1.青岛农业大学农学院,山东青岛 266109;2.湖北省农业科学院粮食作物研究所/农业农村部作物分子育种重点实验室/ 粮食作物种质创新与遗传改良湖北省重点实验室,武汉 430064;3.北京大学现代农业研究院/ 小麦育种全国重点实验室/潍坊现代农业山东省实验室,山东潍坊 261325
研究方向为小麦遗传育种,E-mail:cwangcw@163.com
宁 强,研究方向为小麦产量性状遗传改良,E-mail:ningqiang_404@163.com
卫 波,研究方向为小麦产量性状遗传改良,E-mail:bo.wei@pku-iaas.edu.cn
国家自然科学基金(32072061,32272173,31571750)
CHEN Wang
College of Agronomy, Qingdao Agricultural University, Qingdao 266109,Shandong;Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 4300641.College of Agronomy, Qingdao Agricultural University, Qingdao 266109,Shandong;2.Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064;3.Peking University Institute of Advanced Agricultural Sciences/National Key Laboratory of Wheat Improvement/Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, Shandong
Foundation project: National Natural Science Foundation of China(32072061,32272173,31571750)
为创制具有育种利用价值的遗传材料,定位影响小麦穗粒数的候选区间,以八倍体小偃麦与普通小麦品种衡观35和科农199杂交构建的近等基因系作为研究材料,对株高、有效分蘖数、穗长、小穗数、每穗粒数、单株产量、千粒重7个性状进行表型鉴定。利用660K SNP芯片对表型差异显著的近等基因系进行全基因组扫描,分析两对近等基因系间的多态性SNPs位点及一致性的物理区间。结合候选区间的基因功能注释和基因表达分析,预测影响小麦穗粒数的重要候选基因。结果表明,N81和N82、N86和N87是两对在小麦穗部性状具有显著差异的近等基因系,其遗传相似度分别为98.02%和98.78%。通过660K SNP芯片分析,确定两对近等基因系分别在1B染色体上662~669 Mb、3B染色体上19~25 Mb和5B染色体上541~548 Mb的物理区间存在明显的遗传多态性,表明这些物理区间可能是影响小麦穗部相关性状的候选区间。通过整合前人研究的QTL定位区间、基因功能注释、基因表达分析和同源基因功能分析,筛选出3个可能影响小麦穗粒数的重要候选基因,分别是1B染色体上编码苹果酸脱氢酶的TraesCS1B02G443200,3B染色体上编码AP2/ERF转录因子的TraesCS3B02G042400,5B染色体上编码C2H2类型锌指蛋白TraesCS5B02G366500。本研究结果为挖掘小麦穗粒数基因提供理论参考。
To develop novel genetic materials with breeding potential and identify genetic intervals regulating grain number per spike in wheat, we conducted a comprehensive study using near-isogenic lines (NILs) through crossing the octoploid Thinopyrum ponticum derived wheat cultivars Hengguan 35 and Kenong 199. Seven yield-related traits, including plant height, effective tiller number, spike length, spikelet number per spike, grain number per spike, grain yield per plant and thousand grain weight, were systematically evaluated. Genome-wide scanning was performed using the 660K SNP array to identify polymorphic loci and conserved physical intervals between two pairs of NILs. Candidate genes were predicted through integrated analysis of gene annotation and expression profiles within the candidate regions. The results indicated that NIL pairs N81/N82 and N86/N87 exhibited significant differences in spike-related traits while maintaining genetic similarities of 98.02% and 98.78%, respectively. SNP polymorphism analysis identified three conserved genomic regions associated with spike architecture, 662-669 Mb on chromosome 1B, 19-25 Mb on chromosome 3B, and 541-548 Mb on chromosome 5B. Through integration of QTL mapping data, gene functional annotation, expression analysis, and orthologous gene comparison, we identified three putative candidate genes regulating grain number per spike: TraesCS1B02G443200, encoding malate dehydrogenase on chromosome 1B, TraesCS3B02G042400, encoding an AP2/ERF transcription factor on chromosome 3B, and TraesCS5B02G366500, encoding a C2H2-type zinc finger protein on chromosome 5B. These findings provide a theoretical reference for identifying genes regulating grain number per spike in wheat.
陈旺,王殿,宋波,等.小麦穗部性状近等基因系的创制及穗粒数候选基因分析[J].植物遗传资源学报,2025,26(4):797-807.
复制