2025年5月19日 23:22 星期一
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第3期 >419-430. DOI:10.13430/j.cnki.jpgr.20240624001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
MYB调控靶基因参与植物应答重金属胁迫的研究进展
DOI:
10.13430/j.cnki.jpgr.20240624001
CSTR:
作者:
  • 何锐 1,2

    何锐

    黑龙江大学生命科学学院/农业微生物技术教育部工程研究中心/黑龙江省寒区植物基因与生物发酵重点实验室/ 黑龙江省普通高校分子生物学重点实验室,哈尔滨150080;黑龙江大学/国家甜菜种质中期库,哈尔滨 150080
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 兴旺 2,3

    兴旺

    黑龙江大学/国家甜菜种质中期库,哈尔滨 150080;黑龙江大学现代农业与生态环境学院/黑龙江省普通高校甜菜遗传育种重点实验室,哈尔滨 150080
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘大丽 2,3

    刘大丽

    黑龙江大学/国家甜菜种质中期库,哈尔滨 150080;黑龙江大学现代农业与生态环境学院/黑龙江省普通高校甜菜遗传育种重点实验室,哈尔滨 150080
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 鲁振强 1

    鲁振强

    黑龙江大学生命科学学院/农业微生物技术教育部工程研究中心/黑龙江省寒区植物基因与生物发酵重点实验室/ 黑龙江省普通高校分子生物学重点实验室,哈尔滨150080
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.黑龙江大学生命科学学院/农业微生物技术教育部工程研究中心/黑龙江省寒区植物基因与生物发酵重点实验室/ 黑龙江省普通高校分子生物学重点实验室,哈尔滨150080;2.黑龙江大学/国家甜菜种质中期库,哈尔滨 150080;3.黑龙江大学现代农业与生态环境学院/黑龙江省普通高校甜菜遗传育种重点实验室,哈尔滨 150080

作者简介:

研究方向为植物分子生物学,E-mail:herui_ruii@163.com

通讯作者:

鲁振强,研究方向为植物分子生物学,E-mail:zhenqianglu@163.com

中图分类号:

基金项目:

国家糖料产业技术体系项目(CARS-1701);农业农村部项目(19240700);内蒙古自治区“揭榜挂帅”项目(2022JBGS0029);黑龙江省自然科学基金(LH2023C090);黑龙江省高校科研业务费项目(2022-KYYWF-1070)


Research Progress of MYB Regulated Target Genes Involved in Response to Heavy Metal Stress
Author:
  • HE Rui 1,2

    HE Rui

    School of Life Sciences, Heilongjiang University/Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education/Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region/Key Laboratory of Molecular Biology, College of Heilongjiang Province, Harbin 150080;Heilongjiang University /National Beet Medium-Term Gene Bank, Harbin 150080
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XING Wang 2,3

    XING Wang

    Heilongjiang University /National Beet Medium-Term Gene Bank, Harbin 150080;College of Advanced Agriculture and Ecological Environment, Heilongjiang University/Key Laboratory of Sugar Beet Genetics and Breeding, College of Heilongjiang Province, Harbin 150080
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Dali 2,3

    LIU Dali

    Heilongjiang University /National Beet Medium-Term Gene Bank, Harbin 150080;College of Advanced Agriculture and Ecological Environment, Heilongjiang University/Key Laboratory of Sugar Beet Genetics and Breeding, College of Heilongjiang Province, Harbin 150080
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Zhenqiang 1

    LU Zhenqiang

    School of Life Sciences, Heilongjiang University/Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education/Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region/Key Laboratory of Molecular Biology, College of Heilongjiang Province, Harbin 150080
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Life Sciences, Heilongjiang University/Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education/Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region/Key Laboratory of Molecular Biology, College of Heilongjiang Province, Harbin 150080;2.Heilongjiang University /National Beet Medium-Term Gene Bank, Harbin 150080;3.College of Advanced Agriculture and Ecological Environment, Heilongjiang University/Key Laboratory of Sugar Beet Genetics and Breeding, College of Heilongjiang Province, Harbin 150080

Fund Project:

Foundation projects: National Sugar Industry Technology System Project(CARS-1701); Ministry of Agriculture and Rural Affairs Project (19240700); Inner Mongolia Autonomous Region “the Open Competition Mechanism to Select the Best Candidates” Project (2022JBGS0029); Heilongjiang Provincial Natural Science Foundation of China (LH2023C090); Fundamental Research Funds for Heilongjiang Provincial Universities (2022-KYYWF-1070)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [82]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    镉、铅等重金属对土壤的污染越来越严重,它们不仅干扰植物的生命周期,而且降低作物产量,甚至导致植物死亡。因此,植物自身进化出一系列防御机制来抵抗重金属胁迫。植物的转录因子MYB是逆境胁迫的关键调控因子,它可与下游靶基因共调控来应对重金属胁迫,从而赋予植物对重金属的耐受性,减少重金属对植物的危害。了解植物应对重金属胁迫(尤其是镉胁迫)的分子机制是植物生物技术研究和农业育种的首要目标。本文主要从MYB家族成员的鉴定和特征、MYB的功能及调控靶基因的机制、MYB如何通过光合、激素等调控靶基因参与重金属胁迫应答等方面进行综述;深入探讨在植物对重金属胁迫的适应机制中,MYB转录因子通过信号通路(活性氧稳态、脱落酸、赤霉素信号转导、光合作用等)结合靶基因或启动子元件,参与植物对重金属的吸收调节、运输和螯合的机理。本文为进一步开发和利用MYB转录因子以增强植物对重金属胁迫耐受性提供了理论基础。

    关键词:MYB;转录因子;靶基因;调控;重金属胁迫;功能
    Abstract:

    Heavy metals, such as cadmium and plumbum, are increasingly contaminating soil. These pollutants not only interfere the plant life cycle but also diminish crop yields and can even lead to plant mortality. Plants have evolved a series of defense mechanisms to mitigate the stress induced by heavy metals. Plant MYB transcription factors play pivotal role as key regulators under stress conditions. They interact with downstream target genes in response to heavy metal stress, thus enhancing tolerance and minimizing damage to plants. To elucidate the molecular mechanisms by which plants cope with heavy metal stress (especially cadmium stress) is a primary goal in plant biotechnology and agricultural breeding.This article reviews several critical aspects, including the identification and characteristics of MYB family members, their functions, the mechanisms of regulating target genes, as well as exploring how MYB modulate target genes to participate in heavy metal stress response through photosynthesis and hormones. Furthermore, we discuss the adaptive mechanism of plants to heavy metal stress, where MYB transcription factors combine with target genes or promoter elements through signaling pathways, including reactive oxygen species homeostasis, abscisic acid signaling, gibberellins signaling, and photosynthesis. These interactions are critical for regulating the uptake, transport and sequestration of heavy metals in plants. Collectively, this review provides a theoretical foundation for the further exploitation and utilization of MYB transcription factors in enhancing plant resilience to heavy metal stress.

    Key words:MYB;transcription factors;target gene;regulation;heavy metal stress;function
    参考文献
    [1] Sharma P, Dubey R S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports, 2007, 26(11): 2027-2038
    [2] Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environmental Chemistry Letters, 2018, 16(4): 1169-1192
    [3] Wang P T, Chen X, Xu X, Lu C N, Zhang W, Zhao F J. Arsenate induced chlorosis 1/translocon at the outer envolope membrane of chloroplasts 132 protects chloroplasts from Arsenic toxicity. Plant Physiology, 2018, 178(4): 1568-1583
    [4] Ghori N H, Ghori T, Hayat M Q, Imadi S R, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828
    [5] Wang H Q, Xuan W, Huang X Y, Mao C Z, Zhao F J. Cadmium inhibits lateral root emergence in rice by disrupting ospin-mediated auxin distribution and the protective effect of OsHMA3. Plant and Cell Physiology, 2021, 62(1): 166-177
    [6] Sharma S S, Dietz K J. The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 2009, 14(1): 43-50
    [7] Kolahi M, Kazemi E M, Yazdi M, Goldson-Barnaby A. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiology and Biochemistry, 2020, 146: 71-89
    [8] Zhao H X, Yao P F, Zhao J L, Wu H, Wang S, Chen Y, Hu M F, Wang T, Li C L, Wu Q. A novel R2R3-MYB transcription factor FtMYB22 negatively regulates salt and drought stress through ABA-dependent pathway. International Journal of Molecular Sciences, 2022, 23(23): 14549
    [9] Wang S, Wu H L, Cao X X, Fan W J, Li C L, Zhao H X, Wu Q. Tartary buckwheat FtMYB30 transcription factor improves the salt/drought tolerance of transgenic Arabidopsis in an ABA-dependent manner. Physiologia Plantarum, 2022, 174(5): e13781
    [10] Hsu P K, Dubeaux G, Takahashi Y, Schroeder J. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal, 2021, 105(2): 307-321
    [11] Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J F, Lutts S, Cai G, Guerriero G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 2019, 161: 98-106
    [12] Ghori N H, Ghori T, Hayat M Q, Imadi S R, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828
    [13] Emamverdian A, Ding Y L, Mokhberdoran F, Ahmad Z. Mechanisms of selected plant hormones under heavy metal stress. Polish Journal of Environmental Studies, 2021, 30(1): 497-508
    [14] Mathur P, Tripathi D K, Balus F, Mukherjee S. Auxin-mediated molecular mechanisms of heavy metal and metalloid stress regulation in plants. Environmental and Experimental Botany, 2022, 196: 104796
    [15] Asgher M, Per T S, Anjum S, Khan M I R, Masood A, Verma S, Khan N A. Contribution of glutathione in heavy metal stress tolerance in plants//Khan M I R, Khan N A. Reactive oxygen species and antioxidant systems in plants: Role and regulation under abiotic stress. Singapore:Springer Singapore,2017: 297-313
    [16] Ramya M, Kwon O K, An H R, Park P M, Baek Y S, Park P H. Floral scent:Regulation and role of MYB transcription factors. Phytochemistry Letters, 2017, 19: 114-120
    [17] 冯盼盼, 陈鹏, 洪文杰, 赵小英, 刘选明. 拟南芥MYB转录因子家族研究进展. 生命科学研究, 2016, 20(6): 555-560Feng P P, Chen P, Hong W J, Zhao X Y, Liu X M. Research progress of MYB transcription factor family in Arabidopsis thaliana. Life Science Research, 2016, 20(6): 555-560
    [18] 向征. 水稻MYB家族转录因子OsMYB112的功能研究. 重庆:重庆大学,2016Xiang Z. Functional analysis of transcription factors OsMYB112 in rice (Oryza sativa). Chongqing:Chongqing University,2016
    [19] 成舒飞, 端木慧子, 陈超, 刘艾林, 肖佳雷, 朱延明. 大豆MYB转录因子的全基因组鉴定及生物信息学分析. 大豆科学, 2016, 35(1): 52-57Cheng S F, Duanmu H Z, Chen C, Liu A L, Xiao J L, Zhu Y M. Whole genome identification of soybean MYB transcription factors and bioinformatics analysis. Soybean Science, 2016, 35(1): 52-57
    [20] 王晓珊, 葛晨辉, 康亚妮, 王全华, 徐晨曦. 菠菜转录因子MYB基因家族的鉴定及表达分析. 上海师范大学学报:自然科学版, 2020, 49(6): 677-691Wang X S, Ge C H, Kang Y N, Wang Q H, Xu C X. Identification and expression analysis of MYB transcription factor family in spinach. Journal of Shanghai Normal University: Natural Sciences, 2020, 49(6): 677-691
    [21] 居利香, 雷欣, 赵成志, 舒黄英, 汪志伟, 成善汉. 辣椒MYB基因家族的鉴定及与辣味关系分析. 园艺学报, 2020, 47(5): 875-892Ju L X, Lei X, Zhao C Z, Shu H Y, Wang Z W, Cheng S H. Identification of MYB family genes and its relationship with pungency of pepper. Acta Horticulturae Sinica, 2020, 47(5): 875-892
    [22] 刘淑君. 番茄MYB转录因子的鉴定及其表达分析. 金华:浙江师范大学, 2012Liu S J. Identification and expression analysis of MYB transcription factors in Solanum lycopersicum.Jinhua:Zhejiang Normal University, 2012
    [23] 陈泓宇. 桑树MYB转录因子家族的生物信息学及黄酮合成相关基因的表达分析. 重庆:西南大学, 2015Chen H Y. Genome-wide analysis and expression involved in flavonoids synthesis of themulberry MYB transcription factor. Chongqing:Southwest University, 2015
    [24] Duan A Q, Tan S S, Deng Y J, Xu Z S, Xiong A S. Genome-wide identification and evolution analysis of R2R3-MYB gene family reveals s6 subfamily R2R3-MYB transcription factors involved in anthocyanin biosynthesis in carrot. International Journal of Molecular Sciences, 2022, 23(19): 11859
    [25] Jia L, Clegg M T, Jiang T. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiology, 2004, 134(2): 575-585
    [26] Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nature Structural Biology, 1996, 3(2): 178-187
    [27] Stracke R, Holtgr?we D, Schneider J, Pucker B, S?rensen T R, Weisshaar B. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biology, 2014, 14: 249
    [28] Du H, Yang S S, Liang Z, Feng B R, Liu L, Huang Y B, Tang Y X. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology, 2012, 12(106): 1471-2229
    [29] Hu Y J, Cheng H, Zhang Y, Zhang J, Niu S Q, Wang X S, Li W J, Zhang J, Yao Y C. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytologist, 2021, 231(3): 1105-1122
    [30] Tiwari P, Indoliya Y, Chauhan A S, Pande V, Chakrabarty D. Over-expression of rice R1-type-MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis. Ecotoxicology and Environmental Safety, 2020, 206: 111361
    [31] Feng G Q, Burleigh J G, Braun E L, Mei W B, Barbazuk W B. Evolution of the 3R-MYB gene family in plants. Genome Biology and Evolution, 2017, 9(4): 1013-1029
    [32] Wang X P, Niu Y L, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences, 2021, 22(11): 6125
    [33] Zhang Y W, He Z, Qi X, Li M M, Liu J, Le S, Chen K, Wang C X, Zhou Y B, Xu Z S, Chen J, Guo C H, Tang W S, Ma Y Z, Chen M. Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice. Plant Physiology and Biochemistry, 2023, 196: 731-738
    [34] Ding J L, Ji C C, Yu L, Wang C, Ding G D, Wang S L, Shi L, Xu F S, Cai H M. OsMYB84, a transcriptional regulator of OsCOPT2 and OsHMA5, modulates copper uptake and transport and yield production in rice. Crop Journal, 2024, 12(2): 456-469
    [35] Li X R, Tang Y, Li H L, Luo W, Zhou C J, Zhang L X, Lyu J Y. A wheat R2R3-MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Science, 2020, 299: 110613
    [36] Zhang G F, Li G D, Xiang Y, Zhang A Y. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochemical and Biophysical Research Communications, 2022, 604: 1-7
    [37] Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. Journal of Experimental Botany, 2019, 70(10): 2699-2715
    [38] Xu W Y, Tang W S, Wang C X, Ge L H, Sun J C, Qi X, He Z, Zhou Y B, Chen J, Xu Z S, Ma Y Z, Chen M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Frontiers in Plant Science, 2020, 11: 785
    [39] Zheng P P, Cao L, Zhang C, Pan W C, Wang W, Yu X, Li Y P, Fan T T, Miao M, Tang X F, Liu Y S, Cao S Q. MYB43 as a novel substrate for CRL4PRL1 E3 ligases negatively regulates cadmium tolerance through transcriptional inhibition of HMAs in Arabidopsis. New Phytologist, 2022, 234(3): 884-901
    [40] Bian S M, Jin D H, Sun G Q, Shan B H, Zhou H N, Wang J Y, Zhai L L, Li X Y. Characterization of the soybean R2R3-MYB transcription factor GmMYB81 and its functional roles under abiotic stresses. Gene, 2020, 753: 144803
    [41] Wei Y M, Han R R, Yu Y X. GmMYB183, a R2R3-MYB transcription factor in tamba black soybean (Glycine max. cv. Tamba), conferred aluminum tolerance in Arabidopsis and soybean. Biomolecules, 2024, 14(6): 724
    [42] Chen L M, Yang H L, Fang Y S, Guo W, Chen H F, Zhang X J, Dai W J, Chen S L, Hao Q N, Yuan S L, Zhang C J, Huang Y, Shan Z H, Yang Z L, Qiu D Z, Liu X R, Tran L S P, Zhou X N, Cao D. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnology Journal, 2021, 19(4): 702-716
    [43] Yang Z, Yang F, Liu J L, Wu H T, Yang H, Shi Y, Liu J, Zhang Y F, Luo Y R, Chen K M. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Science of the Total Environment, 2022, 809: 151099
    [44] Jalmi S K, Bhagat P K, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha A K. Traversing the links between heavy metal stress and plant signaling. Frontiers in Plant Science, 2018, 9: 12
    [45] Li S C, Han X J, Lu Z C, Qiu W M, Yu M, Li H Y, He Z Q, Zhuo R Y. MAPK cascades and transcriptional factors: Regulation of heavy metal tolerance in plants. International Journal of Molecular Sciences, 2022, 23(8): 4463
    [46] Mondal S. Heavy metal stress-induced activation of mitogen-activated protein kinase signaling cascade in plants. Plant Molecular Biology Reporter, 2023, 41(1): 15-26
    [47] De S S, Cuypers A, Vangronsveld J, Remans T. Gene networks involved in hormonal control of root development in Arabidopsis thaliana: A framework for studying its disturbance by metal stress. International Journal of Molecular Sciences, 2015, 16(8): 19195-19224
    [48] Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology,2014, 232: 1-44
    [49] Sytar O, Kumar A, Latowski D, Kuczynska P, Strzalka K, Prasad M N V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 2013, 35(4): 985-999
    [50] Sapara K K, Khedia J, Agarwal P, Gangapur D R, Agarwal P K. SbMYB15 transcription factor mitigates cadmium and nickel stress in transgenic tobacco by limiting uptake and modulating antioxidative defence system. Functional Plant Biology, 2019, 46(8): 702-714
    [51] Gao W D, Liu B C, Phetmany S, Li J H, Wang D N, Liu Z Y, Gao C Q. ThDIV2, an R2R3-type MYB transcription factor of Tamarix hispida, negatively regulates cadmium stress by modulating ROS homeostasis. Environmental and Experimental Botany, 2023, 214: 105453
    [52] Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L. OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Science, 2017, 264: 1-8
    [53] Agarwal P, Mitra M, Banerjee S, Roy S. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Science, 2020, 297: 110501
    [54] Ai T N, Naing A H, Yun B W, Lim S H, Kim C K. Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Frontiers in Plant Science, 2018, 9: 1388
    [55] Tiwari P, Indoliya Y, Chauhan A S, Singh P, Singh P K, Singh P C, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. Journal of Hazardous Materials, 2020, 399: 122811
    [56] Wang F Z, Chen M X, Yu L J, Xie L J, Yuan L B, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen Q F. OsARM1, an R2R3-MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Frontiers in Plant Science, 2017, 8: 1868
    [57] Chen Y, Wang H Y, Chen Y F. The transcription factor MYB40 is a central regulator in arsenic resistance in Arabidopsis. Plant Communications, 2021, 2(6): 100234
    [58] De Mortel J E V, Schat H, Moerland P D, Van Themaat E V L, Van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts M G M. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell and Environment, 2008, 31(3): 301-324
    [59] Chen Y H, Wu X M, Ling H Q, Yang W C. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Research, 2006, 16(10): 830-840
    [60] Wang H, Yin X, Du D, Liang Z, Han Z, Nian H, Ma Q. GsMYB7 encoding a R2R3-type MYB transcription factor enhances the tolerance to aluminum stress in soybean (Glycine max L.). BMC Genomics, 2022, 23(1): 529
    [61] Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B S. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecular Plant Pathology, 2019, 24(13): 2452
    [62] Landi M, Agati G, Fini A, Guidi L, Sebastiani F, Tattini M. Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side" of anthocyanins. Plant Cell and Environment, 2021, 44(4): 1119-1129
    [63] Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants, 2020, 9(11): 1098
    [64] Gouot J C, Smith J P, Holzapfel B P, Walker A R, Barril C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 2019, 70(2): 397-423
    [65] Zheng T, Lu X B, Yang F, Zhang D W. Synergetic modulation of plant cadmium tolerance via MYB75-mediated ROS homeostasis and transcriptional regulation. Plant Cell Reports, 2022, 41(7): 1515-1530
    [66] Ahammed G J, Li X, Yu J. Introduction to plant hormones and climate change//Ahammed G J, Yu J. Plant hormones and climate change. Singapore: Springer Nature Singapore, 2023: 1-16
    [67] Xu Z G, Ge Y, Zhang W, Zhao Y L, Yang G Y. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biology, 2018, 18: 19
    [68] Li R T, Yang Y J, Liu W J, Liang W W, Zhang M, Dong S C, Shu Y J, Guo D L, Guo C H, Bi Y D. MsNRAMP2 enhances tolerance to iron excess stress in Nicotiana tabacum and MsMYB binds to its promoter. International Journal of Molecular Sciences, 2023, 24(14): 11278
    [69] Zhang P, Wang R L, Ju Q, Li W Q, Tran L S P, Xu J. The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiology, 2019, 180(1): 529-542
    [70] Xu Z G, Wang T Y, Hou S Y, Ma J Y, Li D P, Chen S W, Gao X Q, Zhao Y L, He Y, Yang G Y. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. Journal of Hazardous Materials, 2024, 463: 132871
    [71] Gu P, Li Q, Zhang W Z, Zheng Z, Luo X Z. Effects of different metal ions (Ca, Cu, Pb, Cd) on formation of cyanobacterial blooms. Ecotoxicology and Environmental Safety, 2020, 189: 109976
    [72] Elhiti M, Yang C C, Chan A, Durnin D C, Belmonte M F, Ayele B T, Tahir M, Stasolla C. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Journal of Experimental Botany, 2012, 63(12): 4447-4461
    [73] Melis A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 2009, 177(4): 272-280
    [74] Ying R R, Qiu R L, Tang Y T, Hu P J, Qiu H, Chen H R, Shi T H, Morel J L. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 2010, 167(2): 81-87
    [75] Cirillo V, D'Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A. Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology, 2021, 10(2): 139
    [76] Lea?o G A, de Oliveira J A, Felipe R T A, Farnese F S, Gusman G S. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. Journal of Plant Interactions, 2014, 9(1): 143-151
    [77] Naing A H, Kim C K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 2021, 172(3): 1711-1723
    [78] Selim S, Abuelsoud W, Al-Sanea M M, AbdElgawad H. Elevated CO2 differently suppresses the arsenic oxide nanoparticles-induced stress in C3 (Hordeum vulgare) and C4 (Zea maize) plants via altered homeostasis in metabolites specifically proline and anthocyanin metabolism. Plant Physiology and Biochemistry, 2021, 166: 235-245
    [79] Mi Y Z, Tong K, Zhu G S, Zhang X, Liu X H, Si Y B. Surface spraying of anthocyanin through antioxidant defense and subcellular sequestration to decrease Cd accumulation in rice (Oryza sativa L.) grains in a lead-zinc mine area. Environmental Geochemistry and Health, 2021, 43(5): 1855-1866
    [80] Ma X, Yu Y N, Jia J H, Li Q H, Gong Z H. The pepper MYB transcription factor CaMYB306 accelerates fruit coloration and negatively regulates cold resistance. Scientia Horticulturae, 2022, 295: 110892
    [81] Mittler R. ROS are good. Trends in Plant Science, 2017, 22(1): 11-19
    [82] Yan X X, Huang Y, Song H, Chen F, Geng Q L, Hu M, Zhang C, Wu X, Fan T T, Cao S Q. A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. PLoS Genetics, 2021, 17(6): e1009636
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何锐,兴旺,刘大丽,等.MYB调控靶基因参与植物应答重金属胁迫的研究进展[J].植物遗传资源学报,2025,26(3):419-430.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:115
  • 下载次数: 137
  • HTML阅读次数: 64
  • 引用次数: 0
历史
  • 收稿日期:2024-06-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-07
  • 出版日期:
文章二维码
您是第5851192位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!