2025年5月19日 21:43 星期一
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第5期 >1017-1030. DOI:10.13430/j.cnki.jpgr.20240919002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
油莎豆油体蛋白基因Oleosin的全基因组鉴定及功能分析
DOI:
10.13430/j.cnki.jpgr.20240919002
CSTR:
作者:
  • 陈晨

    陈晨

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王会伟

    王会伟

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李春鑫

    李春鑫

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王树峰

    王树峰

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 程珊

    程珊

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 朱雅婧

    朱雅婧

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宋万献

    宋万献

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张向歌

    张向歌

    河南省农业科学院经济作物研究所,郑州 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

河南省农业科学院经济作物研究所,郑州 450002

作者简介:

研究方向为油莎豆遗传育种,E-mail:C18337103690@163.com

通讯作者:

张向歌,研究方向为油莎豆遗传育种,E-mail:maizezxg@163.com

中图分类号:

基金项目:

河南省重大科技专项(211100110100);河南省重点研发与推广专项(科技攻关)项目(232102110188, 242102110305);河南省中央引导地方科技发展资金(Z20231811175)


Genome-wide Identification and Functional Analysis of Oleosin Genes in Cyperus esculentus L.
Author:
  • CHEN Chen

    CHEN Chen

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Huiwei

    WANG Huiwei

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Chunxin

    LI Chunxin

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Shufeng

    WANG Shufeng

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Shan

    CHENG Shan

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Yajing

    ZHU Yajing

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Wanxian

    SONG Wanxian

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xiangge

    ZHANG Xiangge

    Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002

Fund Project:

Foundation projects: Major Science and Technology Project of Henan Province (211100110100); Key Research and Development and Promotion Special Project (Science and Technology Research) of Henan Province (232102110188, 242102110305); The Central Government of Henan Province Guides Local Science and Technology Development Funds (Z20231811175)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    探究油莎豆中Oleosin基因家族特征及筛选响应油脂储存的关键Oleosin基因对于解析其块茎储存油脂的调控机理具有重要意义。利用生物信息学方法对油莎豆和其他多个物种中Oleosin基因进行了家族分析,并进一步开展了CeOLEs的组织表达分析及功能验证等相关研究。结果显示,油莎豆全基因组共鉴定到6个Oleosin基因家族成员(CeOLE1~6),分布在3个进化谱系(U、SL和SH亚家族);这6个基因在油莎豆块茎中表达水平较高,而在根、叶、分蘖节、匍匐茎等组织中表达水平极低。相应地,油脂含量检测发现,油莎豆块茎中油脂含量最高可达24.68%,而根、叶、分蘖节和匍匐茎中油脂含量均小于1.00%。可以看出,油莎豆油脂含量可能与CeOLEs的表达水平密切正相关。另外,CeOLE1、CeOLE2、CeOLE3和CeOLE5的表达水平较高,并且它们的表达模式与块茎中油脂含量变化速率一致(先升后降),说明这4个CeOLEs可能是影响油莎豆块茎中油脂含量的关键基因。拟南芥中过表达CeOLE1、CeOLE2、CeOLE3和CeOLE5均可显著提高拟南芥种子的油脂含量,验证了这4个CeOLEs在油脂储存中的功能。

    关键词:油莎豆;油体蛋白;基因家族;组织表达分析;功能验证
    Abstract:

    Exploring the Oleosin gene family in Cyperus esculentus and identifying key family members in oil storage are crucial for deciphering the regulatory mechanisms of oil accumulation. In this study, we conducted a comprehensive analysis of the Oleosin gene family members in Cyperus esculentus and other species using bioinformatics methods. The tissue-specific expression analysis of CeOLEs and functional verification were further carried out. Genome-wide analysis revealed six Oleosin gene family members (CeOLE1-6) in Cyperus esculentus, phylogenetically classified into three evolutionary lineages: U, SL and SH. These genes exhibited high expression levels in the tubers, but extremely low expression in roots, leaves, tillering nodes, stolons and other tissues. The expression pattern correlated strongly with the observed oil content, where tubers accumulated up to 24.68% oil content, while other tissues contained less than 1.00% oil content. Moreover, we found that CeOLE1, CeOLE2, CeOLE3 and CeOLE5 had higher expression levels, and their expression patterns were consistent with the rate of oil content changes in tubers (initially increased and then decreasing). This indicates that these four genes may play pivotal roles in regulating oil accumulation in Cyperus esculentus tubers. Overexpression of CeOLE1, CeOLE2, CeOLE3 and CeOLE5 in Arabidopsis resulted in significantly increased seed oil content, thereby confirming the role of these four CeOLEs in oil storage.

    Key words:Cyperus esculentusis L.;oleosin;gene family;tissue expression analysis;functional verification
    参考文献
    [1] Murphy D J. The dynamic roles of intracellular lipid droplets: From archaea to mammals. Protoplasma, 2012, 249: 541-585
    [2] Huang A H. Plant lipid droplets and their associated proteins: Potential for rapid advances. Plant Physiology, 2018, 176(3): 1894-1918
    [3] 周丹, 赵江哲, 柏杨, 张群, 井文, 章文华. 植物油脂合成代谢及调控的研究进展. 南京农业大学学报, 2012, 35(5): 77-86Zhou D, Zhao J Z, Bai Y, Zhang Q, Jing W, Zhang W H. Research advance in triacylglycerol synthesis, metabolism, and regulation in plants. Journal of Nanjing Agricultural University, 2012, 35(5): 77-86
    [4] 范世航, 刘念, 华玮. 油料作物油脂合成调控研究进展. 中国油料作物学报, 2021, 43(3): 361Fan S H,Liu N,Hua W. Research advances in the biosynthesis and regulation of lipid in oil crops. Chinese Journal of Oil Crop Sciences, 2021, 43(3): 361
    [5] 胡佳, 刘春林. 植物油体研究进展. 植物学报, 2017, 52(5): 669Hu J,Liu C L. Research progress on vegetable oils. Chinese Bulletin of Botany, 2017, 52(5): 669
    [6] Shao Q, Liu X, Su T, Ma C, Wang P. New insights into the role of seed oil body proteins in metabolism and plant development. Frontiers in Plant Science, 2019, 10: 494493
    [7] Scholz P, Chapman K D, Mullen R T, Ischebeck T. Finding new friends and revisiting old ones-how plant lipid droplets connect with other subcellular structures. New Phytologist, 2022, 236(3): 833-838
    [8] Jolivet P, Roux E, d’Andrea S, Davanture M, Negroni L, Zivy M, Chardot T. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiology and Biochemistry, 2004, 42(6): 501-509
    [9] Wu Y Y, Chou Y R, Wang C S, Tseng T H, Chen L J, Tzen J T. Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiology and Biochemistry, 2010, 48(2): 81-89
    [10] Miquel M, Trigui G, d’Andréa S, Kelemen Z, Baud S, Berger A, Deruyffelaere C, Trubuil A, Lepiniec L, Dubreucq B. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiology, 2014, 164(4): 1866-1878
    [11] Zhang D, Zhang H, Hu Z, Chu S, Yu K, Lv L, Yang Y, Zhang X, Chen X, Kan G. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLoS Genetics, 2019, 15(7): e1008267
    [12] Abell B M, Holbrook L A, Abenes M, Murphy D J, Hills M J, Moloney M M. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. The Plant Cell, 1997, 9(8): 1481-1493
    [13] Huang C Y, Huang A H. Unique motifs and length of hairpin in oleosin target the cytosolic side of endoplasmic reticulum and budding lipid droplet. Plant Physiology, 2017, 174(4): 2248-2260
    [14] 赵浩强, 王小斐, 高少培. 植物油体蛋白基因家族研究进展. 遗传, 2022, 44(12): 1128-1140Zhao H Q, Wang X F, Gao S P. Progress on the functional role of oleosin gene family in plants. Hereditas, 2022, 44(12): 1128-1140
    [15] Huang M D, Huang A H. Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants. Plant Physiology, 2015, 169(1): 453-470
    [16] Fang Y, Zhu R L, Mishler B D. Evolution of oleosin in land plants. PLoS ONE, 2014, 9(8): e103806
    [17] 杨帆, 朱文学. 油莎豆研究现状及展望. 粮食与油脂, 2020, 33(7): 4-6Yang F,Zhu W X. Research status and prospect of Cyperus esculentus. Cereals and Oils, 2020, 33(7): 4-6
    [18] 宋玉浩, 史伟玲, 张娇, 丁振宇, 彭洪娴, 蒋春燕, 马秋芹, 李芝静, 赵勇, 唐道彬, 张凯, 王季春, 刘勋. 马铃薯块茎淀粉组分高效检测体系的建立及应用. 园艺学报, 2021, 48(3): 600-608Song Y H, Shi W L, Zhang J, Ding Z Y, Peng H X, Jiang C Y, Ma Q Q, Li Z J, Zhao Y, Tang D B, Zhang K, Wang J C, Liu X. Development and application of an efficient method for the amylose/amylopectin ratio determination in potato tubers. Acta Horticulturae Sinica, 2021, 48(3): 600-608
    [19] 崔鹏, 赵逸人, 姚志鹏, 庞林江, 陆国权. 低温对甘薯淀粉理化特性及代谢关键基因表达量的影响. 中国农业科学, 2022, 55(19): 3831-3840Cui P, Zhao Y R, Yao Z P, Pang L J, Lu G Q. Starch physicochemical properties and expression levels of anabolism key genes in sweetpotato under low temperature. Scientia Agricultura Sinica , 2022, 55(19): 3831-3840
    [20] 瞿萍梅, 程治英, 龙春林, 苏明华, 杨德. 生物柴油植物“油莎豆”的发展前景. 可再生能源, 2008 (1):106-109Qu P M, Cheng Z Y, Long C L, Su M H, Yang D. Development potentials of chufa for biodiesel production. Renewable Energy Resources, 2008(1): 106-109
    [21] 闫军, 杜静, 李聪, 陈邦, 申烨华. 陕西靖边油莎豆主要成分分析. 中国油脂, 2016, 41(3): 85-88Yan J, Du J, Li C, Chen B, Shen Y H. Main components analysis of Cyperus esculentus in Jingbian, Shaanxi. China Oils Fats, 2016, 41(3): 85-88
    [22] Maduka N, Ire F S. Tigernut plant and useful application of tigernut tubers (Cyperus esculentus)-A review. Current Journal of Applied Science and Technology, 2018, 29(3): 1-23
    [23] 唐胜德. 新兴油料作物油莎草栽培技术. 农村经济与技术, 1996(1): 42Tang S D. Cultivation technology of emerging oil crops. Agricultural Economics and Technology, 1996(1): 42
    [24] 张学昆. 我国油莎豆产业研发进展报告. 中国农村科技, 2019(4): 67-69Zhang X K. Progress report on the research and development of China's oil bean industry. Chin Rural Science and Technology, 2019(4): 67-69
    [25] Wang L Y, Jing M L, Ahmad N, Wang Y F, Wang Y J, Li J, Li X W, Liu W C, Wang N,Wang F W, Dong Y Y, Li H Y. Tracing key molecular regulators of lipid biosynthesis in tuber development of Cyperus esculentus using transcriptomics and lipidomics profiling. Gene, 2021, 12(10): 1492
    [26] Ji H Y, Liu D T, Yang Z L. High oil accumulation in tuber of yellow nutsedge compared to purple nutsedge is associated with more abundant expression of genes involved in fatty acid synthesis and triacylglycerol storage. Biotechnol Biofuels, 2021, 14: 54
    [27] Zhao X Q, Yi L X, Ren Y F, Li J, Ren W, Hou Z H, Su S F, Wang J G, Zhang Y Y, Dong Q, Yang X D, Cheng Y C, Lu Z Y. Chromosome-scale genome assembly of the yellow nutsedge (Cyperus esculentus). Genome Biology and Evolution, 2023, 15(3): evad027
    [28] Zou Z, Zheng Y J, Zhang Z T, Xiao Y H, Xie Z N, Chang L L, Zhang L, Zhao Y G. Molecular characterization of oleosin genes in Cyperus esculentus, a Cyperaceae plant producing oil in underground tubers. Plant Cell Reports, 2023, 42: 1791-1808
    [29] 魏红, 钟红舰, 汪红. 索氏抽提法测定粗脂肪含量的改进. 中国油脂, 2004, 29(6): 52-54Wei H, Zhong H J, Wang H. Improvement on determination of crude oil by Soxhlet extraction. China Oils Fats, 2004, 29(6): 52-54
    [30] Chen K, Yin Y, Liu S, Guo Z, Zhang K, Liang Y, Zhang L, Zhao W, Chao H, Li M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L.. BMC Plant Biology, 2019, 19: 294
    [31] 文均. 甘蓝型油菜种子发育过程中油脂积累动态及关键基因的表达差异分析. 重庆:西南大学, 2017Wen J. Oil dynamic accumulation and expression differences of key genes in developing seed in Brassica napus L.. Chongqing: Southwest University, 2017
    [32] 韩妮莎, 丁硕, 郑月萍, 魏琳燕, 柯星星, 刘宏波, 刘娟, 郑志富. 植物甘油脂合成途径第一步酰化反应的研究进展. 中国油料作物学报, 2022, 44(4): 699-711Han N S, Ding S, Zheng Y P, Wei L Y, Ke X X, Liu H B, Liu J, Zheng Z F. Advance in studies on the initial step of the glycerolipid biosynthetic pathway in plants. Chinese Journal of Oil Crop Sciences, 2022, 44(4): 699-711
    [33] Shimada T L, Hayashi M, Hara Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves. Plant Physiology, 2018, 176(1): 199-207
    [34] 徐赫, 潘丽娟, 陈明娜, 陈娜, 王通, 王冕, 禹山林, 梁成伟, 迟晓元. 花生油质蛋白基因的克隆与表达分析. 花生学报, 2019, 48(3): 9-14Xu H, Pan L J, Chen M N, Chen N, Wang T, Wang M, Yu S L, Liang C W, Chi X Y. Cloning and expression analysis of oleosin genes in peanut. Journal of Peanut Science, 2019, 48(3): 9-14
    [35] 倪双双, 杨瑞金, 张文斌, 赵伟, 华霄.乙醇水溶液提取玉米胚芽油的工艺优化. 农业工程学报, 2016, 32(7): 283-289Ni S S, Yang R J, Zhang W B, Zhao W, Hua X. Process optimization for extraction of corn germ oil by aqueous ethanol. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7): 283-289
    [36] Hu Z, Wang X, Zhan G, Liu G, Hua W, Wang H. Unusually large oilbodies are highly correlated with lower oil content in Brassica napus. Plant Cell Reports, 2009, 28: 541-549
    [37] Jia Y, Yao M, He X, Xiong X, Guan M, Liu Z, Guan C, Qian L. Transcriptome and regional association analyses reveal the effects of oleosin genes on the accumulation of oil content in Brassica napus. Plants, 2022, 11(22): 3140
    [38] Zou Z, Zhao Y, Zhang L. Genomic insights into lineage-specific evolution of the oleosin family in Euphorbiaceae. BMC Genomics, 2022, 23(1): 178
    [39] Liu W X, Liu H L, Qu L Q. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. Theoretical and Applied Genetics, 2013, 126: 2289-2297
    [40] Ojha R, Kaur S, Sinha K, Chawla K, Kaur S, Jadhav H, Kaur M, Bhunia R K. Characterization of oleosin genes from forage sorghum in Arabidopsis and yeast reveals their role in storage lipid stability. Planta, 2021,254(5): 97
    [41] 王会伟, 朱世新, 张新友, 王艳, 杨铁钢, 张向歌, 王树峰, 李春鑫. 油莎豆基因组大小、倍性和系统发育分析. 河南农业科学, 2023, 52(1): 34-41Wang H W, Zhu S X, Zhang X Y, Wang Y, Yang T G, Zhang X G, Wang S F, Li C X. Genome size, ploidy and phylogeny of Cyperus esculentus L.. Journal of Henan Agricultural Sciences, 2023, 52(1): 34-41
    [42] Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science, 2016, 7: 1446
    [43] Yang S, Miao L, He J, Zhang K, Li Y, Gai J. Dynamic transcriptome changes related to oil accumulation in developing soybean seeds. International Journal of Molecular Sciences, 2019, 20(9): 2202
    [44] Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, Chen B, Zheng G, Li H, Huang Y, Zhan J. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics, 2022, 23(1): 473
    [45] Liu Y, Li Y, Liu Z, Wang L, Lin-Wang K, Zhu J, Bi Z, Sun C, Zhang J, Bai J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience, 2023, 26(2): 105903
    [46] Zou Z, Zhao Y G, Zhang L. Genomic insights into lineage-specific evolution of the oleosin family in Euphorbiaceae. BMC Genomics, 2022, 23: 178
    相似文献
    引证文献
引用本文

陈晨,王会伟,李春鑫,等.油莎豆油体蛋白基因Oleosin的全基因组鉴定及功能分析[J].植物遗传资源学报,2025,26(5):1017-1030.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:16
  • 下载次数: 20
  • HTML阅读次数: 10
  • 引用次数: 0
历史
  • 收稿日期:2024-09-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!