2025年5月28日 6:32 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>年第0卷第7期 > 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
玉米卷叶突变体swl5的基因定位及功能分析
DOI:
CSTR:
作者:
  • 张莹莹 1,2,2,2,3,4,2,2,2,5,6,2,2,2,3,7,2,2,2,5,8

    张莹莹

    <sup>长江大学农学院</sup>中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李健 8

    李健

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 秦阳 9,10,11,12

    秦阳

    <sup>中国农业科学院作物科学研究所</sup>
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李瑞 8

    李瑞

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张志明 9,10,13,12

    张志明

    <sup>山东农业大学生命科学学院</sup>
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邹华文 9,10,14,12

    邹华文

    <sup>长江大学农学院</sup>
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郑军 9,10,11,12

    郑军

    <sup>中国农业科学院作物科学研究所</sup>
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王逸茹 9,10,11,12

    王逸茹

    <sup>中国农业科学院作物科学研究所</sup>
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.&2.amp;3.lt;4.sup&5.gt;6.长江大学农学院&7./sup&8.中国农业科学院作物科学研究所;9.<10.sup>11.中国农业科学院作物科学研究所<12./sup>13.山东农业大学生命科学学院<14.长江大学农学院<

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发项目


Gene Mapping and Functional Analysis of the Leaf Rolling Mutant swl5 in maize.
Author:
  • 张莹莹 1,2,2,2,3,4,2,2,2,5,6,2,2,2,3,7,2,2,2,5,8

    张莹莹


    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李健 8

    李健


    在期刊界中查找
    在百度中查找
    在本站中查找
  • 9,10,11,12


    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李瑞 8

    李瑞


    在期刊界中查找
    在百度中查找
    在本站中查找
  • 9,10,13,12


    在期刊界中查找
    在百度中查找
    在本站中查找
  • 9,10,14,12


    在期刊界中查找
    在百度中查找
    在本站中查找
  • 9,10,11,12


    在期刊界中查找
    在百度中查找
    在本站中查找
  • 9,10,11,12


    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Fund Project:

The National Key R&D Program of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    干旱是影响玉米生长发育的重要因素,挖掘玉米抗旱关键基因,对玉米抗旱遗传改良具有重要意义。本文利用EMS诱变自交系RP125获得了卷叶突变体swl5 (sensitive to water loss 5),在田间干旱条件下swl5呈现明显的叶片失水卷曲表型。图位克隆将候选基因定位到5号染色体280 kb的物理区域内,该区间有9个基因,其中GRMZM2G002260基因第748位碱基处发生了C-T的突变,翻译提前终止,GRMZM2G002260编码了内源-1,4-木聚糖酶基因ZmWI5。为进一步验证基因功能,获得ZmWI5的突变体wi5,swl5与wi5突变体杂交F1代表现与swl5、wi5相同的叶片卷曲失水表型,说明swl5是ZmWI5的一个新等位突变体。干旱胁迫下,swl5突变体表现出明显的干旱敏感表型,净光合速率、气孔导度、蒸腾速率较对照WT显著降低,叶温明显升高,H2O2含量、O2-含量显著升高。与WT相比,突变体中参与纤维素合成的基因CESA5及木聚糖合成的基因DUF579、GT47、IRX9、IRX9H-1、IRX9H-2、GUX1、TBL33表达量在正常浇水和干旱处理下均显著下调。综上表明,Swl5编码了ZmWI5基因,swl5突变体表现明显的旱敏感表型,且突变体中木聚糖合成相关基因表达显著降低。

    关键词:玉米;卷叶突变体;基因定位;干旱
    Abstract:

    Drought is an important factor affecting the growth and development of maize. Therefore, identifying drought-resistant genes is vital for the genetic improvement of drought resistance in maize. In this study, the leaf rolling mutant swl5 (sensitive to water loss 5) was selected from the mutant library of EMS-mutagenized inbred line RP125. swl5 mutant exhibited a distinct leaf wilting and rolling phenotype under drought stress in the field. Map-based cloning revealed that the candidate gene was localized to a physical region of 280 kb on chromosome 5, which contains 9 coding genes. In this interval, a C-T mutation occurred at the 748th nucleotide of the GRMZM2G002260 gene, resulting in a premature stop codon. GRMZM2G002260 encodes the endo-1,4-xylanase gene ZmWI5. To further verify the gene function, the mutant wi5 of ZmWI5 was obtained. The F1 plant derived from the cross of swl5 and wi5 mutant displayed the same leaf wilting and rolling phenotype as swl5 and wi5, indicating that swl5 is a new allele mutant of ZmWI5. Under drought stress, the swl5 mutant showed a significant drought sensitive phenotype, with photosynthetic rate, stomatal conductance, and transpiration rate significantly reduced compared to wild type (WT), while leaf temperature significantly increased, and the content of H2O2 and O2- were notably elevated. The expression of genes involved in cellulose synthesis (CESA5) and xylan synthesis (DUF579, GT47, IRX9, IRX9H-1, IRX9H-2, GUX1, TBL33) was significantly down-regulated in the swl5 under both well-watered and drought stress. In summary, it is indicated that Swl5 encodes the ZmWI5 gene. The swl5 mutant exhibits a drought sensitive phenotype, and the expression of genes related to xylan synthesis is significantly reduced in the mutant.

    Key words:maize;rolled-leaf mutant;gene mapping;drought
    参考文献
    [1] 邓薇, 张祖衔, 曹宇航, 徐洪伟, 周晓馥. 绿色木霉缓解干旱胁迫对玉米幼苗根系生长的影响. 山东农业科学, 2022, 54(02): 40-45Deng W, Zhang Z X, Cao Y H, Xu H W, Zhou X F. Effects of Trichoderma viride alleviating drought stress on root growth of maize seedlings. Shandong Agricultural Sciences, 2022, 54(02): 40-45
    [2] 张琴. 我国干旱区缺水对玉米生长发育及产量的影响. 现代农业科技, 2024, (19): 24-26+37Zhang Q. The impact of water scarcity on the growth, development, and yield of maize in arid regions of China. Modern Agricultural Science and Technology, 2024, (19): 24-26+37
    [3] Liu B X, Zhang B, Yang Z R, Liu Y, Yang S P, Shi Y L, Jiang C F, Qin F, Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. The Plant Cell, 2021, 33(6): 2058–2071
    [4] Zhang W Y, Wang J, Xu L, Wang A A, Huang L, Du H W, Qiu L J, Oelmüller R.. Drought stress responses in maize are diminished by Piriformospora indica. Plant signaling behavior, 2018, 13(1): e1414121
    [5] Georg J. Seifert, Claudia Blaukopf. Irritable walls: the plant extracellular matrix and signaling, Plant Physiology, 2010, 13(2): 467–478
    [6] Xi Y, Ling Q Q, Zhou Y, Liu X, Qian Y X. ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 2022, 13: 986628
    [7] Vogel J. Unique aspects of the grass cell wall. Current Opinion in Plant Biology, 2008, 11(3): 301-7
    [8] Hu X J, Cui Y, Lu X M, Song W B, Lei L, Zhu J J, Lai J S, E L Z, Zhao H M. Maize WI5 encodes an endo-1,4-β-xylanase required for secondary cell wall synthesis and water transport in xylem. Journal of Integrative Plant Biology, 2020, 62(10):1607-1624
    [9] Pang S Y, Zheng H Y, Zhang J K, Ren X T, Zong X F, Zou J J, Wang L. Function Analysis of a Maize Endo-1,4-β-xylanase Gene ZmHSL in Response to High-Temperature Stress. International Journal of Molecular Sciences, 2024, 25(16): 8834
    [10] Huang S Q, Guo S Y, Dai L F, Mi L Y, Li W R, Xing J J, Hu Z B, Wu W Q, Duan Z K, Li B Z, Sun T, Wang B J, Zhang Y, Xiao T Q, Xue Y L, Tang N, Li H, Zhang C Q, Song C P. Tubulin participates in establishing protoxylem vessel reinforcement patterns and hydraulic conductivity in maize. Plant Physiology, 2024, 196(2): 931-947
    [11] Zhang K, Xue M, Qin F, He Y, Zhou Y Y. Natural polymorphisms in ZmIRX15A affect water-use efficiency by modulating stomatal density in maize. Plant Biotechnology Journal, 2023, 21(12): 2560-2573
    [12] Zhang J S, Zhang H, Srivastava AK, Pan Y J, Bai J J, Fang J J, Shi H Z, Zhu J K. Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiology, 2018, 176(3): 2082-2094
    [13] Li W Q, Zhang M J, Gan P F, Qiao L, Yang S Q, Miao H, Wang G F, Zhang M M, Liu W T, Li H F, Shi C H, Chen K M. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant Journal, 2017, 92(5): 904-923
    [14] Yu W T, Dai Y L, Chen J M, Liang A M, Wu Y P, Suo Q W, Chen Z, Yan X Y, Wang C N, Lai H Y, Wang F L, Zhang J Y, Liu Q Z, Wang Y, Li Y H, Ran L F, Xiang J, Pei Z W, Xiao Y H, Zeng J Y. Upregulation of the glycine-rich protein-encoding gene GhGRPL enhances plant tolerance to abiotic and biotic stressors by promoting secondary cell wall development. Journal of Integrative Agriculture, 2024, 23(10): 3311-3327
    [15] Ren Z Z, Zhang D L, Cao L R, Zhang W Q, Zheng H J, Liu Z X, Han S B, Dong Y H, Zhu F F, Liu H F, Su H H, Chen Y H, Wu L C, Zhu Y F, Ku L X. Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress. Plant Cell and Environment, 2020, 43(9): 2272-2286
    [16] Fu W C, Fan D L, Zhang Y. Genome-wide identification and characterization of xyloglucan endotransglucosylase/hydrolase gene family in maize (Zea mays L.) and the function of ZmXTH30 in response to drought stress. Environmental and Experimental Botany, 222: 0098-8472
    [17] Lü P T, Kang M, Jiang X Q, Dai F W, Gao J P, Zhang C Q. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta, 2013, 237(6): 1547-59
    [18] Chen Y H, Han Y Y, Zhang M, Zhou S, Kong X Z, Wang W. Overexpression of the Wheat Expansin Gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS One, 2016, 11(4): e0153494
    [19] Chen L J, Zou W S, Fei C Y, Wu G, Li X Y, Lin H H, Xi D H. α-Expansin EXPA4 positively regulates abiotic stress tolerance but negatively regulates pathogen resistance in Nicotiana tabacum. Plant and Cell Physiology, 2018, 59(11): 2317-2330
    [20] Liu S, Yeh C T, Tang H M, Nettleton D, Schnable P S. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 2012, 7(5): e36406
    [21] 刘慧.一个玉米卷叶突变体的表型鉴定与基因定位. 北京: 中国农业科学院, 2016Liu H. Phenotypic Characterization and Gene Mapping of a RolledLeafMutant in Maize (Zea mays L.). Beijing: Chinese Academy of Agricultural Sciences, 2016
    [22] Smith L G. Plant cell division: building walls in the right places. Nature Reviews Molecular Cell Biology, 2001, 2(1): 33-9
    [23] 周玉梅, 庄泽龙, 郭海, 杨小雯, 雷恭鑫, 彭云玲. 玉米苗期耐旱材料筛选及QTL定位. 甘肃农业大学学报, 2024, 59(05): 55-64Zhou Y M, Zhuang Z L, Guo H, Yang X W, Lei G X, Peng Y L. Maize drought-tolerant material screening and QTL localization in the seedling stage. Journal of Gansu Agricultural University, 2024, 59(05): 55-64
    [24] 李燕, 赵后娟, 夏馨雨, 李红梅, 唐海涛. 玉米耐高温干旱逆境胁迫相关研究进展. 四川农业科技, 2024, (03): 9-12Li Y, Zhao H J, Xia X Y, Li H M, Tang H T. Research progress on maize tolerance to high temperature and drought stress. Sichuan Agricultural Science and Technology, 2024, (03): 9-12
    [25] 宋有洪, 张婷, 黄璇达, 杨曼, 胡兆玉, 朱凡, 于怡, 王志伟. 干旱胁迫延迟玉米花丝吐丝的生理特征研究. 安徽农业大学学报, 2024, 51(04): 557-562Song Y H, Zhang T, Yang M, Hu Z Y, Zhu F, Yu Y, Wang Z W. Physiological characterization of maize silking delayed by drought stress. Journal of Anhui Agricultural University, 2024, 51(04): 557-562
    [26] Mao H D, Wang H W, Liu S X, Li Z G, Yang X H, Yan J B, Li J S, Tran LS, Qin F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015, 6(1): 8326
    [27] Wang X L, Wang H W, Liu S X, Ferjani A, Li J S, Yan J B, Yang X H, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48(10): 1233–41
    [28] Gao H J, Cui J J, Liu S X, Wang S H, Lian Y Y, Bai Y T, Zhu T F, Wu H H, Wang Y J, Yang S P, Li X F, Zhuang J H, Chen L M, Gong Z Z, Qin F. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Molecular Plant, 2022, 15(10): 1558-1574
    [29] Liu S X, Wang X L, Wang H W, Xin H B, Yang X H, Yan J B, Li J S, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K, Qin F. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genetics, 2013, 9(9): e1003790
    [30] Xiang Y L, Sun X P, Gao S, Qin F, Dai M Q. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Molecular Plant, 2017, 10(3): 456-469
    [31] Barbut F R, Cavel E, Donev E N, Gaboreanu I, Urbancsok J, Pandey G, Demailly H, Jiao D Y, Yassin Z, Derba-Maceluch M, Master E R, Scheepers G, Gutierrez L, Mellerowicz E J. Integrity of xylan backbone affects plant responses to drought. Frontiers in Plant Science, 2024, 15:1422701
    [32] Lee C, Teng Q, Zhong R, Ye Z H. Arabidopsis GUX proteins are glucuronyltransferases responsible for the addition of glucuronic acid side chains onto xylan. Plant and Cell Physiology, 2012, 53(7): 1204-16
    [33] Mortimer J C, Miles G P, Brown D M, Zhang Z N, Segura M P, Weimar T, Yu X L, Seffen K A, Stephens E, Turner S R, Dupree P. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17409-14
    [34] Pandey S K, Nookaraju A, Fujino T, Pattathil S, Joshi C P. Virus-induced gene silencing (VIGS)-mediated functional characterization of two genes involved in lignocellulosic secondary cell wall formation. Plant Cell Reports, 2016, 35(11): 2353-2367
    [35] Yuan Y X, Teng Q C, Zhong R Q, Ye Z H. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Science, 243: 120-130
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:55
  • 下载次数: 170
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-01-07
  • 最后修改日期:2025-02-14
  • 录用日期:2025-02-20
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第5872816位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!