wang Y, Li W, Li D, Wu H, Dong W, Jia B, Sun M, Sun X. MIR1868 negatively regulates rice cold tolerance at both the seedling and booting stages. The Crop Journal, 2024, 12(2): 375-383
    [44] Kim C Y, Vo K T X, Nguyen C D, Jeong D H, Lee S K, Kumar M, Kim S R, Park S H, Kim J K, Jeon J S. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology Reports, 2016, 10(1): 13-23
    [45] Liu H, Yang L, Xu S, Lyu M-J, Wang J, Wang H, Zheng H, Xin W, Liu J, Zou D. OsWRKY115 on qCT7 links to cold tolerance in rice. Theoretical and Applied Genetics, 2022, 135(7): 2353-2367
    [46] Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 2013, 64(16): 5085-5097
    [47] Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K, OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytologist, 2018, 218(1): 219-231
    [48] Liu C, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schl?ppi M R, Zhao B, Xiao G, Wang X, Chu C. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nature Communications, 2018, 9(1): 3302
    [49] Liu C, Schl?ppi M R, Mao B, Wang W, Wang A, Chu C. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol Journal, 2019, 17(9): 1834-1849
    [50] Xu M L, Xiao N, Huang W N, Zhang X X, Gao Y, Li A H, Dai Y, Yu L, Liu G Q, Pan C H, Li Y H, Dai Z Y, Chen J M. Fine mapping of qRC10-2, a quantitative trait locus for cold tolerance of rice roots at seedling and mature stages. PLoS ONE, 2014, 9(5): e96046
    [51] Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiology, 2018, 177(3): 1108-1123
    [52] 张立娜. 水稻不同生长发育时期耐冷性QTL定位及候选基因发掘. 北京: 中国农业科学院, 2022Zhang L N.QTL mapping and candidate gene discovery of cold tolerance at different growth and development stages of rice. Beijing: Chinese Academy of Agricultural Sciences, 2022
    [53] Liu D, Luo S, Li Z, Liang G, Guo Y, Xu Y, Chong K. COG3 confers the chilling tolerance to mediate OsFtsH2‐D1 module in rice. New Phytologist, 2024, 241(5): 2143-2157
    [54] 郑天清. 水稻高代回交导入系选择群体的选择响应与遗传重叠研究. 南京: 南京农业大学, 2006Zheng T Q. Study on selection response and genetic overlap of selected populations of advanced backcross introgression lines in rice. Nanjing: Nanjing Agricultural University, 2006
    [55] 殷琪荔. 气候变化对黑龙江省粮食全要素生产率的影响研究. 哈尔滨: 东北农业大学, 2023Yin Q L. Research on the impact of climate change on grain total factor productivity in Heilongjiang province. Harbin: Northeast Agricultural University, 2023
    [56] Wang W S, Mauleon R, Hu Z Q, Chebotarov D, Tai S S, Wu Z C, Li M, Zheng T Q, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J L, Sun C, Fu B Y, Zhang H L, Gao Y M, Zhao X Q, Shen F, Cui X, Yu H, Li Z, Chen M L, Detras J, Zhou Y L, Zhang X Y, Zhao Y, Kudrna D, Wang C C, Li R, Jia B, Lu J Y, He X C, Dong Z T, Xu J B, Li Y H, Wang M, Shi J X, Li J, Zhang D B, Lee S, Hu W S, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y C, Yue Z, Naredo M E B, Talag J, Wang X Q, Li J J, Fang X D, Yin Y, Glaszmann J-C, Zhang J W, Li J Y, Hamilton R S, Wing R A, Ruan J, Zhang G Y, Wei C C, Alexandrov N, McNally K L, Li Z K, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43-49
    [57] 林敏. 农业生物育种技术的发展历程及产业化对策. 生物技术进展, 2021, 11(4): 405-417Lin M. Development course and industrialization countermeasures of agricultural bio-breeding technology. Advances in Biotechnology, 2021, 11(4): 405-417
    [58] Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Research, 2006, 97(1): 66-76
    [59] He Y X, Zheng T Q, Hao X B, Wang L F, Gao Y M, Hua Z T, Zhai H Q, Xu J L, Xu Z J, Zhu L H, Li Z K. Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. Plant Breeding, 2010, 129(2): 167-175
    [60] Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C C, McNally K L, Alexandrov N, Gao X Y, Li J Y, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol Journal, 2020, 18(1): 14-16
    [61] Wang K, Abid M A, Rasheed A, Crossa J, Hearne S, Li H. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant, 2023, 16(1): 279-293
    [62] Watson A, Ghosh S, Williams M J, Cuddy W S, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski N M, Breakspear A, Korolev A, Rayner T, Dixon L E, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters M J, DeLacy I H, Zhou J, Uauy C, Boden S A, Park R F, Wulff B B H, Hickey L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4(1): 23-29
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张文雨,雷远宝,张云江,等.水稻耐冷研究现状与黑龙江省粳稻耐冷生物育种策略[J].植物遗传资源学报,2024,25(9):1428-1440.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:281
  • 下载次数: 1557
  • HTML阅读次数: 82
  • 引用次数: 0
历史
  • 收稿日期:2024-03-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-02
  • 出版日期:
文章二维码
您是第5922365位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!