2025年5月21日 5:34 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第3期 >507-518. DOI:10.13430/j.cnki.jpgr.20240621001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
高粱BZR基因的鉴定及与籽粒性状关联分析
DOI:
10.13430/j.cnki.jpgr.20240621001
CSTR:
作者:
  • 赵娟莹 1

    赵娟莹

    山西农业大学高粱研究所,榆次 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李金彪 2

    李金彪

    山西农业大学农学院,太谷 030801
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李皓翔 2

    李皓翔

    山西农业大学农学院,太谷 030801
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王绘艳 1

    王绘艳

    山西农业大学高粱研究所,榆次 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张晓娟 1

    张晓娟

    山西农业大学高粱研究所,榆次 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 范昕琦 1

    范昕琦

    山西农业大学高粱研究所,榆次 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 梁笃 1

    梁笃

    山西农业大学高粱研究所,榆次 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭琦 1

    郭琦

    山西农业大学高粱研究所,榆次 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 柳青山 3

    柳青山

    山西农业大学社会服务部,太原 030031
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张一中 1

    张一中

    山西农业大学高粱研究所,榆次 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.山西农业大学高粱研究所,榆次 030600;2.山西农业大学农学院,太谷 030801;3.山西农业大学社会服务部,太原 030031

作者简介:

研究方向为高粱遗传育种,E-mail : zjy0502@yeah.net

通讯作者:

张一中,研究方向为高粱遗传育种,E-mail : zhyzh225@163.com

中图分类号:

基金项目:

国家自然科学基金(32241042);山西省博士毕业生、博士后研究人员来晋工作奖励经费科研项目(SXBYKY2023022);山西省科技重大专项计划“揭榜挂帅”项目(202101140601027);山西农业大学高粱研究所国家基金培育项目(GLS-gp-202402)


Identification of BZR Genes and Its Association with Grain Traits in Sorghum
Author:
  • ZHAO Juanying 1

    ZHAO Juanying

    Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jinbiao 2

    LI Jinbiao

    College of Agriculture, Shanxi Agricultural University, Taigu 030801
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Haoxiang 2

    LI Haoxiang

    College of Agriculture, Shanxi Agricultural University, Taigu 030801
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Huiyan 1

    WANG Huiyan

    Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xiaojuan 1

    ZHANG Xiaojuan

    Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FAN Xinqi 1

    FAN Xinqi

    Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIANG Du 1

    LIANG Du

    Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Qi 1

    GUO Qi

    Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Qingshan 3

    LIU Qingshan

    Social Service Department, Shanxi Agricultural University, Taiyuan 030031
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yizhong 1

    ZHANG Yizhong

    Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Sorghum Research Institute, Shanxi Agricultural University, Yuci 030600;2.College of Agriculture, Shanxi Agricultural University, Taigu 030801;3.Social Service Department, Shanxi Agricultural University, Taiyuan 030031

Fund Project:

Foundation projects: National Natural Science Foundation of China (32241042); The Scientific Research Project of Shanxi Province Outstanding Doctoral and Postdoctoral Researchers Work Award Fund (SXBYKY2023022); The Major Special Science and Technology Projects in Shanxi Province (202101140601027); National Fund Cultivation Project of Sorghum Research Institute, Shanxi Agricultural University (GLS-gp-202402)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    油菜素内酯(BRs,brassinosteroids)是植物体内存在的一种重要激素,在调控植物生长发育及抵抗多种环境胁迫过程中发挥作用。BZRs转录因子是BRs信号途径中的关键调节因子,通过调控靶基因的表达传递BRs信号。为了深入研究高粱BZRs基因的生物学特性及功能,本研究从高粱基因组中鉴定获得10个BZR基因。组织特异性表达分析显示,SbBZR3、SbBZR4和SbBZR10在多个组织中高表达,且均在籽粒发育过程中的表达量较高。同时,基于340份高粱种质资源的重测序结果及籽粒性状表型数据,鉴定SbBZRs的优异等位变异,结果表明,SbBZR3的优异等位变异SbBZR3-SNP404(T)与粒长显著相关,SbBZR10的优异等位变异SbBZR10-SNP660(A)与粒长、粒宽和千粒重显著相关,且在进化过程中SbBZR3-SNP404(T)和SbBZR10-SNP660(A)均受到了人工选择。本研究不仅为揭示高粱BZRs基因的作用机制奠定了基础,也将为利用优异等位基因改良籽粒大小、促进高产高粱新种质的创制提供参考。

    关键词:高粱;BZR基因;籽粒性状;等位变异
    Abstract:

    Brassinosteroids (BRs) are class of important hormones in plants, which play a role in regulating plant growth and development and resisting various environmental stresses. BZR transcription factors are key regulatory factors in the BRs signaling pathway and transmit BRs signals by regulating the expression of target genes. To further study the biological characteristics and functions of BZR genes in sorghum, this study identified 10 BZR genes from the sorghum genome. The tissue-specific expression analysis showed that SbBZR3, SbBZR4, and SbBZR10 are highly expressed in multiple tissues as well as have high expression levels during the grain development process. Meanwhile, based on the resequencing results and grain phenotype data of 340 sorghum germplasm resources, the superior alleles of SbBZRs were identified. The results showed that the superior alleles SbBZR3-SNP404 (T) was significantly associated with grain length, and SbBZR10-SNP660 (A) was significantly associated with grain length, grain width and 1000-grain weight. Both SbBZR3-SNP404 (T) and SbBZR10-SNP660 (A) were artificially selected during the evolutionary process. This study not only lays a foundation for revealing the action mechanism of BZR genes in sorghum, but also provides a reference for using excellent alleles to improve grain size and promote the creation of new sorghum seeds with high yield.

    Key words:sorghum;BZR genes;grain trait;allelic variation
    参考文献
    [1] 白文斌, 张福跃, 焦晓燕, 董良利, 柳青山, 平俊爱. 中国高粱产业工程技术研究的定位思考. 中国农学通报, 2013, 29 (11): 107-110Bai W B, Zhang F Y, Jiao X Y, Dong L L, Liu Q S, Ping J A.The fixed position thought of sorghum engineering technology research in china. Chinese Agricultural Science Bulletin, 2013, 29 (11): 107-110
    [2] Wang Y, Lv Y, Yu H, Hu P, Wen Y, Wang J, Tan Y, Wu H, Zhu L, Wu K, Chai B, Liu J, Zeng D, Zhang G, Zhu L, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Li Q, Guo L, Xiong G, Qian Q, Hu J. GR5 acts in the G protein pathway to regulate grain size in rice. Plant Communications, 2024, 5 (1): 100673
    [3] Hu Y, Liu Y, Lu L, Tao J J, Cheng T, Jin M, Wang Z Y, Wei J J, Jiang Z H, Sun W C, Liu C L, Gao F, Zhang Y, Li W, Bi Y D, Lai Y C, Zhou B, Yu D Y, Yin C C, Wei W, Zhang W K, Chen S Y, Zhang J S. Global analysis of seed transcriptomes reveals a novel PLATZ regulator for seed size and weight control in soybean. New Phytologist, 2023, 240 (6): 2436-2454
    [4] Guo X, Fu Y, Lee Y J, Chern M, Li M, Cheng M, Dong H, Yuan Z, Gui L, Yin J, Qing H, Zhang C, Pu Z, Liu Y, Li W, Li W, Qi P, Chen G, Jiang Q, Ma J, Chen X, Wei Y, Zheng Y, Wu Y, Liu B, Wang J. The PGS1 basic helix-loop-helix (bHLH) protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20 (7): 1311-1326
    [5] Zhao X, Dou L, Gong Z, Wang X, Mao T. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytologist, 2019, 221 (2): 908-918
    [6] Li J, Nagpal P, Vitart V, McMorris T C, Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 1996, 272 (5260): 398-401
    [7] Fariduddin Q, Khalil R R A E, Mir B A, Yusuf M, Ahmad A. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring and Assessment, 2013, 185 (9): 7845-7856
    [8] Nolan T M, Vuka?inovi? N, Liu D, Russinova E, Yin Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell, 2019, 32 (2): 295-318
    [9] Kim T W, Guan S, Sun Y, Deng Z, Tang W, Shang J X, Sun Y, Burlingame A L, Wang Z Y. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 2009, 11 (10): 1254-1260
    [10] Kir G, Ye H, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A, Inzé D, Sylvester A W, Yin Y, Becraft P W. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiology, 2015, 169 (1): 826-839
    [11] Clouse S D. Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 2011, 23 (4): 1219-1230
    [12] Xu H, Sun H, Dong J, Ma C, Li J, Li Z, Wang Y, Ji J, Hu X, Wu M, Zhao C, Qin R, Wu J, Ni F, Cui F, Wu Y. The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields. Theoretical and Applied Genetics, 2022, 135 (8): 2907-2923
    [13] Lyu J, Wang D, Duan P, Liu Y, Huang K, Zeng D, Zhang L, Dong G, Li Y, Xu R, Zhang B, Huang X, Li N, Wang Y, Qian Q, Li Y. Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice. Plant Cell, 2020, 32 (6): 1905-1918
    [14] Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005, 120 (2): 249-259
    [15] Yin Y, Wang Z Y, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 2002, 109 (2): 181-191
    [16] Sun F, Ding L, Feng W, Cao Y, Lu F, Yang Q, Li W, Lu Y, Shabek N, Fu F, Yu H. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. Journal of Experimental Botany, 2021, 72 (5): 1714-1726
    [17] Xiong M, Yu J, Wang J, Gao Q, Huang L, Chen C, Zhang C, Fan X, Zhao D, Liu Q Q, Li Q F. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. Plant Physiology, 2022, 189 (1): 402-418
    [18] Li Q F, Lu J, Yu J W, Zhang C Q, He J X, Liu Q Q. The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2018, 1861 (6): 561-571
    [19] Van Nguyen T, Park C R, Lee K H, Lee S, Kim C S. BES1/BZR1 homolog 3 cooperates with E3 ligase AtRZF1 to regulate osmotic stress and brassinosteroid responses in Arabidopsis. Journal of Experimental Botany, 2020, 72 (2): 636-653
    [20] Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan T M, Jiang H, Guo H, Lin H-Y, Li L, Wang Y, Tong H, Zhang M, Chu C, Li Z, Aluru M, Aluru S, Schnable P S, Yin Y. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 2017, 8 (1): 14573
    [21] Cui X Y, Gao Y, Guo J, Yu T F, Zheng W J, Liu Y W, Chen J, Xu Z S, Ma Y Z. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1. Plant Physiology, 2019, 180 (1): 605-620
    [22] Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 2017, 10 (5): 670-684
    [23] Zhu X, Liang W, Cui X, Chen M, Yin C, Luo Z, Zhu J, Lucas W J, Wang Z, Zhang D. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant Journal, 2015, 82 (4): 570-581
    [24] Lyu J, Wang D, Sun N, Yang F, Li X, Mu J, Zhou R, Zheng G, Yang X, Zhang C, Han C, Xia G M, Li G, Fan M, Xiao J, Bai M Y. The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat. Plant Biotechnology Journal, 2024, 22 (7): 1989-2006
    [25] Yu H, Feng W, Sun F, Zhang Y, Qu J, Liu B, Lu F, Yang L, Fu F, Li W. Cloning and characterization of BES1/BZR1 transcription factor genes in maize. Plant Growth Regulation, 2018, 86 (2): 235-249
    [26] Sarwar R, Geng R, Li L, Shan Y, Zhu K M, Wang J, Tan X L. Genome-wide prediction, functional divergence, and characterization of stress-responsive BZR transcription factors in B. napus. Frontiers in Plant Science, 2021, 12: 790655
    [27] Ullah U, Shalmani A, Ilyas M, Raza A, Ahmad S, Shah A Z, Khan F U, AzizUd D, Bibi A, Rehman S U, Abbas Z, Buttar Z A. BZR proteins: Identification, evolutionary and expression analysis under various exogenous growth regulators in plants. Molecular Biology Reports, 2022, 49 (12): 12039-12053
    [28] Zhang P, Yan H, Liu Y, Chai Y. Genome-wide identification and functional characterization of wheat brassinazole-resistant transcription factors in response to abiotic stresses and stripe rust infection. Frontiers in Plant Science, 2023, 14: 1144379
    [29] Li R, Zhang B, Li T, Yao X, Feng T, Ai H, Huang X. Identification and characterization of the BZR transcription factor genes family in potato (Solanum tuberosum L.) and their expression profiles in response to abiotic stresses. Plants-Basel, 2024, 13 (3): 407
    [30] 杜巧丽, 刘均霞, 陈美晴, 蒋君梅, 任明见, 李向阳, 姜于兰, 谢鑫. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析. 植物保护学报, 2022, 49 (3): 848-856Du Q L, Liu J X, Chen M Q, Jiang J M, Ren M J, Li X Y, Jiang Y L, Xie X. Identification of sorghum BR signal transcription factor BZR1 gene family and analysis of hormone response. Journal of Plant Protection, 2022, 49 (3): 848-856
    [31] Olson A, Klein R R, Dugas D V, Lu Z, Regulski M, Klein P E, Ware D. Expanding and vetting Sorghum bicolor gene annotations through transcriptome and methylome sequencing. Plant Genome, 2014, 7 (2): 1-20
    [32] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools-an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13 (8): 1194-1202
    [33] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290 (5494): 1151-1155
    [34] Zhu X, Zhang S, Chen Y, Mou C, Huang Y, Liu X, Ji J, Yu J, Hao Q, Yang C, Cai M, Nguyen T, Song W, Wang P, Dong H, Liu S, Jiang L, Wan J. Decreased grain size1, a C3HC4-type RING protein, influences grain size in rice (Oryza sativa L.). Plant Molecular Biology, 2021, 105 (4): 405-417
    [35] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004, 4: 10
    [36] Jiang W B, Huang H Y, Hu Y W, Zhu S W, Wang Z Y, Lin W H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology, 2013, 162 (4): 1965-1977
    [37] Xiao B, Li P, Wu Q. Weak allele versus null allele: Which one to select? Trends in Genetics, 2022, 38 (10): 989-990
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵娟莹,李金彪,李皓翔,等.高粱BZR基因的鉴定及与籽粒性状关联分析[J].植物遗传资源学报,2025,26(3):507-518.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:76
  • 下载次数: 121
  • HTML阅读次数: 33
  • 引用次数: 0
历史
  • 收稿日期:2024-06-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-07
  • 出版日期:
文章二维码
您是第5854514位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!