摘要
为了解析干旱处理对白菜型油菜生理指标及DNA甲基化水平的影响,本研究对白菜型油菜陇油7号进行正常供水(对照)、干旱胁迫、干旱后复水3个处理,分析不同处理后油菜生理指标及DNA甲基化水平的变化。结果表明,与正常供水相比,当白菜型油菜受到干旱胁迫时,丙二醛含量、超氧化物歧化酶活性、过氧化物酶活性、过氧化氢酶活性均有所增加,增加幅度分别为167.27%、254.85%、103.24%、164.64%,渗透调节物质脯氨酸、可溶性蛋白增加量分别为:3.21 μg/g、0.048 μg/mg,叶片相对含水量显著下降,下降幅度为53.64%。复水后各项生理指标得到部分恢复;与正常供水相比,干旱后油菜甲基化率呈上升趋势,干旱后复水组甲基化率高于干旱和对照,甲基化率达到20.56%。GO富集结果显示,差异甲基化基因在生物学过程、核及分子功能等条目中富集。KEGG功能富集分析表明,差异甲基化基因主要在泛素介导的蛋白水解、胞吞作用、ABC转运蛋白、光合生物中的碳固定等代谢相关通路中富集。甲基化率和生理指标之间存在一定的相关性,结合GO和KEGG的富集结果,发现有7个差异甲基化基因编码过氧化物酶。本研究结果将为调控油菜耐旱性机制的研究和耐旱新品种选育提供依据。
关键词
在全球气候变暖的背景下,干旱已成为导致全球作物产量和品质下降的重要环境因
植物在受到干旱胁迫时,通过积累可溶性蛋白、脯氨酸等渗透调节物质,使渗透调节能力增强,同时产生多种抗氧化酶,有效消除过量的活性氧,减轻干旱胁迫对植物的影响,如超氧化物歧化酶(SOD,superoxide dismutase)、过氧化物酶(POD,peroxidase)和过氧化氢酶(CAT,catalase)
DNA甲基化作为植物适应的一种机制,参与基因组进化、基因表达调控、生长发育等生物过程及逆境胁迫(包括盐、干旱和重金属胁迫)响应等过
本研究以北方冬油菜主栽品种陇油7号(原编号18R-1)为试验材料,对其进行干旱胁迫及复水处理后测定各项生理生化指标,并通过WGBS技术对其叶组织进行全基因组DNA甲基化分析,比较不同处理下的生理生化指标变化及甲基化变化情况,研究结果将为调控油菜耐旱性机制的研究和耐旱新品种选育提供重要依据。
采用盆栽自然干旱胁迫试验。首先对种子进行发芽,再选取发芽正常、胚根长势一致且健康的种子,移栽至盆中,置于培养箱(25 ℃/18 ℃,光周期16 h/8 h)。幼苗正常生长至3~4叶期时,设置对照(正常浇水)、干旱处理7 d、干旱处理7 d后复水4 d三个处理,每个处理设置3组重复,每个重复3株。为消除生长发育过程的影响,3个处理都在同一时间点取样,采样后迅速放入-80 ℃冰箱备用。
9份样品取样后立即采用烘干
使用Fast QC(https://www.lc-bio.com)验证测序数据的序列质量,通过质控的Reads与油菜的参考基因组序列(http://brassicadb.cn/)进行比对,评估甲基化水平;使用R包MethylKit分析差异甲基化区域,默认参数为1000 bp Windows,500 bp Overlap , P < 0.05。随后对差异表达基因进行GO功能注释和KEGG富集分析;采用Excel 2022、Origin、SPSS statistics 25.0等软件进行基础分析与绘图、显著性分析等,P < 0.05表示处理间差异显著。
干旱胁迫7 d后,叶片相对含水量为43.49%,低于对照组,且达到了显著水平,下降幅度为53.64%;复水处理4 d后叶片相对含水量较干旱胁迫7 d的水平显著增高,表现出一定的恢复作用,但仍显著低于对照组(

图1 干旱胁迫及复水对叶片相对含水量的影响
Fig. 1 Effects of drought stress and rewatering treatments on leaf relative water content
不同小写字母表示不同处理之间存在显著差异(P<0.05);BRI8R_1_CK;对照组;BRI8R_1_D:干早胁迫;BR18R_1_R:干早处理后复水;下同
Different lowercase letters indicate that there are significant differences between different treatments(P<0.05); BR18R_1_CK: Control group; BR18R_1_D:Drought stress: BR18R_1_R: Rehydration after droueht treatment;The same as below
油菜叶片在干旱胁迫处理7 d后,与对照组相比,MDA含量显著增加(

图2 干旱胁迫及复水对叶片丙二醛含量的影响
Fig. 2 Effects of drought stress and rewatering treatments on leaf MDA content
干旱胁迫处理下的脯氨酸、可溶性蛋白含量呈上升趋势(

图3 干旱胁迫及复水对叶片渗透调节物质含量的影响
Fig 3 Effects of drought stress and rewatering treatments on leaf osmoregulation substances content
当受到干旱胁迫时,SOD活性增加,与对照组的差异达到显著水平,增幅为254.85%(

图4 干旱胁迫及复水对超氧化物歧化酶、过氧化物酶、过氧化氢酶活性的影响
Fig. 4 Effects of drought stress and rewatering treatments on SOD、POD、CAT activities
为探究干旱、复水与对照的DNA甲基化模式差异,对9组样品进行测序,共得到1097413769个原始数据(Raw reads),902580654个有效测序数据(Clean reads),平均为12.82 Gb,Clean reads 在Raw reads中的占比超过了70%,GC含量在23.79%~25.32%之间,Q20平均为94.23%,Q30平均为85.14%,处理组和对照组的亚硫酸氢盐转化率均>99%,说明WGBS测序数据精确可靠,可进行后续分析(
样品 Sample | 原始数据 Raw reads | 有效数据 Clean reads | 碱基(Gb) Base | Q20(%) | Q30(%) | GC(%) | 亚硫酸氢盐转化率(%) BS conversion rate |
---|---|---|---|---|---|---|---|
BR18R_1_CK1 | 112946807 | 98317642 | 12.46 | 94.20 | 84.98 | 24.19 | 99.768 |
BR18R_1_CK2 | 106744736 | 98896062 | 12.64 | 93.94 | 84.77 | 24.03 | 99.776 |
BR18R_1_CK3 | 108980006 | 100239398 | 12.88 | 94.31 | 85.44 | 24.52 | 99.778 |
BR18R_1_D1 | 123214322 | 98765230 | 12.62 | 94.26 | 85.25 | 25.32 | 99.784 |
BR18R_1_D2 | 113411472 | 103874514 | 13.29 | 94.49 | 85.64 | 24.54 | 99.786 |
BR18R_1_D3 | 118638258 | 101388646 | 12.94 | 94.14 | 84.93 | 24.67 | 99.790 |
BR18R_1_R1 | 150234644 | 99135772 | 12.72 | 94.32 | 85.36 | 24.19 | 99.794 |
BR18R_1_R2 | 134982930 | 102820838 | 13.11 | 94.24 | 84.92 | 23.79 | 99.797 |
BR18R_1_R3 | 128260594 | 99142552 | 12.72 | 94.17 | 84.99 | 24.25 | 99.801 |
1,2,3分别代表3个生物学重复;下同
1, 2, and 3 respectively represent three biological replicates;The same as below
样品 Sample | 总片段数 Total read pairs | 唯一位置 比对片段数 Unique mapped reads | 唯一位置 比对率(%) Unique reads mapping rate | 重复片段比率(%)Duplication rate | C覆盖的 平均数(%) Mean of C coverage | ≥5×C覆盖率(%) ≥5×C coverage | ≥10×C 覆盖率(%) ≥10×C coverage | ≥15×C 覆盖率(%) ≥15×C coverage |
---|---|---|---|---|---|---|---|---|
BR18R_1_CK1 | 98317642 | 36395012 | 37.02 | 7.14 | 22.89 | 6.96 | 2.55 | 1.37 |
BR18R_1_CK2 | 98896062 | 36738918 | 37.15 | 27.16 | 22.98 | 7.12 | 2.65 | 1.44 |
BR18R_1_CK3 | 100239398 | 36979881 | 36.89 | 7.17 | 23.14 | 7.24 | 2.71 | 1.48 |
BR18R_1_D1 | 98765230 | 35059528 | 35.50 | 6.02 | 24.91 | 8.47 | 2.65 | 1.32 |
BR18R_1_D2 | 103874514 | 37812209 | 36.40 | 6.28 | 25.32 | 9.2 | 2.95 | 1.47 |
BR18R_1_D3 | 101388646 | 36460258 | 35.96 | 6.11 | 25.10 | 8.82 | 2.80 | 1.39 |
BR18R_1_R1 | 99135772 | 35977022 | 36.29 | 5.53 | 24.94 | 8.71 | 2.92 | 1.55 |
BR18R_1_R2 | 102820838 | 37546167 | 36.52 | 5.72 | 25.07 | 9.01 | 3.06 | 1.62 |
BR18R_1_R3 | 99142552 | 36019234 | 36.33 | 5.51 | 24.91 | 8.69 | 2.93 | 1.55 |
对9个样本间的表达模式进行了皮尔逊相关性分析,9组样品相关系数均达到0.99以上,说明组内重复性较好,结果可靠(

图5 样品间的Pearson相关性
Fig. 5 Pearson correlation between samples
根据基因组比对分析结果,对测序深度≥5×的胞嘧啶(C)位点进行甲基化水平分析,分别统计了甲基化的CG、CHG和CHH在各染色体上出现的次数。统计发现9个样品有1431766857个胞嘧啶发生了DNA甲基化(
甲基化水平 Methylation level | BR18R_1_CK | BR18R_1_D | BR18R_1_R |
---|---|---|---|
总C Total C | 2555799507 | 2715414441 | 2739005230 |
C甲基化总数 Total mC number | 409453608 | 477622134 | 544691115 |
CG甲基化数 mCG number | 181665285 | 194902729 | 210096513 |
CHG甲基化数 mCHG number | 73681289 | 81409784 | 92151519 |
CHH甲基化数 mCHH number | 154357034 | 177211621 | 204063083 |
CG甲基化率(%) mCG rate | 56.26 | 54.11 | 56.76 |
CHG甲基化率(%) mCHG rate | 22.96 | 22.48 | 24.89 |
CHH甲基化率(%) mCHH rate | 9.14 | 9.53 | 10.58 |
C甲基化率(%) mC rate | 17.18 | 18.47 | 20.56 |
分析3组处理不同序列的甲基化比例,结果显示,mCG在染色体上出现频率最多(均值达到42.94%),其次为mCHH(均值达到39.01%),最少的为mCHG(均值达到18.04%)。其中,对照的CG类型甲基化平均占比为44.34%,高于干旱处理组(42.97%)和干旱后复水组(41.50%)。由此可见,与对照组相比,干旱和复水条件下的CG位点发生的甲基化水平呈下降趋势。干旱后复水组较干旱处理组与对照组的CHG位点甲基化水平呈现上升趋势。干旱处理组和干旱后复水组较对照组CHH位点的甲基化水平均呈现上升趋势(

图6 不同处理中不同类型mC分布比例
Fig.6 Distribution ratio of different types of mC in different treatments
根据差异甲基化区域在基因组上的位置,以及基因组的注释信息对差异甲基化区域分布进行注释,结果如
比对组 Comparison group | 基因组功能区 Genomic functional region | 差异甲基化区域数Number of DMRs | 百分比(%) Percent | 高甲基化差异 甲基化区域数 Number of hyper-methylated DMRs | 低甲基化差异 甲基化区域数 Number of hypo-methylated DMRs |
---|---|---|---|---|---|
BR18R_1_D VS BR18R_1_CK | 启动子 | 42852 | 2.61 | 23516 | 19336 |
外显子 | 20162 | 1.23 | 10299 | 9863 | |
内含子 | 11316 | 0.69 | 5735 | 5581 | |
基因间 | 469369 | 28.56 | 278657 | 190712 | |
BR18R_1_R VS BR18R_1_CK | 启动子 | 45708 | 2.78 | 27613 | 18095 |
外显子 | 21548 | 1.31 | 12064 | 9484 | |
内含子 | 12233 | 0.74 | 6774 | 5459 | |
基因间 | 512298 | 31.17 | 331479 | 180819 | |
BR18R_1_R VS BR18R_1_D | 启动子 | 118374 | 7.20 | 74960 | 43414 |
外显子 | 57325 | 3.49 | 34430 | 22895 | |
内含子 | 36403 | 2.21 | 21486 | 14917 | |
基因间 | 295960 | 18.01 | 198400 | 97560 |
比对组为前者相对于后者
The comparison group is the former relative to the latter
GO富集结果(

图7 差异甲基化基因的GO功能注释
Fig. 7 GO functional annotation of Differently methylated genes
干旱处理组与对照组比对发现差异甲基化基因显著富集在二苯乙烯类,二芳基庚烷类和姜辣素的生物合成(Stilbenoid,diarylheptanoid and gingerol biosynthesis)、甘油磷脂代谢(Glycerophospholipid metabolism)、泛素介导的蛋白质降解(Ubiquitin mediated proteolysis)、胞吞作用(Endocytosis)等4个通路中,共涉及到1445个基因(


图8 3种处理下KEGG富集图
Fig. 8 KEGG enrichment diagram under three treatments
干旱后复水组与对照组比对发现差异甲基化基因显著富集在氨基糖和核苷酸糖代谢(Amino sugar and nucleotide sugar metabolism)、吞噬体(Phagosome)、真核生物中的核糖体生物发生(Ribosome biogenesis in eukaryotes)、光合生物中的碳固定(Carbon fixation in photosynthetic organisms)等4个通路中,共涉及到1068个基因(
干旱后复水组与干旱处理组比对发现差异甲基化基因显著富集在芥子油苷生物合成(Glucosinolate biosynthesis)、ABC转运蛋白(ABC transporters)、二萜类生物合成(Diterpenoid biosynthesis)、光合生物中的碳固定(Carbon fixation in photosynthetic organisms)等4个通路中,涉及到461个基因(
(
统计KEGG富集得到的通路及涉及到的差异甲基化基因(

图9 KEGG富集通路统计
Fig. 9 Statistics of KEGG enrichment pathways
图中数字为差异表达基因数
The numbers in the figure represent the number of differentially expressed genes
由

图10 3种处理下的甲基化率与生理指标间的相关性
Fig.10 The correlation between methylation rate and physiological indexes under three treatments
结合GO和KEGG的富集和BlastX比对的结果对筛选得到的基因进行功能注释分析,最终筛选得到14个在植物抗逆过程中发挥重要作用的基因,其中7个差异甲基化基因编码过氧化物酶(
比对组 Comparison group | 比对组基因ID Gene ID | 功能 Gene function | 参考文献 Reference |
---|---|---|---|
BR18R_1_R VS BR18R_1_D | BraA06g027600.3C | 辣根过氧化物酶与过氧化氢解毒、生长素分解代谢和木质素生物合成以及逆境反应有关 |
[ |
BraA07g024450.3C | 过氧化物酶体生成因子11 ( PEX11 ),直接或间接参与调节细胞中过氧物酶体数量 |
[ | |
BR18R_1_D VS BR18R_1_CK | BraA09g007140.3C | B3 DNA结合域,在植物发育过程中发挥重要作用的转录因子家族,辅助AUX/IAA家族基因的转录被植物激素生长素迅速诱导生长素响应因子 |
[ |
BraA07g037580.3C | 水解酶超家族 α/β水解酶,参与调节植物对各种非生物胁迫的反应和适应 |
[ | |
BraA09g009710.3C | 钙依赖蛋白激酶CDPK,在植物信号传导及逆境胁迫响应过程中起重要作用 |
[ | |
BraA07g002430.3C | 在拟南芥中发现BHLH-At BPE-like结构域,来自拟南芥的几种bHLH转录因子,如油菜素甾醇(BRs)是一种植物类固醇激素,在植物生长发育以及胁迫响应等多个方面发挥着重要作用 |
[ | |
BR18R_1_D VS BR18R_1_CK | BraA07g025400.3C | 脂氧合酶,参与调节生长发育、胁迫应答等过程 |
[ |
BraA01g012680.3C | 辣根过氧化物酶与过氧化氢解毒、生长素分解代谢和木质素生物合成以及应激反应有关 |
[ | |
BR18R_1_R VS BR18R_1_CK | BraA02g008980.3C | B3 DNA结合域,在植物发育过程中发挥重要作用的转录因子家族,辅助AUX/IAA家族基因的转录被植物激素生长素迅速诱导 |
[ |
BraA10g020020.3C | 草酸氧化酶,在植物信号传导和与植物生物胁迫、非生物胁迫的防御中发挥作用 |
[ | |
BraA07g029080.3C | 草酸氧化酶,在植物信号传导和与植物生物胁迫、非生物胁迫的防御中发挥作用 |
[ | |
BraA06g011250.3C | ABC转运蛋白G家族成员,参与植物气孔调节、次生代谢产物的运输和环境胁迫响应等过程 |
[ | |
BraA07g037580.3C | 水解酶超家族α/β水解酶,参与调节植物对各种非生物胁迫的反应和适应 |
[ | |
BraA07g036960.3C | 草酸氧化酶,在植物信号传导和与植物生物胁迫、非生物胁迫的防御中发挥作用 |
[ |

图11 差异甲基化基因表达热图
Fig. 11 Differentially methylated gene expression heat map
植物在干旱胁迫复水过程中存在补偿效
植物通过调节DNA甲基化水平的动态变化,在响应环境胁迫时能够有效控制特定基因的表
对3种处理下的甲基化率和生理指标进行相关性分析,发现甲基化率和植物生理指标之间存在一定的相关性,其中过氧化物酶活性和甲基化率呈显著相关。结合GO和KEGG的富集结果,对筛选得到的基因进行功能注释分析,得到7个编码过氧化物酶的差异甲基化基因,结果表明甲基化状态与植物生理功能和抗逆性之间存在密切关系;还注释到B3DNA、BHLH转录因子和水解酶超家族α/β水解酶等转录因子,结构域及水解酶,这与前人研究结果一
参考文献
姚玉璧,杨金虎,肖国举,赵鸿,雷俊,牛海洋,张秀云.气候变暖对马铃薯生长发育及产量影响研究进展与展望.生态环境学报,2017,26(3):538-554 [百度学术]
Yao Y B,Yang J H,Xiao G J,Zhao H,Lei J,Niu H Y,Zhang X Y.Research progress and prospect of the effects of climate warming on potato growth and yield.Ecology and Environmental Sciences,2017,26(3):538-554 [百度学术]
靳丰蔚,董云,王毅,刘婷婷,徐一涌.甘肃省油菜种业发展现状与对策.甘肃农业科技,2022,53(5):15-19 [百度学术]
Jin F W,Dong Y,Wang Y,Liu T T,Xu Y Y.Development status and countermeasures of rape seed industry in Gansu province.Gansu Agricultural Science and Technology,2022,53(5):15-19 [百度学术]
朱维卓.甘蓝型油菜苗期耐旱基因型差异及耐旱基因挖掘.杭州:浙江大学,2022 [百度学术]
Zhu W Z.Drought-tolerant genotype differences and drought-tolerant gene mining of Brassica napus at seedling stage.Hangzhou:Zhejiang University,2022 [百度学术]
Fang Y J,Xiong L Z.General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences,2015,72(4):673-689 [百度学术]
Du H M,Wang Z L,Yu W J,Huang B R.Metabolic responses of hybrid bermudagrass to short-term and Long-term drought stress.Journal of the American Society for Horticultural Science,2012,137(6):411-420 [百度学术]
Bossdorf O,Richards C L,Pigliucci M.Epigenetics for ecologists.Ecology Letters,2008,11:106-115 [百度学术]
Jablonka E,Raz G.Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution.Quarterly Review of Biology,2009,84:131-176 [百度学术]
李青芝, 李成伟, 杨同文.DNA甲基化介导的植物逆境应答和胁迫记忆.植物生理学报,2014,50(6):725-734 [百度学术]
Li Q Z, Li C W, Yang T W.DNA methylation-mediated plant stress response and stress memory. Plant Physiology Journal,2014,50(6):725-734 [百度学术]
Adam J B, Robert J S. Gene body DNA methylation in plants. Current Opinion in Plant Biology,2017,36:103-110 [百度学术]
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology,2011,14(3):267-274 [百度学术]
Chinnusamy V, Zhu J K. Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology,2009,12(2):133-139 [百度学术]
Sun Y, Fan M, He Y.DNA methylation analysis of the Citrullus lanatus response to Cucumber Greenmottle Mosaic Virus infection by whole-genome bisulfite sequencing. Genes,2019,10(5):344 [百度学术]
苏畅.基于白桦全基因组重亚硫酸盐测序(bisulfite-sequencing)的甲基化图谱分析.哈尔滨:东北林业大学,2015 [百度学术]
Su C. Methylation map analysis based on bisulfite-sequencing of the whole genome of Betula platyphylla. Harbin:Northeast Forestry University,2015 [百度学术]
Zilberman D, Gehring M, Tran R K, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics, 2007,39(1):61-69 [百度学术]
Wang W S, Pan Y J, Zhao X Q, Dwivedi D, Zhu L H, Ali J, Fu B Y, Li Z K. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.) . Journal of Experimental Botany,2011,62(6):1951-1960 [百度学术]
Li R X, Hu F, Li B, Zhang Y P, Chen M, Fan T, Wang T C. Whole genome bisulfite sequencing methylome analysis of mulberry (Morus alba) reveals epigenome modifications in response to drought stress. Scientific Reports,2020,10(1):8013 [百度学术]
谭占明,张朋朋,吴翠云,高秋玲,王建宇,邓海燕.干旱胁迫对两个杏品种的生长和生理指标的影响.北方园艺,2020(8):50-54 [百度学术]
Tan Z M, Zhang P P, Wu C Y, Gao Q L, Wang J Y, Deng H Y. Effects of drought stress on growth and physiological indicators of two Apricot varieties. Northern Horticulture,2020 (8):50-54 [百度学术]
李合生,孙群,赵世杰.植物生理生化实验原理和技术.北京:高等教育出版社,2000:164-261 [百度学术]
Li H S, Sun Q, Zhao S J. Principle and technology of plant physiological and biochemical experiment. Beijing: Higher Education Press,2000:164-261 [百度学术]
张平, 张慧, 刘俊娜, 环秀菊,王倩朝,李莉,刘永江,覃鹏.干旱及复水处理对抗旱性不同小麦品种/系苗期生理生化指标的影响.西北农业学报,2020,29(12):1795-1802 [百度学术]
Zhang P, Zhang H, Liu J N, Huan X J, Wang Q C, Li L, Liu Y J, Qin P. Effects of drought and re-watering treatment on physiological and biochemical indexes of different drought-resistant wheat varieties/lines at seedling stage. Acta Agriculturae Boreali-Occidentalis Sinica,2020,29(12):1795-1802 [百度学术]
郭晓红.柽柳过氧化物酶基因的序列分析及功能验证.哈尔滨:东北林业大学,2009 [百度学术]
Guo X H. Sequence analysis and functional verification of peroxidase gene in Tamarix chinensis .Harbin: Northeast Forestry University, 2009 [百度学术]
龙国辉, 武鹏雨, 付嘉智, 鹿宏丽, 张锐.过氧化物酶调控木质素合成研究进展.现代农业科技, 2021 (23): 47-49,54 [百度学术]
Luo G H, Wu P Y, Fu J Z, Lu H L, Zhang R. Research progress on peroxidase regulating lignin synthesis. Modern Agricultural Science and Technology, 2021 (23): 47-49,54 [百度学术]
Deori N M, Nagotu S. Peroxisome biogenesis and inter-organelle communication: An indispensable role for Pex11 and Pex30 family proteins in yeast. Current Genetics, 2022,68(5-6):537-550 [百度学术]
蒋存钰,申彦华,王义.生长素响应因子ARF研究进展.分子植物育种,2022,https://kns.cnki.net/kcms/detail//46.1068.S.20221215.1726.015.html [百度学术]
Jiang C Y, Shen Y H, Wang Y. Research progress of auxin response factor ARF . Molecular Plant Breeding,2022, https://kns.cnki.net/kcms/detail//46.1068.S.20221215.1726.015.html [百度学术]
Dimitriou P S , Denesyuk A I, Nakayama T, Johnson M S, Denessiouk K. Distinctive structural motifs co-ordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes. Protein Science,2019,28(2):344-364 [百度学术]
Mindrebo J T, Nartey C M, Seto Y, Burkart M D, Noel J P. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Current Opinion in Structural Biology, 2016, 41:233-246 [百度学术]
陈果,郝晓燕,高升旗, 胡文冉,赵准,黄全生.玉米钙依赖蛋白激酶全基因组鉴定及抗旱表达分析.新疆农业科学,2023,60(4):857-864 [百度学术]
Chen G, Hao X Y, Gao S Q, Hu W R, Zhao Z, Huang Q S. Genome-wide identification of maize calcium-dependent protein kinase and drought resistance expression analysis. Xinjiang Agricultural Science,2023,60(4):857-864 [百度学术]
Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y. The physiological and molecular mechanism of brassinosteroid in response to stress: A review. Biological Research, 2018,51(1):46 [百度学术]
Nolan T M, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell, 2020,32(2):295-318 [百度学术]
李根,张然,王雨藤.油菜素甾醇调控植物生长发育及非生物胁迫的研究进展.分子植物育种, 2022,https://kns.cnki.net/kcms/detail/46.1068.s.20220129.1459.010.html [百度学术]
Li G, Zhang R, Wang Y T. Research progress on the regulation of plant growth and development and abiotic stress by brassinosteroids . Molecular Plant Breeding, 2022,https://kns.cnki.net/kcms/detail/46.1068.s.20220129.1459.010.html [百度学术]
张乾翔. 谷子脂氧合酶基因家族响应干旱及盐胁迫的研究.太原:山西农业大学,2022 [百度学术]
Zhang Q X. Study on the response of millet lipoxygenase gene family to drought and salt stress. Taiyuan:Shanxi Agricultural University, 2022 [百度学术]
Babenko L M, Shcherbatiuk M M, Skaterna T D, Kosakivska I V. Lipoxygenases and their metabolites in formation of plant stress tolerance. The Ukrainian Biochemical Journal. 2017,89(1):5-21 [百度学术]
Davidson M R, Reeves A P, Manosalva M P. Germins: A diverse protein family important for crop improvement. Plant Science,2009,177(6):499-510 [百度学术]
许青松, 赵佳, 魏运民, 韩蓉蓉, 刘卢生, 蒋曹德, 王永雄. 紫花苜蓿MsOXO基因的克隆及表达分析.浙江农业学报, 2019, 31 (1): 11-19 [百度学术]
Xu Q S, Zhao J, Wei Y M, Han R R, Liu L S, Jiang C D, Wang Y X. Cloning and expression analysis of MsOXO gene in alfalfa . Zhejiang Agricultural Journal, 2019,31 (1): 11-19 [百度学术]
覃运琼.草酸氧化酶在水稻不同亚细胞中的定向表达及其对草酸代谢影响研究.广州:华南农业大学,2019 [百度学术]
Qin Y Q. The directional expression of oxalate oxidase in different subcellular cells of rice and its effect on oxalate metabolism.Guangzhou: South China Agricultural University, 2019 [百度学术]
Rea P A. Plant ATP-binding cassette transporters. Annual Review of Plant Biology, 2007,58:347-375 [百度学术]
朱璐,许杰,张大兵.拟南芥ABC转运类蛋白家族的分子进化、表达模式和蛋白功能网络预测分析.植物生理学报,2012,48(12):1151-1166 [百度学术]
Zhu L, Xu J, Zhang D B. Molecular evolution, expression pattern and protein function network prediction of Arabidopsis ABC transporter family. Plant Physiology, 2012,48 (12): 1151-1166 [百度学术]
Dong S, Jiang Y, Dong Y, Wang L, Liu L. A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences,2019,26(8):2006-2017 [百度学术]
刘素军.马铃薯对不同生育时期水分胁迫及复水的生理和分子响应机制.呼和浩特:内蒙古农业大学,2017 [百度学术]
Liu S J. Physiological and molecular response mechanism of potato to water stress and rehydration at different growth stages. Hohhot:Inner Mongolia Agricultural University,2017 [百度学术]
周自云, 梁宗锁, 李硕,来威峰.干旱-复水对酸枣相对含水量、保护酶及光合特征的影响.中国生态农业学报,2011,19(1):93-97 [百度学术]
Zhou Z Y, Liang Z S, Li S, Lai W F. Effect of water stress and re-watering on relative water content, protective enzyme and photosynthetic characteristics of wild jujube. Chinese Journal of Eco-Agriculture,2011,19(1):93-97 [百度学术]
Liu J L, Dong X X, Zhao Z K, Sun H R, Yu L X. Analysis of sunflower DNA methylation in response to salt and alkali stresses based on methylation-sensitive amplified polymorphisms. Current Plant Biology,2023,34:100282 [百度学术]
Patten M M. Epigenetics: Imprinting evolution in Arabidopsis. Nature Plants,2016,2(10):1-2 [百度学术]
Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M, Huang Q Q, Pearson J K, Hsieh T F, An Y Q C, Xiao W Y. Dynamic DNA methylation in plant growth and development. International Journal of Molecular Sciences, 2018,19(7):2144 [百度学术]
Nie W F.DNA methylation: from model plants to vegetable crops. Biochemical Society Transactions,2021,49(3):1479-1487 [百度学术]