2025年6月13日 5:20 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>年第0卷第7期 >. DOI:10.13430/j.cnki.jpgr.20241210001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
基于BSA-seq和GWAS技术的豇豆花色基因定位分析
DOI:
10.13430/j.cnki.jpgr.20241210001
CSTR:
作者:
  • 胡格格

    胡格格

    江汉大学
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 朱姝萌

    朱姝萌

    江汉大学
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 苏晓佳

    苏晓佳

    江汉大学
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 康研

    康研

    江汉大学
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘明慧

    刘明慧

    江汉大学
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭瑞

    郭瑞

    江汉大学
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 潘磊

    潘磊

    江汉大学
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

江汉大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Localisation analysis of cowpea flower color genes based on BSA-seq and GWAS techniques
Author:
  • HU Gege

    HU Gege

    Jianghan University
    在期刊界中查找
    在百度中查找
    在本站中查找

  • 在期刊界中查找
    在百度中查找
    在本站中查找

  • 在期刊界中查找
    在百度中查找
    在本站中查找

  • 在期刊界中查找
    在百度中查找
    在本站中查找

  • 在期刊界中查找
    在百度中查找
    在本站中查找

  • 在期刊界中查找
    在百度中查找
    在本站中查找

  • 在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Jianghan University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    豇豆(Vigna unguiculata)是主要豆科农作物之一,广泛分布在全球的热带和亚热带地区,我国各地均有种植。豇豆花色是一种重要农艺性状,在其繁殖过程中发挥着重要作用,但是豇豆花色变异的分子遗传基础尚不清楚。为此,本研究采用基于重组自交系(RILs)群体花色的BSA-seq分析与豇豆自然群体(271份)花色的全基因组关联分析(GWAS)相结合,将控制花色的基因定位于第九号染色体上31.9 Mb至32.3 Mb之间(0.4 Mb区域)。分析表明该0.4 Mb区域包含30个基因,其中TRANSPARENT TESTA GLABRA 1(TTG1)基因位于SNP-index峰值附近,且在拟南芥中参与调控花青素的生物合成。进一步采用实时荧光定量PCR(RT-PCR)分析发现,紫色和白色的旗瓣在TTG1的基因表达存在显著差异。此外,在该区域内筛选出2对多态性SSR引物,能够区分RIL群体中紫色和白色旗瓣个体。本研究结果可为豇豆花色遗传变异和分子育种提供一定的理论依据。

    关键词:豇豆;花色;BSA-seq;全基因组关联分析;分子标记
    Abstract:

    Cowpea (Vigna unguiculata) is one of the major legume crops, widely distributed in tropical and subtropical regions of the world, and grown throughout China. Cowpea flower color is an important agronomic trait that plays an important role in its reproduction, but the molecular genetic basis of cowpea flower color variation is not known. To this end, this study used a combination of BSA-seq analysis based on flower color in a population of recombinant inbred lines (RILs) and genome-wide association analysis (GWAS) of flower color in a natural population of cowpea (271 accessions), which located the gene controlling flower color between 31.9 Mb and 32.3 Mb on chromosome IX (0.4 Mb region). The analysis showed that this 0.4-Mb region contains 30 genes, among which the TRANSPARENT TESTA GLABRA 1 (TTG1) gene is located near the peak of SNP-index and is involved in the regulation of anthocyanin biosynthesis in Arabidopsis. Further analysis using real-time fluorescence quantitative PCR (RT-PCR) revealed that there was a significant difference in gene expression of TTG1 between purple and white flag petals. In addition, two pairs of polymorphic SSR primers were screened within this region and were able to distinguish between purple and white flag petal individuals in the RIL population. The results of this study can provide some theoretical basis for cowpea flower color genetic variation and molecular breeding.

    Key words:Cowpea; Flower color; BSA-seq; Genome-wide association analysis; Molecular marker
    参考文献
    参考文献
    [2] [1] Watcharatpong P, Kaga A, Chen X, Somta P. Narrowing down a major QTL region conferring pod fiber contents in yardlong bean (Vigna unguiculata), a vegetable cowpea. Genes, 2020, 11(4):363
    [3] [2] Boukar O, Belko N, Chamarthi S, Togola A, Batieno B J, Owusu E, Haruna M, Diallo S, Umar M, Olufajo O, Fatokun C. Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breeding, 2019, 138:415-424
    [4] [3] 吴健,汪宝根,陈小央,吴晓花,李潇,韩磊,汪颖,王尖,鲁忠富,杨易,张艳,李国景,吴新义.豇豆抗锈病全基因组关联分析.植物遗传资源学报, 2024,25(11):1907-1922
    Wu J, Wang B G, Chen X Y, Wu X H, Li X, Han L, Wang Y, Wang J, Lu Z F, Yang Y, Zhang Y, Li G J, Wu X Y. Genome-wide association analysis of cowpea rust resistance. Journal of Plant Genetic Resources, 2024, 25(11):1907-1922
    [6] [4] Kantsa A, Raguso R A, Dyer A G, Sgardelis S P, Petanidou T. Community-wide integration of floral color and scent in a Mediterranean scrubland. Nature Ecology & Evolution, 2017, 1(10):1502-1510
    [7] [5] Xu X M, Luo W, Guo J, Chen H, Akram W, Xie D. Fine mapping and candidate gene analysis of the yellow petal gene ckpc in Chinese kale (Brassica oleracea L. var. alboglabra Bailey) by whole-genome resequencing. Molecular Breeding, 2019, 39:96
    [8] [6] Nadot S, Carrive L. The colourful life of flowers. Botany Letters, 2020, 168(1):120–130
    [9] [7] Brunet J, Flick A, Bauer A. Phenotypic selection on flower color and floral display size by three bee species. Frontiers in Plant Science, 2021, 11:587528
    [10] [8] 曾拓,李伽文,周黎,李进进,史安琪,付瀚森,罗靖,郑日如,王媛媛,王彩云.观赏植物花色与授粉昆虫相互适应关系的研究进展.园艺学报, 2021,48(10):2001-2017
    Zeng T, Li G W, Zhou L, Li J J, Shi A Q, Fu H S, Luo J, Zheng R R, Wang Y Y, Wang C Y. Advances in the relationship between flower colour and pollinating insects in ornamental plants. Journal of Horticulture, 2021, 48(10):2001-2017
    [12] [9] Grotewold E. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology, 2006, 57:761-780
    [13] [10] Koes R, Quattrocchio F, Mol J N. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays, 1994, 16:123-132
    [14] [11] Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 2005, 7:581-591
    [15] [12] Irwin R E, Strauss S Y, Storz S, Emerson A, Guibert G. The role of herbivores in the maintenance of a flower color polymorphism in wild radish. Ecology, 2003, 84:1733-1743
    [16] [13] Simms E L, Bucher M A. Pleiotropic effects of flower-color intensity on herbivore performance on Ipomoea purpurea. Evolution, 1996, 50(2):957-963
    [17] [14] Reverté S, Retana J, Gómez J M, Bosch J. Pollinators show fower colour preferences butfowers with similar colours do not attract similar pollinators. Annals of Botany, 2016, 118:249–257
    [18] [15] Shen Y, Rao Y, Ma M, Li Y, He Y, Wang Z, Liang M, Ning G. Coordination among flower pigments, scents and pollinators in ornamental plants. Horticulture Advances, 2024, 2:6
    [19] [16] Xu P, Hu T, Yang Y, Wu X, Wang B, Liu Y. Mapping genes governing flower and seedcoat color in Asparagus bean (Vigna unguiculata ssp. sesquipedalis) based on single nucleotide polymorphism and simple sequence repeat markers. Hortscience, 2011, 46:1102-1104
    [20] [17] Sangwan R, Lodhi G. Inheritance of flower and pod color in cowpea (Vigna unguiculata L. Walp.). Euphytica, 1998, 102:191-193
    [21] [18] Jindla L N, Singh K B. Inheritance of flower colour, leaf shape and pod length in cowpea (Vigna sinensis L.). Indian Journal of Heredity, 1970, 45-49
    [22] [19] Padi F K. Genetic analyses of pigmentation in cowpea. Pakistan Journal of Biological Sciences, 2003, 6:1655-1659
    [23] [20] Lo S, Fatokun C, Boukar O, Gepts P, Mu?oz-Amatriaín M. Identification of QTL for perenniality and floral scent in cowpea (Vigna unguiculata [L.] Walp.). PLOS ONE, 2020, 15:e0229167
    [24] [21] Nishihara M, Higuchi A, Watanabe A, Tasaki K. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 2018, 18:331
    [25] [22] Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188:395-407
    [26] [23] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant Journal, 2013, 74(1):174-183
    [27] [24] Magwene P M, Willis J H, Kelly J K. The statistics of bulk segregant analysis using next generation sequencing. PLOS Computational Biology, 2011, 7:e1002255
    [28] [25] 黄琬婷,王茜,张泽燕,朱慧珺,闫虎斌,张耀文.基于BSA-seq技术定位绿豆种皮颜色基因.植物遗传资源学报, 2023,24(03):790-800
    Huang W T, Wang X, Zhang Z Y, Zhu H J, Yan H B, Zhang Y W. Localisation of mung bean seed coat colour genes based on BSA-seq technology. Journal of Plant Genetic Resources, 2023, 24(03):790-800
    [30] [26] Abe A, Kosugi S, Yoshida K, Satoshi N, Hiroki T, Hiroyuki K. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30:174-178
    [31] [27] Song J, Li Z, Liu Z, Guo Y, Qiu L. Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean. Frontiers in Plant Science, 2017, 8:919
    [32] [28] Zhang C, Badri A M, Win K T, Begum S, Lee S. QTL-seq analysis of powdery mildew resistance in a Korean cucumber inbred line. Theoretical and Applied Genetics, 2021, 134(2):435-451
    [33] [29] 席甜甜,吴倩,杨建光,马新,陈彦竹,李煜,王军卫,马守才.337份小麦品种籽粒相关性状的全基因组关联分析.麦类作物学报, 2024,44(05):547-558
    Xi T T, Wu Q, Yang J G, Ma X, Chen Y Z, Li Y, Wang J W, Ma S C. Genome-wide association analysis of 337 wheat varieties for grain-related traits. Journal of Wheat Crops, 2024, 44(05):547-558
    [35] [30] 刘阳,杜怀东,孙志勇,于雪然,李培富.水稻籽粒锌含量全基因组关联分析及候选基因筛选.植物遗传资源学报, 2024,25(09):1516-1523
    Liu Y, Du H D, Sun Z Y, Yu X R, Li P F. Genome-wide association analysis and screening of candidate genes for zinc content in rice seeds. Journal of Plant Genetic Resources, 2024, 25(09):1516-1523
    [37] [31] 董舒超,洪骏,凌嘉怡,谢紫欣,张胜军,赵丽萍,宋刘霞,王银磊,赵统敏.番茄抗旱性的全基因组关联分析.园艺学报, 2024,51(02):229-238
    Dong S C, Hong J, Ling J Y, Xie Z X, Zhang S J, Zhao L P, Song L X, Wang Y L, Zhao T M. Genome-wide association analysis of drought resistance in tomato. Journal of Horticulture, 2024, 51(02):229-238
    [39] [32] 李岩哲,熊雅文,许亚男,唐威,张红梅,张威,刘晓庆,王琼,许文静,张群,陈华涛.大豆低聚糖优异种质鉴定及GWAS分析.植物遗传资源学报, 2023,24(03):780-789
    Li Y Z, Xiong Y W, Xu Y N, Tang W, Zhang H M, Zhang W, Liu X Q, Wang Q, Xu W J, Zhang Q, Chen H T. Identification of excellent germplasm of soybean oligosaccharides and GWAS analysis. Journal of Plant Genetic Resources, 2023, 24(03):780-789
    [41] [33] Xu P, Wu X, Mu?oz-Amatriaín M, Wang B, Wu X, Hu Y, Huynh B L, Close T J, Roberts P A, Zhou W, Lu Z, Li G. Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Plant biotechnology journal, 2017, 15(5):547-557
    [42] [34] Pan L, Liu M H, Kang Y, Mei X, Hu G G, Bao C, Zheng Y, Zhao H X, Chen C Y, Wang N. Comprehensive genomic analyses of Vigna unguiculata provide insights into population differentiation and the genetic basis of key agricultural traits. Plant Biotechnology Journal, 2023, 21:1426-1439
    [43] [35] Doyle J J.Isolation of plant DNA from fresh tissue. Focus, 1990, 12:13-15
    [44] [36] Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A. The genome analysis toolkit: a map reduce framework for analyzing next generation DNA sequencing data. Genome Research, 2010, 20:1297-1303
    [45] [37] Singh V K, Khan A W, Saxena R K, Sinha P, Kale S M, Parupalli S. Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnology Journal, 2017, 15:906-914
    [46] [38] Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nature Methods, 2014, 11:407-409
    [47] [39] Mu?oz-Amatriaín M, Mirebrahim H, Xu P, Wanamaker S, Luo M, Alhakami H. Genome resources for climate-resilient cowpea, an essential crop for food security. Plant Journal, 2017, 89(5):1042-1054
    [48] [40] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal, 2008, 53(5): 814-827
    [49] [41] Xu P, Wu X H, Wang B G, Hu T T, Lu Z F, Liu Y H, Qin D H, Wang S, Li G J. QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. BMC Genetics, 2013, 14:4
    [50] [42] Pan L, Wang N, Wu Z H, Guo R, Yu X L, Zheng Y, Xia Q J, Gui S T, Chen C Y. A High Density Genetic Map Derived from RAD Sequencing and Its Application in QTL Analysis of Yield-Related Traits in Vigna unguiculata. Frontiers in Plant Science, 2017, 8:1544
    [51] [43] Lo S, María M, Boukar O, Herniter I, Close T J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports, 2018, 8:6261
    [52] [44] Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Isemura T, Vaughan D A, Srinives P. An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome, 2012, 55:81-92
    [53] [45] Kongjaimun A, Somta P, Tomooka N, Kaga A, Vaughan D A, Srinives P. QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. sesquipedalis]. Euphytica, 2013, 189:217-223
    [54] [46] Qin L M, Sun L, Wei L, Yuan J R, Kong F F, Zhang Y, Miao X, Xia G M, Liu S W. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress. Plant Journal, 2021, 105:1010–1025
    [55] [47] Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant Journal, 2011, 65:771–784
    [56] [48] He F, Mu L, Yan G L, Liang N N, Pan Q H, Wang J, Reeves M J, Duan C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15:9057–9091
    [57] [49] Sudarshan G P, Kulkarni M, Akhov L, Ashe P, Shaterian H, Cloutier S, Rowland G, Wei Y, Selvaraj G. QTL mapping and molecular characterization of the classical D locus controlling seed and flower color in Linum usitatissimum (flax). Scientific reports, 2017, 7(1):15751
    [58] [50] Nie C R, Zhang Y J, Zhang X Q, Xia W S, Sun H B, Zhang S S, Li N, Ding Z Q, Lv Y M, Wang N. Genome assembly, resequencing and genome-wide association analyses provide novel insights into the origin, evolution and flower colour variations of flowering cherry. The Plant journal: for cell and molecular biology, 2023, 114(3):519–533
    [59] [51] 严昕,项超,刘荣,李冠,李孟伟,李正丽,宗绪晓,杨涛.基于BSA-seq技术对豌豆花色基因的精细定位.作物学报, 2023,49(04):1006-1015
    Yan X, Xiang C, Liu R, Li G, Li M W, Li Z L, Yang T. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique. Journal of Crops, 2023, 49(04):1006-1015
    [61] [52] Yan C H, An G H, Zhu T, Zhang W Y, Zhang L, Peng L Y, Chen J J, Kuang H H. Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theoretical and Applied Genetics, 2015, 132:895-906
    [62] [53] Allen P J, Napoli R S, Parish R W, Li S F. MYB-bHLH-TTG1 in a Multi-tiered Pathway Regulates Arabidopsis Seed Coat Mucilage Biosynthesis Genes Including PECTIN METHYLESTERASE INHIBITOR14 Required for Homogalacturonan Demethylesterification. Plant cell physiology, 2023, 64(8):906-919
    [63] [54] Liu K G, Qi S H, Li D, Jin C Y, Gao C H, Duan S W, Feng B L, Chen M X. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Science, 2017, 254:60-69
    [64] [55] Yun L, John S. Novel TTG1 Mutants Modify Root-Hair Pattern Formation in Arabidopsis. Frontiers in plant science, 2020, 11:383
    [65] [56] Tian H N, Wang S C. TRANSPARENT TESTA GLABRA1, a Key Regulator in Plants with Multiple Roles and Multiple Function Mechanisms. International Journal of Molecular Sciences, 2020, 21(14):4881
    [66] [57] Wei Z L, Cheng Y L, Zhou C C, Li D, Gao X, Zhang S X, Chen M X. Genome-wide identification of direct targets of the TTG1-bHLH-MYB complex in regulating trichome formation and flavonoid accumulation in Arabidopsis Thaliana. International Journal of Molecular Sciences, 2019, 20(20):5014
    相似文献
    引证文献
引用本文

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-10
  • 最后修改日期:2025-01-19
  • 录用日期:2025-01-21
  • 在线发布日期: 2025-02-17
  • 出版日期:
文章二维码
您是第5920434位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!