2025年6月4日 11:28 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第5期 >844-853. DOI:10.13430/j.cnki.jpgr.20240923002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
bHLH转录因子在植物花青素合成中的调控作用
DOI:
10.13430/j.cnki.jpgr.20240923002
CSTR:
作者:
  • 刘菁菁

    刘菁菁

    河南科技大学园艺与植物保护学院,洛阳 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王舒文

    王舒文

    河南科技大学园艺与植物保护学院,洛阳 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 杨旭锐

    杨旭锐

    河南科技大学园艺与植物保护学院,洛阳 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 常开心

    常开心

    河南科技大学园艺与植物保护学院,洛阳 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张会灵

    张会灵

    河南科技大学园艺与植物保护学院,洛阳 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

河南科技大学园艺与植物保护学院,洛阳 471000

作者简介:

研究方向为蔬菜分子育种,E-mail:18638353862@163.com

通讯作者:

张会灵,研究方向为蔬菜分子育种,E-mail:lug109@163.com

中图分类号:

基金项目:

河南省科技攻关项目(232102110195);河南省自然科学基金(242300421318);河南省高等学校青年骨干教师培养计划(2021GGJS049);河南科技大学大学生科研训练计划项目(2024461)


The Regulatory Role of bHLH Transcription Factors in Plant Anthocyanin Biosynthesis
Author:
  • LIU Jingjing

    LIU Jingjing

    College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Shuwen

    WANG Shuwen

    College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Xurui

    YANG Xurui

    College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHANG Kaixin

    CHANG Kaixin

    College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Huiling

    ZHANG Huiling

    College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000

Fund Project:

Foundation projects: The Science and Technology Project of Henan Province (232102110195);The Natural Science Foundation of Henan (242300421318);The Training Plan for Young Backbone Teachers in the Colleges and Universities of Henan Province (2021GGJS049);The Student Research Training Program of Henan University of Science and Technology (2024461)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    花青素(Anthocyanins)是黄酮类多酚化合物,在植物体内各个器官广泛分布,在维持植物正常生理活动中发挥重要作用。作为一种天然可食用色素,花青素因具有强抗氧化性,能够增强人体免疫力,具有保护视力和美容养颜等功效。bHLH转录因子作为植物中仅次于MYB转录因子的第二大转录因子超家族,在植物花青素的合成过程中起着重要调控作用。bHLH蛋白不仅能直接作用于花青素合成相关结构基因,还能通过与MYB、WD40蛋白形成复合体的形式调控植物花青素的生物合成,且bHLH转录因子发挥作用的过程中受环境因子以及激素信号的影响。本文综述了花青素生物合成途径及其调控机制,总结了bHLH类转录因子的结构特征、参与花青素合成调控的主要方式以及环境因素和激素信号对其在花青素积累过程中发挥作用的影响,以期为进一步研究花青素生物合成调控机制、花色调控、园艺植物育种等奠定基础。

    关键词:bHLH;花青素;生物合成;表达调控
    Abstract:

    Anthocyanins, a type of flavonoid polyphenolic compounds, are widely found in various plant organs and play a crucial role in maintaining programmed physiological activities. As natural edible pigments, anthocyanins are powerful antioxidants that can boost the human immune system and provide benefits such as vision protection and beauty promotion. bHLH transcription factors, as the second largest transcription factor superfamily in plants after MYB, play a significant role in regulating anthocyanin biosynthesis. bHLH proteins not only directly interact with structural genes in anthocyanin synthesis but also form complexes with MYB and WD40 proteins to regulate the process. Their functions are influenced by environmental factors and hormonal signals. This article reviews the anthocyanin biosynthesis pathways and their regulatory mechanisms, including summarization of their structural characteristics, their regulatory mechanisms, and the impact of external environmental factors and hormone signals on bHLH regulation during anthocyanin accumulation. We expect to provide a foundation for further research on anthocyanin regulation, color formulation, and horticultural plant breeding.

    Key words:bHLH;anthocyanin;biosynthesis;expression regulation
    参考文献
    [1] Delgado-Vargas F, Jimenez A R, Paredes-Lopez O. Natural pigments: Carotenoids, anthocyanins, and betalains--characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 2000, 40(3): 173-289
    [2] Davies K M, Albert N W, Schwinn K E. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning. Functional Plant Biology, 2012, 39(8):619-638
    [3] Tanaka Y, Ohmiya A. Seeing is believing: Engineering anthocyanin and carotenoid biosynthetic pathways. Current Opinion in Biotechnology, 2008, 19(2):190-197
    [4] Castaneda-Ovando A, Pacheco-Hernandez M D, Paez-Hernandez M E, Rodrigue J A, Galan-Vidal C A. Chemical studies of anthocyanins: A review. Food Chemistry, 2009, 113(4):859-871
    [5] Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 2016, 30(8):1265-1286
    [6] Chaves-Silva S, Santos A L D, Chalfun-Júnior A, Zhao J, Peres L E P, Benedito V A. Understanding the genetic regulation of anthocyanin biosynthesis in plants-tools for breeding purple varieties of fruits and vegetables. Phytochemistry, 2018, 153:11-27
    [7] Koes R, Verweij W, Quattrocchio F. Flavonoids:A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10(5):236-242
    [8] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10):573-581
    [9] Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses: An overview. Physiology And Molecular Biology of Plants, 2013, 19(3):307-321
    [10] Jiang S H, Sun Q G, Zhang T L, Liu W J, Wang N, Chen X S. MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. Journal of Plant Physiology, 2021, 257:153353
    [11] Yan S S, Chen N, Huang Z J, Li D J, Zhi J J, Yu B W, Liu X X, Cao B H, Qiu Z K. Anthocyanin fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist, 2020, 225(5):2048-2063
    [12] Jiang L Y, Yue M L, Liu Y Q, Zhang N T, Lin Y X, Zhang Y T, Wang Y, Li M Y, Luo Y, Zhang Y, Wang X R, Chen Q, Tang H R. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria×ananassa). Plant Biotechnology Journal, 2023, 21(6):1140-1158
    [13] Cui D L, Zhao S X, Xu H N, Allan A C, Zhang X D, Fan L, Chen L M, Su J, Shu Q, Li K Z. The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. Plant Molecular Biology, 2021, 106(4-5):407-417
    [14] Fan Z Y, Zhai Y L, Wang Y, Zhang L, Song M Y, Flaishman M A, Ma H Q. Genome-wide analysis of anthocyanin biosynthesis regulatory WD40 gene FcTTG1 and related family in Ficus carica L.. Frontiers in Plant Science, 2022, 13:948084
    [15] Xing Y F, Sun W J, Sun Y Y, Li J L, Zhang J, Wu T, Song T T, Yao Y C, Tian J. MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit. Plant Biotechnology Journal, 2023, 21(2):283-301
    [16] Zhang H L, Zhang Z H, Zhao Y N, Guo D L, Zhao X J, Gao W, Zhang J P, Song B T. StWRKY13 promotes anthocyanin biosynthesis in potato (Solanum tuberosum) tubers. Functional Plant Biology, 2021, 49(1):102-114
    [17] Ni J B, Premathilake A T, Gao Y H, Yu W J, Tao R Y, Teng Y W, Bai S L. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. Plant Journal, 2021, 105(1):167-181
    [18] Duek P D, Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signalling. Trends in Plant Science, 2005, 10(2):51-54
    [19] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 2011, 66(1):94-116
    [20] Bailey P C, Martin C, Toledo-Ortiz G, Quail P H, Huq E, Heim M A, Jakoby M, Werber M, Weisshaar B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 2003, 15(11):2497-2502
    [21] Rushton P J, Bokowiec M T, Han S, Zhang H, Brannock J F, Chen X, Laudeman T W, Timko M P. Tobacco transcription factors:Novel insights into transcriptional regulation in the Solanaceae. Plant Physiology, 2008, 147(1):280-295
    [22] Jin R, Kim H S, Yu T, Zhang A J, Yang Y F, Liu M, Yu W H, Zhao P, Zhang Q Q, Cao Q H, Kwak S S, Tang Z H. Identification and function analysis of bHLH genes in response to cold stress in sweet potato. Plant Physiology and Biochemistry, 2021, 169:224-235
    [23] Liu R J, Song J L, Liu S Q, Chen C M, Zhang S L, Wang J T, Xiao Y H, Cao B B, Lei J J, Zhu Z S. Genome-wide identification of the Capsicum bHLH transcription factor family: Discovery of a candidate regulator involved in the regulation of species-specific bioactive metabolites. BMC Plant Biology, 2021, 21(1):262
    [24] Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail P H. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Current Biology, 2018, 18(23):1815-1823
    [25] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 2011, 66(1):94-116
    [26] Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 2015, 20(3):176-185
    [27] Shi Q, Li X, Du J, Li X. Anthocyanin synthesis and the expression patterns of bHLH transcription factor family during development of the chinese jujube fruit (Ziziphus jujuba Mill.). Forests, 2019, 10(4):346
    [28] Li M, Sun L, Gu H, Cheng D W, Guo X Z, Chen R, Wu Z Y, Jiang J F, Fan X C, Cheng J Y. Genome-wide characterization and analysis of bHLH transcription factors related to anthocyanin biosynthesis in spine grapes (Vitis davidii). Scientific Reports, 2021, 11(1):6863
    [29] Zhao R, Song X X, Yang N, Chen L Q, Xiang L, Liu X Q, Zhao K G. Expression of the subgroup Ⅲf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation. Plant Cell Reports, 2020, 39(7):891-907
    [30] 席浩淳.SmbHLH13 在花青素合成中的功能研究.上海:上海交通大学,2020Xi H C. Functional of SmbHLH13 in the synthesis of anthocyanin in Solanum melongena L.. Shanghai: Shanghai Jiao Tong University, 2020
    [31] Qi Y, Zhou L, Han L L, Zou H Z, Miao K, Wang Y. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiology and Biochemistry, 2020, 154:396-408
    [32] Ren Y S, Zhang S Y, Zhao Q Y, Wu Y, Li H H. The CsMYB123 and CsbHLH111 are involved in drought stress-induced anthocyanin biosynthesis in Chaenomeles speciosa. Molecular Horticulture, 2023, 3(1):25
    [33] Lai B, Du L N, Liu R, Hu B, Su W B, Qin Y H, Zhao J T, Wang H C, Hu G B. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation. Frontiers in Plant Science, 2016, 18(7):166
    [34] Li X J, Cao L J, Jiao B B, Yang H F, Ma C S, Liang Y. The bHLH transcription factor AcB2 regulates anthocyanin biosynthesis in onion (Allium cepa L.). Horticulture Research, 2022, 9:128
    [35] Yang K, Hou Y B, Wu M, Pan Q Y, Xie Y L, Zhang Y S, Sun F H, Zhang Z Z, Wu J H. DoMYB5 and DobHLH24, transcription factors involved in regulating anthocyanin accumulation in Dendrobium officinale. International Journal of Molecular Sciences, 2023, 24(8):7552
    [36] Chen Y Z, Kim P, Kong L Z, Wang X, Tan W, Liu X, Chen Y S, Yang J F, Chen B W, Song Y X, An Z Y, Min Phyon J M, Zhang Y, Ding B, Kawabata S, Li Y H, Wang Y. A dual-function transcription factor, SlJAF13, promotes anthocyanin biosynthesis in tomato. Journal of Experimental Botany, 2022, 73(16):5559-5580
    [37] Bai Y H, Pattanaik S, Patra B, Werkman J R, Xie C H, Yuan L. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b of to bacco have originated from two ancestors and are functionally active. Planta, 2001, 234(2):363-375
    [38] Liu S C, Wang Y, Shi M, Maoz I, Gao X K, Sun M H, Yuan TP, Li K L, Zhou W, Guo X H, Kai G Y. SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza. Journal of Advanced Research, 2022, 42:205-219
    [39] 刘新宇,韩洪强,葛海燕,蒋明敏,陈火英.茄子花青素合成中SmTTG1、SmGL3和SmTT8的表达及其蛋白质间的相互作用.园艺学报,2014,41(11):2241-2249Liu X Y, Han H Q, Ge H Y, Jiang M M, Chen H Y. Cloning, expression and interaction of anthocyanin-related transcription factors SmTTG1,SmGL3 and SmTT8 in eggplant. Acta Horticulturae Sinica, 2014, 41(11):2241-2249
    [40] Li Y, Xu P B, Chen G Q, Wu J, Liu Z C, Lian H L. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology, 2020, 61(4):826-837
    [41] Li C, Wu J, Hu K D, Wei S W, Sun H Y, Hu L Y, Han Z, Yao G F, Zhang H. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Horticulture Research, 2020, 7:37
    [42] Li W, Tan L Q, Zou Y, Tan X Q, Huang J C, Chen W, Tang Q. The effects of ultraviolet A/B treatments on anthocyanin accumulation and gene expression in dark-purple tea cultivar 'Ziyan' (Camellia sinensis). Molecules, 2020, 25(2):354
    [43] Cui L Y, Li M X, Zhang X, Guo Z M, Li K F, Shi Y H, Wang Q, Guo H C. Enhanced UV-B radiation in potato stems and leaves promotes the accumulation of anthocyanins in tubers. Current Issues in Molecular Biology, 2023, 45(12):9943-9960
    [44] Zhou L J, Wang Y X, Wang Y G, Song A P, Jiang J F, Chen S M, Ding B Q, Guan Z Y, Chen F D. Transcription factor CmbHLH16 regulates petal anthocyanin homeostasis under different lights in chrysanthemum. Plant Physiology, 2022, 190(2):1134-1152
    [45] 陈元森. SlCOP1介导的SlJAF13泛素化降解调控Aft番茄果实花青素合成机制研究. 哈尔滨:东北林业大学,2023Chen Y S. SlCOP1 mediated SlJAF13 ubiquitination regulates light-induced anthocyanin accumulation in Aft tomato fruit. Harbin: Northeast Forestry University, 2023
    [46] Liu Z J, Wang Y, Fan K, Li Z W, Jia Q, Lin W W, Zhang Y Q. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) negatively regulates anthocyanin accumulation by inhibiting PAP1 transcription in Arabidopsis seedlings. Plant Science, 2021, 303:110788
    [47] Ryu S, Han J H, Cho J G, Jeong J H, Lee S K, Lee H J. High temperature at veraison inhibits anthocyanin biosynthesis in berry skins during ripening in 'Kyoho' grapevines. Plant Physiology and Biochemistry, 2020, 157:219-228
    [48] He Q, Ren Y J, Zhao W B, Li R, Zhang L G. Low Temperature promotes anthocyanin biosynthesis and related gene expression in the seedlings of purple head chinese cabbage (Brassica rapa L.). Genes,2020, 11(1): 81
    [49] Sun Y Z, Zheng Y Y, Wang W Y, Yao H, Ali Z, Xiao M W, Ma Z D, Li J J, Zhou W F, Cui J, Yu K, Liu Y. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. The Plant Cell, 2024, 37(1): koae303
    [50] Xu Z J, Wang J C, Ma Y B, Wang F, Wang J R, Zhang Y, Hu X H. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. The Plant Journal, 2023, 115(1):205-219
    [51] Fang H C, Dong Y H, Yue X X, Hu J F, Jiang S H, Xu H F, Wang Y C, Su M Y, Zhang J, Zhang Z Y, Wang N, Chen X S. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant, Cell & Environment,2019,42(7):2090-2104
    [52] Guo S H, Zhang M, Feng M X, Liu G P, Torregrosa L, Tao X Q, Ren R H, Fang Y L, Zhang Z W, Meng J F, Xu T F. miR156b-targeted VvSBP8/13 functions downstream of the abscisic acid signal to regulate anthocyanins biosynthesis in grapevine fruit under drought. Horticulture Research, 2024, 11(2):uhad293
    [53] Xu Y P, Liu Y X, Yue L, Zhang S Y, Wei J, Zhang Y Q, Huang Y X, Zhao R Q, Zou W T, Feng H, Li H H. MsERF17 promotes ethylene-induced anthocyanin biosynthesis under drought conditions in Malus spectabilis leaves. Plant, Cell & Environment, 2025, 48(3):1890-1902
    [54] Hu Y F, Zhao H Y, Xue L Y, Nie N, Zhang H, Zhao N, He S Z, Liu Q C, Gao S P, Zhai H. IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS-scavenging system in sweet potato. International Journal of Molecular Sciences, 2024, 25(4):2096
    [55] Zhang D Y, Sun L X, Xi D D, Li X F, Gao L, Miao L M, Luo Y, Tian M M, Zhu H F. Methyl jasmonate-induced bHLH42 mediates tissue-specific accumulation of anthocyanins via regulating flavonoid metabolism-related pathways in Caitai. Physiologia Plantarum, 2024, 176(4): e14434
    [56] An J P, Xu R R, Wang X N, Zhang X W, You C X, Han Y P. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology, 2024, 66(2):265-284
    [57] Wang H H, Wang X Q, Yu C Y, Wang C T, Jin Y L, Zhang H X. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar. BMC Plant Biology, 2020, 20(1):173
    [58] Liu N N. Effects of IAA and ABA on the immature peach fruit development process. Horticultural Plant Journal, 2019,5(4):145-154
    [59] Li L H, Yang G P, Ren M J, Wang Z N, Peng Y S, Xu R H. Co-regulation of auxin and cytokinin in anthocyanin accumulation during natural development of purple wheat grains.Journal of Plant Growth Regulation, 2021, 40(5):1881-1893
    [60] Wang C K, Han P L, Zhao Y W, Ji X L, Yu J Q, You C X, Hu D G, Hao Y J. Auxin regulates anthocyanin biosynthesis through the auxin repressor protein MdIAA26. Biochemical and Biophysical Research Communications, 2020, 533(4):717-722
    [61] Jia H F, Xie Z Q, Wang C, Shangguan L F, Qian N, Cui M J, Liu Z J, Zheng T, Wang M Q, Fang J G. Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape. Functional & Integrative Genomics, 2017, 17(4):441-457
    [62] Martínez-Rivas F J, Blanco-Portales R, Serratosa M P, Ric-Varas P, Guerrero-Sánchez V, Medina-Puche L, Moyano L, Mercado J A, Alseekh S, Caballero J L, Fernie A R, Mu?oz-Blanco J, Molina-Hidalgo F J. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening. Plant Journal, 2023, 114(3):683-698
    [63] Zhang Y Q, Liu Z J, Liu J P, Lin S, Wang J F, Lin W X, Xu W F. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation. Plant Cell Reports, 2017, 36(4):557-569
    [64] Wang X, Tang Q, Chi F M, Liu H D, Zhang H J, Song Y. Sucrose non-fermenting1-related protein kinase VcSnRK2.3 promotes anthocyanin biosynthesis in association with VcMYB1 in blueberry. Frontiers in Plant Science, 2023, 14:1018874
    [65] Song R F, Hu X Y, Liu W C, Yuan H M. ABA functions in low phosphate-induced anthocyanin accumulation through the transcription factor ABI5 in Arabidopsis. Plant Cell Reports, 2024, 43(2):55
    [66] An J P, Zhang X W, Liu Y J, Wang X F, You C X, Hao Y J. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany, 2021, 72(4):1460-1472
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘菁菁,王舒文,杨旭锐,等.bHLH转录因子在植物花青素合成中的调控作用[J].植物遗传资源学报,2025,26(5):844-853.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码
您是第5892509位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!