江汉大学生命科学学院/湖北省豆类(蔬菜)植物工程技术研究中心/湖北省食用豆类植物自然科技资源中心,武汉430056
研究方向为植物资源与遗传育种,E-mail:mtt15971757241@163.com
郭 瑞,研究方向为豆类(蔬菜)资源与遗传改良,E-mail:ruiguo@jhun.edu.cn
陈禅友,研究方向为植物遗传学,E-mail:ccy@jhun.edu.cn
湖北省技术创新专项(2017ABA147);湖北省食用豆类植物自然科技资源中心建设项目(2015BCE091)
School of Life Sciences,Jianghan University/Hubei Province Engineering Research Center for Legume Plants/Hubei Natural Science Resources Center for Edible Legumes,Wuhan 430056
Foundation projects: Technical Innovation Project of Hubei Province(2017ABA147); Hubei Natural Science Resources Center for Edible Legumes Construction Project(2015BCE091)
本研究鉴定了国内外100份菜用豌豆种质的3个商品品质性状和5个营养品质性状,分析了其特征数据、遗传变异和性状相关性,同时分析了依食用器官不同划分的青豌豆和荷兰豆两大群体间的遗传分化程度,并开展了基于8个品质性状的聚类分析及综合评价。结果表明,8个性状在种质间均存在显著性差异,变异系数变幅为4.85%~95.04%,其中可溶性蛋白含量变异最大,含水量变异最小;遗传多样性指数在1.33~2.03之间,其中可溶性糖含量多样性最丰富,而可溶性蛋白含量多样性偏低;广义遗传力变幅为90.38%~99.77%,均大于90%,说明性状差异中的大部分可由基因差异解释。两两性状间有12对达极显著相关水平,其中总氨基酸含量与含水量的相关系数高达0.75,而与可溶性蛋白含量的相关系数达-0.49。荷兰豆和青豌豆两大群体间8个性状的遗传分化系数在6.01%~92.45%之间,其中维生素C含量是分化最明显的性状,含水量分化不明显。聚类分析可将100份种质划分为3个品种群,青豌豆品种主要聚集在品种群Ⅱ,多数荷兰豆品种集聚在品种群I,5份性状特异的荷兰豆构成品种群III。基于性状数据特征筛选出WD-123(中豌9号)、WD-135(蜜珍豌豆)、WD-147(奇珍76)等优质青豌豆品种,其中WD-123可溶性蛋白含量高达73.26 mg/g;筛选出WD-057(2015-11)、WD-072(麻皮豌豆)、WD-112(2015-44)等优质荷兰豆品种,其中WD-072的维生素C含量高达199.64 mg/kg。本研究揭示的豌豆品质性状遗传变异特征及种质间亲缘关系,可为菜用豌豆品种栽培应用及后续遗传育种提供优质种源和技术依据。
This study evaluated three commercial quality traits and five nutritional quality traits across 100 vegetable pea germplasm accessions of both domestic and foreign origins. The analysis focused on trait characteristics, genetic variation, and inter-trait correlations. Additionally, genetic differentiation between two populations, green peas and snow peas, classified based on their edible organs, was investigated. A comprehensive evaluation and cluster analysis were conducted using the eight quality traits. The results revealed significant variation among the germplasm for these traits, with coefficients of variation ranging from 4.85% to 95.04%. Soluble protein content exhibited the greatest variation, whereas water content showed the least. The genetic diversity index ranged from 1.33 to 2.03, with soluble sugar content displaying the highest diversity and soluble protein content showing lower diversity. The broad heritability ranged from 90.38% to 99.77%, all exceeding 90%, indicating that genetic factors predominantly account for the observed phenotypic variations. Twelve pairs of traits exhibited highly significant correlations, including a strong positive correlation (R=0.75) between total amino acid content and water content, and a negative correlation (R=-0.49) between total amino acid content and soluble protein content. The genetic differentiation coefficients between two populations ranged from 6.01% to 92.45%, with vitamin C content showing the highest differentiation and water content showing no significant differentiation. Cluster analysis classified this collection into three distnct groups. Green pea varieties were predominantly clustered in group II, while most snow pea varieties were grouped in group I. A unique cluster, group III, consisted five trait-specific snow pea varieties, highlighting the genetic relationships among the accessions. Based on trait characteristics and analytical findings, several high-quality green pea varieties were identified, including WD-123 (Zhongwan No.9), WD-135 (Mizhen Pea), and WD-147 (Qizhen 76). Notably, WD-123 exhibited a remarkably high soluble protein content (73.26 mg/g). Similarly, high-quality snow pea varieties like WD-057 (2015-11), WD-072 (Mapi Pea), and WD-112 (2015-44) were identified, with WD-072 showing an exceptional vitamin C content of 199.64 mg/kg. The genetic variation characteristics of pea quality traits and the genetic relationships among germplasm revealed provide valuable high-quality germplasm and a technical basis for the cultivation and subsequent genetic breeding of vegetable pea varieties.
马天天,孟俊瑛,陈高,等.