2025年5月20日 17:40 星期二
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第1期 >189-201. DOI:10.13430/j.cnki.jpgr.20240310001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
基于RNA-seq番石榴果实软化候选基因的挖掘及表达分析
DOI:
10.13430/j.cnki.jpgr.20240310001
CSTR:
作者:
  • 范競升 1

    范競升

    广西壮族自治区亚热带作物研究所/广西亚热带特色水果质量安全控制重点实验室,南宁 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 马松琼 1

    马松琼

    广西壮族自治区亚热带作物研究所/广西亚热带特色水果质量安全控制重点实验室,南宁 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宁琳 1

    宁琳

    广西壮族自治区亚热带作物研究所/广西亚热带特色水果质量安全控制重点实验室,南宁 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 何江 1

    何江

    广西壮族自治区亚热带作物研究所/广西亚热带特色水果质量安全控制重点实验室,南宁 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈念 2

    陈念

    南宁市农业科学研究所,南宁 530021
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 欧景莉 1

    欧景莉

    广西壮族自治区亚热带作物研究所/广西亚热带特色水果质量安全控制重点实验室,南宁 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈豪军 1

    陈豪军

    广西壮族自治区亚热带作物研究所/广西亚热带特色水果质量安全控制重点实验室,南宁 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈丹 3

    陈丹

    广西农业职业技术大学农业工程学院,南宁 530007
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.广西壮族自治区亚热带作物研究所/广西亚热带特色水果质量安全控制重点实验室,南宁 530001;2.南宁市农业科学研究所,南宁 530021;3.广西农业职业技术大学农业工程学院,南宁 530007

作者简介:

研究方向为果树种质资源研究及遗传育种,E-mail: jingshengfan@yeah.net

通讯作者:

陈丹,研究方向为农业生态,E-mail: ddan55@126.com

中图分类号:

基金项目:

广西农业科学院基本科研业务专项(桂农科2023YM123,桂农科2021YT146)


Mining and Expression Analysis of Softening Candidate Genes in Guava Fruit Based on RNA-seq
Author:
  • FAN Jingsheng 1

    FAN Jingsheng

    Guangxi Subtropical Crops Research Institute/Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits,Nanning 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Songqiong 1

    MA Songqiong

    Guangxi Subtropical Crops Research Institute/Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits,Nanning 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • NING Lin 1

    NING Lin

    Guangxi Subtropical Crops Research Institute/Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits,Nanning 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HE Jiang 1

    HE Jiang

    Guangxi Subtropical Crops Research Institute/Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits,Nanning 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Nian 2

    CHEN Nian

    Nanning Institute of Agricultural Sciences,Nanning 530021
    在期刊界中查找
    在百度中查找
    在本站中查找
  • OU Jingli 1

    OU Jingli

    Guangxi Subtropical Crops Research Institute/Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits,Nanning 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Haojun 1

    CHEN Haojun

    Guangxi Subtropical Crops Research Institute/Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits,Nanning 530001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Dan 3

    CHEN Dan

    College of Agricultural Engineering, Guangxi Vocational University of Agriculture, Nanning 530007
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Guangxi Subtropical Crops Research Institute/Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits,Nanning 530001;2.Nanning Institute of Agricultural Sciences,Nanning 530021;3.College of Agricultural Engineering, Guangxi Vocational University of Agriculture, Nanning 530007

Fund Project:

Basic Scientific Research Projects of Guangxi Academy of Agricultural Sciences (Guinongke2023YM123,Guinongke2021YT146)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    番石榴变种丰富,不同品种的果实质地差异较大。果实的软化程度决定了其食用口感、运输贮藏及货架期等商品价值。为探究影响番石榴果实质地软化的调控基因,本研究比较了酥脆品种粉红蜜与软肉品种西瓜2号果实在坚熟期与软熟期的转录组。结果表明,软熟期品种间差异表达基因数目最多,GO注释显示差异基因主要富集在结合活性和催化活性等分子功能中,KEGG代谢通路分析显示差异基因主要富集在光合作用、光合作用天线蛋白、半乳糖代谢和植物激素信号转导途径。两个品种在软熟期果实质地的差异与细胞壁代谢途径、木质素生物合成途径、植物激素代谢基因和转录因子的调控密切相关。J3R85008159_PG和J3R85010291_XTH的上调表达是促进番石榴软化的重要因素。J3R85010291_TCH4可能通过降低细胞壁的机械强度调控果实软化。木质素合成途径基因(J3R8506005_CAD、J3R8502863_POD、J3R8507303_POD、J3R8500836_LAC和J3R8507803_LAC)的下调表达延缓木质素的积累,促进果实软化。ABA途径调控基因(PYL和SnRK2)、乙烯途径调控基因(ETR/ERS、EBF1/2、 EIN3)和相关转录因子家族基因(J3R85017767_MYB、J3R85004770_MYB、J3R85004060_NAC、J3R85006932_NAC、J3R85012461_ERF 、J3R85010726_bHLH、J3R85003109_bHLH、J3R85014989_bHLH、J3R85015176_WRKY、J3R85014001_WRKY、J3R85014684_WRKY、J3R85010736_WRKY)可能协同调控细胞壁代谢基因的表达从而影响番石榴软化过程。

    关键词:番石榴;果实质地;转录组;候选基因
    Abstract:

    Guava variants are abundant and fruit texture varies considerably between varieties. The softening degree of fruit determines its edible taste, transportation, storage and shelf life and other commodity values. In order to explore the regulatory genes affecting the texture softening of guava fruit, transcriptomic sequencing was performed on two cultivars,Fenhongmi(crisp)and Xigua No.2(soft)at the firm ripening stage and soft ripening stage. The results showed that the number of differentially expressed genes was the highest among two varieties at soft maturity stage. GO annotation showed that differentially expressed genes were mainly enriched in molecular functions such as binding activity and catalytic activity, and KEGG metabolic pathway analysis showed that differentially expressed genes were mainly enriched in photosynthesis, photosynthetic antenna protein, galactose metabolism and plant hormone signal transduction pathways. The difference of texture of the two varieties in soft ripening stage is closely related to the regulation of cell wall metabolism, lignin biosynthesis pathway, plant hormone metabolism genes and transcription factors. The up-regulated expression of J3R85008159_PG and J3R85010291_XTH is an important factor promoting the softening of guava. J3R85010291_TCH4 may regulate fruit softening by reducing the mechanical strength of cell wall. Down-regulated expression of lignin synthesis pathway genes (J3R8506005_CAD, J3R8502863_POD, J3R8507303_POD, J3R8500836_LAC and J3R8507803_LAC) delayed lignin accumulation and promoted fruit softening. ABA pathway regulatory genes (PYL and SnRK2), ethylene pathway regulatory genes (ETR/ ERS, EBF1/2, EIN3) and related transcription factor family genes (J3R85017767_MYB、J3R85004770_MYB、J3R85004060_NAC、J3R85006932_NAC、J3R85012461_ERF 、J3R85010726_bHLH、J3R85003109_bHLH、J3R85014989_bHLH、J3R85015176_WRKY、J3R85014001_WRKY、J3R85014684_WRKY、J3R85010736_ WRKY) may synergistic regulate the expression of cell wall metabolic genes and thus affect the softening process of guava.

    Key words:Psidium guajava L.;fruit texture;transcriptome;candidate genes
    参考文献
    [1] Nimisha S,Kherwar D,Ajay K M,Singh B,Usha K. Molecular breeding to improve guava (Psidium guajava L.): Current status and future prospective. Scientia Horticulturae,2013,164: 578-588
    [2] 吴妙鸿,邱珊莲,林宝妹,张帅,洪佳敏,郑开斌. 番石榴4个品种叶和幼果的生物活性和酚类成分研究. 热带亚热带植物学报,2021,29(6): 694-702Wu M H,Qiu S L,Lin B M,Zhang S,Hong J M,Zheng K B. Biological activity and phenolic constituents in extracts from leaves and young fruits of four guava cultivars. Journal of Tropical and Subtropical Botany,2021,29(6): 694-702
    [3] 吴妙鸿,邱珊莲,林宝妹,郑开斌. 9个品种番石榴果实提取物抗氧化活性比较研究. 食品安全质量检测学报,2022,13(18): 6082-6089Wu M H,Qiu S L,Lin B M,Zheng K B. Antioxidant activities of fruit extracts from 9 kinds of cultivars of Psidium guajava L.. Journal of Food Safety and Quality,2022,13(18):6082-6089
    [4] Mittal A,Yadav I S,Arora N K,Boora R S,Singh K. RNA-sequencing based gene expression landscape of guava cv. Allahabad Safeda and comparative analysis to colored cultivars. BMC Genomics,2020,21(1): 484
    [5] Pose S,Paniagua C,Matas A J,Gunning A P,Morris V J,Quesada M A,Mercado J A. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science and Technology,2019(87): 47-58
    [6] 高原原,曹洪波,李东东,安佳乐,张学英,陈海江. 不同肉质桃果实成熟过程中细胞壁相关酶活性变化. 北方园艺,2023(9):15-22Gao Y Y,Cao H B,Li D D,An J L,Zhang X Y,Chen H J. Different meat peach fruits during the mature process of the cell wall, enzyme activity changes in enzymes. Northern Horticulture,2023(9):15-22
    [7] 张群,周文化,谭欢,刘伟. 葡萄果肉组织的能量水平和细胞壁代谢对其自溶软化的影响. 食品科学,2018,39(1):264-272Zhang Q,Zhou W H,Tan H,Liu W. Effects of energy and cell wall metabolism on aril breakdown in grape fruits. Food Science,2018,39(1): 264-272
    [8] 沈颖,李芳东,王玉霞,张序,李延菊,赵慧,张福兴. 甜樱桃果实发育过程中细胞壁组分及其降解酶活性的变化. 果树学报,2020,37(5): 677-686Shen Y,Li F D,Wang Y X,Zhang X,Li Y J,Zhao H,Zhang F X. During the actual development of sweet cherry fruits, the changes in cell wall group points and its degradation enzyme activity. Journal of Fruit Science,2020,37(5): 677-686
    [9] 李佳莹,宫树森,秦英,金璨,吴田. 海巴戟果实软化相关基因McXTH的克隆和表达分析. 四川农业大学学报,2024,42(1): 94-102Li J Y,Gong S S,Qin Y,Jin C,Wu T. Cloning and expression analysis of McXTH associated with fruit softening in Morinda citrifolia. Journal of Sichuan Agricultural University,2024,42(1): 94-102
    [10] 赵湾湾,冯力,胡绍彬,代亚兰,李春侠,赵秋月,郑小华. 番木瓜果实软化相关CpEXPA2基因的克隆与表达分析. 果树学报,2018,35(7): 785-793Zhao W W,Feng L,Hu S B,Dai Y L,Li C X,Zhao Q Y,Zheng X H. Cloning and expression analysis of CpEXPA2 gene related to softening of papaya fruit. Journal of Fruit Science,2018,35(7): 785-793
    [11] Peng Z,Liu G,Li H,Wang Y,Gao H. Molecular and genetic events determining the softening of fleshy fruits: A comprehensive review. The International Journal of Molecular Sciences,2022,23(20): 12482
    [12] Hu Z L,Deng L,Chen X Q,Wang P Q,Chen G P. Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russian Journal of Plant Physiology,2010,57: 554-559
    [13] Kai W,Wang J,Liang B,Fu Y,Zheng Y,Zhang W,Leng P. PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. Journal of Experimental Botany,2019, 70(21): 6305-6319
    [14] Wang X,Pan L,Wang Y,Meng J,Deng L,Niu L,Zeng W. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Science,2021,313: 111084
    [15] 肖嘉琪. 近冰点温度贮藏对采后番石榴品质调控机制的研究. 广州:广州大学, 2022Xiao J Q. Study on the effects of near-freezing temperature storage on quality control of postharvest guava. Guangzhou:Guangzhou University,2022
    [16] 陈洪彬,王慧玲,蒋璇靓,蔡英卿,张朝坤. 1-MCP对采后‘红心’番石榴果实软化的影响. 中国农学通报,2021,37(18): 51-56Chen H B,Wang H L,Jiang X L,Cai Y Q,Zhang C K. 1-methylcyclopropene: Effect on the postharvest softening of 'Hongxin' guava fruits. Chinese Agricultural Science Bulletin, 2021,37(18): 51-56
    [17] Chen N,Wei W,Yang Y,Chen L,Shan W,Chen J Y,Lu W J. Postharvest physiology and handling of guava fruit. Foods,2024,13(5): 805
    [18] 冉欣雨,黄文俊,钟彩虹. 猕猴桃果实淀粉代谢研究进展. 果树学报,2024,41(2): 325-337Ran X Y,Huang W J,Zhong C H. Research progress of kiwi fruits starch metabolism. Journal of Fruit Science,2024,41(2): 325-337
    [19] Cybulska J, Zdunek A, Psonka K M, Stokke B T. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydrate Polymers,2013,92:128-137
    [20] Paniagua C,Ric P,Garcia J A,Lopez G,Blanco R. Elucidating the role of polygalacturonase genes in strawberry fruit softening. Journal of Experimental Botany, 2020,71(22): 7103-7117
    [21] 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性. 中国农业科学,2022,55(23): 4702-4716Guo S L,Xu J L,Wang X J,Su Z W,Zhang B B,Ma R J,Yu M L. Genome-wide identification and expression analysis of XTH gene in peach fruit during storage. Scientia Agricultura Sinica, 2022,55(23):4702-4716
    [22] Wang D,Lu X,Wang X,Ling H,Huang N. Elucidating the role of SlXTH5 in tomato fruit softening. Horticultural Plant Journal,2023,9(4): 777-788
    [23] 张小英. 刺梨果实膳食纤维积累过程中相关基因的表达. 贵阳:贵州大学,2021Zhang X Y. The expression of related genes during the accumulation of dietary fiber accumulation of pear fruits. Guiyang:Guizhou University,2021
    [24] 代红艳,闫玉娇,李晓明,李贺,张志宏. 山楂过氧化物酶基因的克隆及在烟草中异位表达分析. 果树学报,2015,32(6): 1070-1076Dai H Y,Yan Y J,Li X M,Li H,Zhang Z H. Cloning of peroxidase gene of hawthorn and its ectopic expression in tobacco. Journal of Fruit Science,2015,32(6): 1070-1076
    [25] 陈义挺,赖瑞联,冯新,高敏霞,程春振,陈文光,吴如健. 猕猴桃POD基因的克隆和表达分析. 热带亚热带植物学报,2019,27(1): 11-18Chen Y T,Lai R L,Feng X,Gao M X,Cheng C Z,Chen W G,Wu R J. Cloning and expression analysis of kiwifruit POD genes. Journal of Tropical and Subtropical Botany,2019,27(1):11-18
    [26] Khan M, Zhang X, Ma Z, Huang M,Yang C,Wang X,Peng J. Contribution of the LAC genes in fruit quality attributes of the fruit-bearing plants: A comprehensive review. International Journal of Molecular Sciences,2023,24(21):15768
    [27] Liu Y, Wang Y, Pei J, Li Y,Sun H. Genome-wide identification and characterization of COMT gene family during the development of blueberry fruit. BMC Plant Biology,2021,21(1): 5
    [28] 贾海锋,赵密珍,王庆莲,房经贵,赵鹏程,刘众杰,张成,纠松涛. 生长素和脱落酸在草莓果实发育过程中的作用. 江苏农业科学,2016,44(11): 173-176Jia H F,Zhao M Z,Wang Q L,Fang J G,Zhao P C,Liu Z J,Zhang C,Jiu S T. The role of IAA and ABA acid in the development of strawberry fruit. Jiangsu Agricultural Sciences,2016,44(11): 173-176
    [29] Purgatto E,Lajolo F M,Do N J, Oliveira J R,Cordenunsi B R. Inhibition of beta-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta,2001,212(5-6): 823-828
    [30] 王巍. 生长素应答基因PpIAA5-ARF8对桃果实成熟软化的调控作用. 北京:北京农学院,2021Wang W. The regulation of the PPIAAA5-RF8 on the mature and softening of peach fruit. Beijing:Beijing University of Agriculture,2021
    [31] Li J,Tao X,,Li L,Mao L,Luo Z,Khan Z U,Ying T. Comprehensive RNA-Seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS ONE,2016,11(5): 156453
    [32] Zhang C,He M,Jiang Z, Liu L,Pu J,Zhang W. The Xyloglucan Endotransglucosylase/Hydrolase gene XTH22/TCH4 regulates plant growth by disrupting the cell wall homeostasis in Arabidopsis under boron deficiency. International Journal of Molecular Sciences,2022,23(3): 1250
    [33] Wong D C,Lopez G R,Dimopoulos N,Gambetta G A,Castellarin S D. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. BMC Genomics,2016,17: 416
    [34] Cao H, Chen J, Yue M, Xu C,Jian W,Liu Y,Li Z. Tomato transcriptional repressor MYB70 directly regulates ethylene-dependent fruit ripening. The Plant Journal,2020,104(6): 1568-1581
    [35] Fan Z Q,Ba L J,Shan W,Ao Y Y,Lu W J,Kuang J F. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. The Plant Journal, 2018,96(6): 1191-1205
    [36] Fu C, Chen H, Gao H, Lu Y,Han C,Han Y. Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis. Journal of the Science of Food and Agriculture, 2020, 100(12): 4442-4448
    [37] 李通. 苹果乙烯应答因子ERF调控果实成熟过程中乙烯合成的机理研究. 沈阳:沈阳农业大学,2017Li T. Study on mechanism of ethylene response factor ERF regulating ethylene synthesis during fruit ripening in apple. Shenyang:Shenyang Agricultural University,2017
    [38] 周嘉倩. 过表达SNAC4/9对番茄果实成熟软化的影响. 天津:天津大学,2021Zhou J Q. The effect of expressing SNAC4/9 on the mature and softening of tomato fruits. Tianjin:Tianjin University,2021
    [39] Fasoli M,Richter C L,Zenoni S,Bertini E,Vitulo N,Dalsanto S. Timing and order of the molecular events marking the onset of berry ripening in grapevine. Plant Physiology, 2018,178(3): 1187-1206
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范競升,马松琼,宁琳,等.基于RNA-seq番石榴果实软化候选基因的挖掘及表达分析[J].植物遗传资源学报,2025,26(1):189-201.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:72
  • 下载次数: 143
  • HTML阅读次数: 37
  • 引用次数: 0
历史
  • 收稿日期:2024-03-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-07
  • 出版日期:
文章二维码
您是第5853271位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!