1.山西农业大学农学院,太谷030801;2.山西农业大学农业基因资源研究中心/农业农村部黄土高原作物基因资源与种质创制重点实验室/ 杂粮种质资源发掘与遗传改良山西省重点实验室,太原 030031;3.内布拉斯加大学林肯分校农艺系小宗粮豆研究与推广中心, 美国内布拉斯加州斯克茨布拉夫69361
研究方向为种质创新与遗传工程,E-mail: f164138146@163.com
王瑞云,研究方向为糜子分子育种、种质创新与遗传工程,E-mail: wry925@126.com
乔治军,研究方向为旱作栽培与作物生理、种质资源创新与利用,E-mail: nkypzs@126.com
国家现代农业产业技术体系建设专项(CARS-06-14.5-A16);山西省现代农业产业技术体系建设专项资金项目(2024CYJSTX03-12);山西省重点研发项目(2022ZDYF110);山西省“1331”工程—作物学—流学科建设项目;山西农业大学农学院研究生教育改革与质量提升工程项目(2023YCX33,2023YCX48,2023YCX45,2023YDT05)
CAO Xiaoning
Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031CHEN Ling
Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031QIAO Zhijun
Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031WANG Ruiyun
College of Agronomy, Shanxi Agricultural University, Taigu030801;Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 0300311.College of Agronomy, Shanxi Agricultural University, Taigu030801;2.Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031;3.Panhandle Research & Extension Center, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Scottsbluff 69361, Nebraska, USA
National Special Fund for Construction of Modern Agricultural Industrial Technology System (CARS-06-14.5-A16); The Special Fund for Construction of Modern Agricultural Industrial Technology System of Shanxi Province (2023CYJSTX03-12); The Key Research & Development Project of Shanxi Province (2022ZDYF110);Shanxi “1331”Project Crop Soience First-Class Discipline Construction Project; Graduate Education Reform and Quality Improvement Project of College of Agronomy, Shanxi Agricultural University (2023YCX33,2023YCX48,2023YCX45,2023YDT05)
糜黍(Panicum miliaceum L.)是一种品种资源多样的古老作物,采用荧光SSR标记,对糜黍资源进行数字化的管理与分类,可将众多资源合理高效应用。本研究以258份内蒙古糜黍资源为材料,基于本课题组前期开发的85个常规SSR标记,经多次扩增筛选、优化、加工(引物5′端添加荧光基团)获得12个荧光SSR核心标记。利用MapChart 2.32绘制标记的染色体定位图,利用ID Analysis 4.0检测标记对材料的区分度,用PowerMarker 3.25和PopGen 1.32进行遗传多样性分析,用 MEGA 11.0.10和NTSYSpc2.11a分别绘制聚类图和主成分分析图,最终应用草料二维码生成器构建材料的DNA分子身份证。遗传多样性分析发现,利用7个标记扩增258份材料,共有123个等位基因,平均每个标记有17.5714个;有效等位基因数、Shannon多样性指数、观测杂合度、期望观测杂合度、Nei′s基因多样性指数和多态性信息含量均值分别为7.4622、2.2270、0.8021、0.8372、0.8353和0.8994。将毛细管电泳结果以特定方式进行编码处理,最终仅用7个荧光标记(RYW6、RYW8、RYW37、RYW40、RYW67、RYW124和RYW125)组合在一起生成全部材料的字符串和二维码DNA分子身份证,为内蒙古糜黍种质资源的分类管理及快速鉴定提供了分子检测工具和理论依据。
Broomcorn millet (Panicum miliaceum L.) is a diverse and ancient crop with rich germplasm resources. The use of fluorescent SSR markers enables the digital management and classification of these resources, facilitating their rational and efficient utilization. In this study, 258 broomcorn millet accessions from Inner Mongolia, China, were used to develop 12 fluorescent SSR markers, based on 85 pairs of conventional SSR markers previously developed by our research group, through multiple rounds of amplification, selection, optimization and modification (adding fluorescent labels to the 5'-end of the primers). MapChart 2.32 was used to plot the chromosome location of these markers, ID Analysis 4.0 to assess the discriminating power of the markers, PowerMarker 3.25 and PopGen 1.32 for genetic diversity analysis, MEGA 11.0.10 for constructing the cluster diagram, and NTSYSpc2.11a for principal component analysis. A DNA molecular ID was created for the genotypes using a QR code generator. Genetic diversity analysis showed that there were 123 alleles in 258 materials amplified by 7 pairs of markers, with an average of 17.5714 alleles per marker. The mean values of effective alleles , Shannon diversity index, Observed heterozygosity, expected heterozygosity , Nei's gene diversity index and Polymorphism information content were 7.4622, 2.2270, 0.8021, 0.8372, 0.8353, and 0.8994. The results of capillary electrophoresis were encoded in a specific way, and only 7 pairs of fluorescent labels (RYW6, RYW8, RYW37, RYW40, RYW67, RYW124 and RYW125) were used to generate 258 strings and two-dimensional code DNA molecular identity cards of Inner Mongolia millet resources. This approach provided a molecular detection tool and theoretical basis for the classification management and rapid identification of the germplasm resources of Inner Mongolia broomcorn millet germplasm resources.
冯智尊,辛旭霞,曹越,等.内蒙古糜黍资源