366份长绒陆地棉种质资源遗传多样性分析
DOI:
CSTR:
作者:
作者单位:

1.塔里木大学农学院;2.郑州航空工业管理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

新疆南疆陆地棉产量和纤维品质性状QTS的全基因组挖掘(31560408)


Genetic diversity analysis of 366 long staple upland cotton germplasm resources
Author:
Affiliation:

1.College of Agriculture,Tarim University,Aral;2.China

Fund Project:

Genome-wide Mining of Specific Yield Traits (QTS) in Upland Cotton from Southern Xinjiang (31560408).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对366份长绒陆地棉种质资源5个品质性状和5个产量性状的2年资料采用基因型及基因与环境互作遗传模型进行遗传分析,并对表型进行遗传多样性分析和对基因型值进行相关性分析、聚类分析、主成分分析和多元线性回归分析,以明确各类种质资源的利用价值。研究结果显示,366份长绒陆地棉2年品质性状变异系数在1.34%~11.80%之间,产量性状变异系数在7.95%~54.09%之间;两年品质性状多样性指数在1.67~2.03之间,平均遗传多样性为1.879, 两年产量性状多样性指数在1.42~1.99之间,平均遗传多样性为1.782,说明366份种质资源之间差异性较大,种质类型丰富。聚类分析将366份中长绒陆地棉种质资源分为5类,第1类包含63份种质,属于铃重大、衣指高、整齐度好的一类材料;第2类包括41份种质,属于衣分高、单株铃数多、单株皮棉产量高的高产材料;第3类包括71份种质,属于绒长短、铃重低的一类材料;第4类包括84份种质,属于绒长较长、马克隆值较低、比强度较高的一类材料;第5类包括107份种质,属于绒长最长、马克隆值最低、比强度最高的优质材料。通过对各类种质资源计算综合得分(F值),筛选出大于对照金刚(0.87)的有9份品种,介于对照金刚和对照中棉-3(0.80)之间的有4份品种,介于对照中棉-3和对照新陆中87(0.74)之间的有5份材料。对主要性状进行多元线性回归分析,得到了绒长和单株皮棉产量的两个线性回归模型。综合说明366份长绒陆地棉种质资源的遗传多样性较丰富;筛选到的 21份优质种质资源,可以作为优质亲本提高当地陆地棉纤维品质和为陆地棉种质创新和遗传育种提供参考与借鉴。

    Abstract:

    The 2-year data of 5 quality traits and 5 yield traits of 366 long-staple upland cotton germplasm resources were genetically analysed using genotype and gene-environment interaction genetic models, and genetic diversity analysis of phenotypes and correlation analysis, cluster analysis, principal component analysis and multiple linear regression analysis of genotypic values were performed to clarify the value of the use of various types of germplasm resources. The results showed that the coefficients of variation of 366 long-staple upland cotton varied from 1.34% to 11.80% for quality traits and 7.95% to 54.09% for yield traits in two years; the diversity indices of two-year quality traits ranged from 1.67 to 2.03, with an average of 1.879, and those of two-year yield traits ranged from 1.42 to 1.99, with an average of 1.782, and the average of 1.782, and the average of 1.879. The average genetic diversity was 1.782, indicating that the 366 germplasm resources were more different from each other and rich in germplasm types. Cluster analysis divided the 366 medium and long-staple upland cotton germplasm resources into five classes, Class 1 included 63 germplasm, which belonged to the class of materials with high boll weight, high lint index and good uniformity; Class 2 included 41 germplasm, which belonged to the high-yielding materials with high lint percentage, high number of bolls per plant and high lint yield per plant; Class 3 included 71 germplasm, which belonged to the class of materials with short lint length and low boll weight; Class 4 included 84 germplasm, which belonged to the class of materials with long lint length and low boll weight; Class 4 included 84 germplasm, which belonged to the class of materials with long lint length, high Markelin number, and high lint yield per plant. longer lint length, lower micronaire value and higher specific strength; Category 5 includes 107 germplasm, which belongs to high-quality materials with the longest lint length, the lowest Micronaire value and the highest specific strength. By calculating the composite score (F-value) for each category of germplasm resources, nine varieties were screened to be greater than the control Jingang (0.87), four varieties were between the control Jingang and the control Chinese Cotton -3 (0.80), and five materials were between the control Chinese Cotton -3 and the control Xinluzhong 87 (0.74). Multiple linear regression analyses of the main traits yielded two linear regression models for lint length and lint yield per plant. The 366 long-staple upland cotton germplasm resources are rich in genetic diversity; the 21 high-quality germplasm resources screened can be used as high-quality parents to improve the fibre quality of local upland cotton and provide reference for upland cotton germplasm innovation and genetic breeding.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-14
  • 最后修改日期:2024-10-08
  • 录用日期:2024-12-05
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司