摘要
玉米是我国第一大粮食饲料作物,对保障我国粮食安全具有重要战略意义。玉米是雌雄同株异花植物,雄穗为圆锥花序,雌穗为肉穗花序。玉米花序和小花的分化与发育是穗粒数形成和小花育性决定的发育生物学基础,与籽粒产量密切相关,因而这一研究领域受到广泛关注,并取得了丰硕的成果。近年来,为了提高玉米粮食产量和更加深入地解析产量形成分子网络,研究学者在玉米花序分枝发育和穗粒数形成的遗传控制和分子调控机制等研究方向取得了一系列新的研究进展。本研究主要聚焦花序特异性转录因子基因、非编码序列及其调控基因、活性氧清除和糖代谢相关酶基因、乙烯等激素生物合成和信号途径关键基因以及膜系统与信号传导相关基因等,对这些基因在玉米花序分枝、小穗和小花发育进程中的生物学功能与作用途径进行了综述,并对生物技术发展推动全基因组序列分析、激素与代谢物交互网络分析以及精准育种等进行了展望,以期为玉米花序发育、穗粒数和籽粒产量的分子遗传调控网络构建和玉米高产育种提供参考。
关键词
玉米花序起源于具有无限分化能力的干细胞团:茎尖分生组织(SAM, shoot apical meristem)。玉米茎尖分生组织的形态常为半球状,可持续分化产生数目不等的叶原基。经生殖转换,半球状的茎尖分生组织伸长生长,形态变长,功能转换为花序分生组织(IM, inflorescence meristem)。玉米具有两个独立发育的花序:即由主茎顶端分生组织转换和分化而产生的雄花序(male inflorescence meristem/tassel)、由腋生侧枝顶端分生组织(AM, axillary meristem)转换和分化而产生的雌花序(female inflorescence meristem/ear)。雌花序分生组织先后经历小穗成对分生组织(SPM, spikelet pair meristem)、小穗分生组织(SM, spikelet meristem)、小花分生组织(FM, floral meristem)的分化,形成上位花(UF, upper floret)和下位花(LF, lower floret),随后下位花退化,上位花授粉后发育形成籽粒;雄花序的分化进程与雌花序相似,只是雄花序分生组织基部可分化产生分枝分生组织(BM, branch meristem),每个分枝分生组织也可经历小穗成对分生组织、小穗分生组织、小花分生组织,上位花和下位花的分化进程,雄性小穗上的上位花和下位花均可正常发

图1 玉米花序分枝和穗粒数发育基因调控网络
Fig.1 Regulatory network of inflorescence branch and kernel number development genes
方框:遗传互作关系;实线:已被验证的关系;虚线:尚未被验证的关系;三角形箭头:促进关系;T形箭头:抑制关系;双虚线:二者之间存在交互作用;:磷酸化作用;EBN:雌穗分枝数;TBN:雄穗分枝数
Blocks: Genetic interaction; The solid line: The relationship that has been confirmed; The dashed line: The relationship that has not been confirmed; Triangle arrows: Promoting relationships; T-shaped arrows: Inhibition relationships; The double dashed line: An interaction between each other; : Phosphorylation; EBN indicates Ear branch number; TBN indicates tassel branch number
转录因子作为反式作用因子与下游基因5'端上游特定序列结合,调控下游基因的时空表达。玉米中的DROOPING LEAF11(DRL)和DRL2是拟南芥CRABS CLAW(CRC)的同源基
生长调控因子(GRF, GROWTH REGULATION FACTOR)是一类参与调控茎叶发育的植物特异转录因子,能正向调控细胞的增殖。GRF与生长调控因子互作因子(GIF, GRF-INTERACTING FACTOR)相互作用形成特异性转录复合物行使功能。拟南芥中,GIF1与GRF3、GRF5相互作
KERNEL ROW NUMBER2(KRN2)是WD40 domain-containing proteins(WD40)转录因子家族基因,WD40蛋白分子均含有6~16拷贝的Trp-Asp(WD)保守结构域。krn2突变体花序分生组织变大,穗行数增加;KRN2在水稻里的同源基因OsKRN2的突变体oskrn2二级枝梗数与穗粒数增多;KRN2在玉米和水稻驯化和改良中受到选择,对KRN2和OsKRN2基因编辑可提升10%玉米籽粒产量和8%水稻籽粒产
非编码RNA基因调控其靶基因在植物发育与环境适应中起重要作用。非编码序列包括内含子、UTR(Untranslated region)区、顺式调控元件、染色质环锚点(Chromatin loop anchor)、非编码RNA基因以及一些转座子家族。在玉米亚基因组中,非编码序列与基因表达以及功能多样性相
CORNGRASS1(CG1)是1个miR156基因,CG1能靶向SPL家族转录因子编码基因TEOSINTE GLUME ARCHITECTURE1(TGA1)的转录
植物干细胞内氧化还原平衡受活性氧(ROS, reactive oxygen species)调控,氧化还原状态的改变能影响植物干细胞的功
糖是细胞能量和碳骨架的供体,也是调控生长发育的重要信号分子。植物中的海藻糖-6-磷酸 (T6P, trehalose-6-phosphate)含量与糖含量显著正相关,被称作糖水平的指示
在玉米中,经典的RAMOSA途径突变体ra1、ra2和ra3在雌花序和雄花序中都表现出高度分枝的花序表
苹果酸是三羧酸循环、乙醛酸循环、C4和景天酸代谢途径的中间代谢物,作为碳、氮、硫的间接氢载体提供NADH,调节ROS的产生和清
乙烯(Ethylene)是一种化学结构非常简单的气体激素,参与种子萌发、开花、叶片衰老、果实成熟以及非生物胁迫响应等生理过
生长素生物合成分为色氨酸依赖合成途径和非色氨酸依赖合成途径。类黄素单加氧酶(YUC, YUCCA)和色氨酸转氨酶(TAA, tryptophan transaminas)是色氨酸依赖合成途径重要的酶。早期研究证实,玉米中SPARSE INFLORESCENCE1(SPI1)编码YUC,VT2编码TAA,这两个基因中的任何一个突变均严重影响生长素生物合成,并导致花序分枝、小穗和小花发育受到明显抑制,雌穗结实急剧减
细胞分裂素和脱落酸信号通路可能参与了玉米雄穗分枝数的调控。Qin
生物膜系统包括细胞膜、细胞核膜以及内质网、高尔基体、线粒体等有膜围绕而成的细胞器膜。KERNEL NUMBER PER ROW6(KNR6)是一个影响玉米雌穗小花数目、穗长和行粒数并调控玉米产量的QTL,其功能基因编码丝氨酸/苏氨酸蛋白激酶KNR6,KNR6与ADP核糖基化因子GTP酶激活蛋白(AGAP, ARF-GTPase ACTIVATES PROTEIN)互作并磷酸化AGA
转录因子和非编码序列分别参与花序分枝和穗粒数发育的分子调控。通过全基因组分析,基因近远端包含潜在顺式调控元件的开放染色质区域(OCR, open chromation region)也参与调控花序分枝早期发
植物激素之间以及代谢物与激素之间交互作用,共同调控花序分枝和穗粒数发育。乙烯和其他激素的交互作用调控花序分枝和穗粒数发育。乙烯能刺激生长素合成但抑制JA合成,同时也能影响BR、CK和赤霉素(GA, gibberellins)的含
花序分枝和穗粒数发育调控途径的人工定向优化与优异等位基因创制,有利于高效利用玉米产量关键基因,实现精准改良。大部分与花序分枝和穗粒数发育相关突变体具有剧烈的表型变异,通过启动子编辑获得弱突变基因能有效提高产量。Liu
参考文献
Vollbrecht E, Schmidt R J. Development of the inflorescences//Bennetzen J L,Hake S C. Handbook of maize: Its biology. New York:Springer,2009: 13-40 [百度学术]
Bowman J L, Smyth D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 1999,126(11):2387-2396 [百度学术]
Strable J, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy. Development, 2019, 146(6): dev171181 [百度学术]
Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. Diversification of C-function activity in maize flower development. Science, 1996, 274(5292): 1537-1540 [百度学术]
Du Y, Lunde C, Li Y, Jackson D, Hake S, Zhang Z. Gene duplication at the Fascicled ear1 locus controls the fate of inflorescence meristem cells in maize. Proceedings of the National Academy of Sciences, 2021, 118(7): e2019218118 [百度学术]
Lee S H, Jang M K, Kim O S, Lee O H, Kim N Y, Yoo K H, Lee D G, Shong Y H, Mouradian M M. Activation of the GDNF-inducible transcription factor (GIF) gene promoter by glucocorticoid and progesterone. The Journal of Steroid Biochemistry and Molecular Biology, 2009, 115(1-2): 30-35 [百度学术]
Lee B H, Wynn A N, Franks R G, Hwang Y S, Lim J, Kim J H. The Arabidopsis thaliana GRF-INTERACTING FACTOR gene family plays an essential role in control of male and female reproductive development. Developmental Biology, 2014, 386(1): 12-24 [百度学术]
Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research, 2006, 119(1): 37-42 [百度学术]
Zhang D, Sun W, Singh R, Zheng Y, Cao Z, Li M, Lunde C, Hake S, Zhang, Z. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. The Plant Cell, 2018, 30(2): 360-374 [百度学术]
Li M, Zheng Y, Cui D, Du Y, Zhang D, Sun W, Du H, Zhang Z. GIF1 controls ear inflorescence architecture and floral development by regulating key genes in hormone biosynthesis and meristem determinacy in maize. BMC Plant Biology, 2022, 22(1): 1-15 [百度学术]
Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L, Xu J, Zhang Y, Han Y, Xiao Y, Xu G, Wang Y, Wang S, Wu S, Yang F, Jackson D, Cheng J, Chen S, Sun C, Qin F, Tian F, Fernie A R, Li J, Yan J, Yang X. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375(6587):1370-1373 [百度学术]
Song B, Buckler E S, Wang H, Wu Y, Rees E, Kellogg E A, Gates D J, Khaipho-Burch M, Bradbury P J, Ross-Ibarra J, Hufford M B, Romay M C. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research, 2021, 31(7): 1245-1257 [百度学术]
Chuck G S, Brown P J, Meeley R, Hake S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proceedings of the National Academy of Sciences, 2014, 111(52): 18775-18780 [百度学术]
Liu L, Du Y, Huo D, Wang M, Shen X, Yue B, Qiu F, Zheng Y, Yan J, Zhang Z. Genetic architecture of maize kernel row number and whole genome prediction. Theoretical and Applied Genetics, 2015, 128(11): 2243-2254 [百度学术]
Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics, 2015, 11(11): e1005670 [百度学术]
Du Y, Liu L, Peng Y, Li M,Li Y,Liu D,Li X,Zhang Z. UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize. PLoS Genetics, 2020, 16(4): e1008764 [百度学术]
Chuck G, Cigan A M, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39(4): 544-549 [百度学术]
Chuck G, Whipple C, Jackson D, Hake S. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development, 2010, 137(8): 1243-1250 [百度学术]
Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development, 2018, 145(15): dev164376 [百度学术]
Weits D A, Kunkowska A B, Kamps N C W, Portz K M S, Packbier N K, Venza Z N, Gaillochet C, Lohmann J U, Pedersen O, van Dongen J T, Licausi F. An apical hypoxic niche sets the pace of shoot meristem activity. Nature, 2019, 569(7758): 714-717 [百度学术]
Rouhier N, Gelhaye E, Jacquot J P. Plant glutaredoxins: Still mysterious reducing systems. Cellular and Molecular Life Sciences, 2004, 61(11): 1266-1277 [百度学术]
Hong L, Tang D, Zhu K, Wang K, Li M, Cheng Z. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. The Plant Cell, 2012, 24(2): 577-588 [百度学术]
Yang R S, Xu F, Wang Y M, Zhong W S, Dong L, Shi Y N, Tang T J, Sheng H J, Jackson D, Yang F. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nature Plants, 2021, 7(12): 1589-1601 [百度学术]
Pautler M, Eveland A L, LaRue T, Yang F, Weeks R, Lunde C, Je B, Meeley R, Komatsu M, Vollbrecht E, Sakai Hajime, Jackson D. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. The Plant Cell, 2015, 27(1): 104-120 [百度学术]
Fichtner F, Lunn J E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology, 2021, 72: 737-760 [百度学术]
Paul M J. Trehalose 6-phosphate: A signal of sucrose status. Biochemical Journal, 2008, 412(1): e1-e2 [百度学术]
Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Molecular Plant, 2022, 15(4): 706-722 [百度学术]
Nuccio M L, Wu J, Mowers R, Zhou H P, Meghji M, Primavesi L F, Paul M J, Chen X, Gao Y, Haque E, Basu S S, Lagrimini L M. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 2015, 33(8): 862-869 [百度学术]
Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436(7054): 1119-1126 [百度学术]
Bortiri E, Hake S. Flowering and determinacy in maize. Journal of Experimental Botany, 2007, 58(5): 909-916 [百度学术]
Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006, 441(7090): 227-230 [百度学术]
Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway M L, Nielsen T, Lunn J E, Hawkins J, Whipple C, Chuck G. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nature Communications, 2019, 10(1): 1-15 [百度学术]
Wills D M, Whipple C J, Takuno S, Kursel L E, Shannon L M, Ross-Ibarra J, Doebley J F. From many, one: Genetic control of prolificacy during maize domestication. PLoS Genetics, 2013, 9(6): e1003604 [百度学术]
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez M J, Heeney M, Feil R, Lunn J E, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proceedings of the National Academy of Sciences, 2022, 119(2):e2115871119 [百度学术]
Igamberdiev A U, Bykova N V. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radical Biology and Medicine, 2018, 122: 74-85 [百度学术]
Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Research, 2018, 28(4): 448-461 [百度学术]
Selinski J, Scheibe R. Malate valves: Old shuttles with new perspectives. Plant Biology, 2019, 21: 21-30 [百度学术]
Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, Chen Z, Cai D, Li K, Du Y, Zang J, Xin P, Chu J, Chen Y, Zhao L, Liu J, Chen H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. The Plant Cell, 2022,34(6): 2222-2241 [百度学术]
Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J, Liu J, Zhang H, Ren Y, Wang M, Tan J, Zhu S, Wang J, Lei C, Zhang X, Guo X, Wang H, Cheng Z, Wan J. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell,2018, 30(4):889-906 [百度学术]
Qin H, He L, Huang R. The coordination of ethylene and other hormones in primary root development. Frontiers in Plant Science, 2019, 10: 874 [百度学术]
Ortega-Martínez O, Pernas M, Carol R J, Dolan L. Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science, 2007, 317(5837): 507-510 [百度学术]
De Martinis D, Mariani C. Silencing gene expression of the ethylene-forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco plants. The Plant Cell, 1999, 11(6): 1061-1071 [百度学术]
Habben J E, Bao X, Bate N J, DeBruin J L, Dolan D, Hasegawa D, Helentjaris T G, Lafitte R H, Lovan N, Mo H, Reimann K, Schussler J R. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought‐stress conditions. Plant Biotechnology Journal, 2014, 12(6): 685-693 [百度学术]
Ning Q, Jian Y, Du Y, Li Y, Shen X, Jia H, Zhao R, Zhan J, Yang F, Jackson D, Liu L, Zhang Z. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1): 1-10 [百度学术]
Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt R J, McSteen P. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proceedings of the National Academy of Sciences, 2008, 105(39): 15196-15201 [百度学术]
Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S, McSteen P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell, 2011, 23(2): 550-556 [百度学术]
Huang P, Jiang H, Zhu C, Barry K, Jenkins J, Sandor L, Schmutz J, Box M S, Kellogg E A, Brutnell T P. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Nature Plants, 2017, 3(5): 1-6 [百度学术]
McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S. barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiology, 2007, 144(2): 1000-1011 [百度学术]
Michniewicz M, Brewer P B, Friml J. Polar auxin transport and asymmetric auxin distribution. The Arabidopsis Book, 2007, 5:e0108 [百度学术]
Skirpan A, Culler A H, Gallavotti A, Jackson D, Cohen J D, McSteen P. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant and Cell Physiology, 2009, 50(3): 652-657 [百度学术]
Carraro N, Forestan C, Canova S, Traas J, Varotto S. ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiology, 2006, 142(1): 254-264 [百度学术]
Yao H, Skirpan A, Wardell B, Matthes M S, Best N B, McCubbin T, Durbak A, Smith T, Malcomber S, McSteen P. The barren stalk2 gene is required for axillary meristem development in maize. Molecular Plant, 2019, 12(3): 374-389 [百度学术]
Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk1 is defective in axillary meristem development. American Journal of Botany, 2002, 89(2): 203-210 [百度学术]
Weijers D, Wagner D. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology, 2016, 67: 539-574 [百度学术]
Galli M, Liu Q, Moss B L, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proceedings of the National Academy of Sciences, 2015, 112(43): 13372-13377 [百度学术]
Qin X, Tian S, Zhang W, Dong X, Ma C, Wang Y, Yan J, Yue B.
Jia F, Wu B, Li H, Huang J, Zheng C. Genome-wide identification and characterisation of F-box family in maize. Molecular Genetics and Genomics, 2013, 288(11): 559-577 [百度学术]
Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z. Mutations in the F‐box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9(9): 1002-1013 [百度学术]
Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2004, 101(49): 17306-17311 [百度学术]
Baena-González E, Lunn J E. SnRK1 and trehalose 6-phosphate-two ancient pathways converge to regulate plant metabolism and growth. Current Opinion in Plant Biology, 2020, 55: 52-59 [百度学术]
Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, Shen X, Ning Q, Du Y, Zhao R, Jackson D, Yang X, Zhang Z. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1): 1-11 [百度学术]
Li M, Zhao R, Du Y, Shen X, Ning Q, Li Y, Liu D, Xiong Q, Zhang Z. The coordinated KNR6-AGAP-ARF1 complex modulates vegetative and reproductive traits by participating in vesicle trafficking in maize. Cells, 2021, 10(10): 260 [百度学术]
Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H. VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development, 2005, 132(7): 1699-1711 [百度学术]
Zhuang X, Jiang J, Li J, Ma Q, Xu Y, Xue Y, Xu Z, Chong K. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. The Plant Journal, 2006, 48(4): 581-591 [百度学术]
Majerus P W, Kisseleva M V, Norris F A. The role of phosphatases in inositol signaling reactions. Journal of Biological Chemistry, 1999, 274(16): 10669-10672 [百度学术]
Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, Nakano A, Fukuda H. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development, 2009, 136(9): 1529-1538 [百度学术]
Carland F M, Nelson T. Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell, 2004,16(5):1263-1275 [百度学术]
Shen X, Zhao R, Liu L, Zhu C, Li M, Du H, Zhang Z. Identification of a candidate gene underlying qKRN5b for kernel row number in Zea mays L.. Theoretical and Applied Genetics, 2019, 132:3439-3448 [百度学术]
Li E, Liu H, Huang L, Zhang X, Dong X, Song W, Zhao H, Lai J. Long-range interactions between proximal and distal regulatory regions in maize. Nature Communications, 2019, 10(1): 1-14 [百度学术]
Sun Y, Dong L, Zhang Y, Lin D, Xu W, Ke C, Han L, Deng L, Li G, Jackson D, Li X, Yang F. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology, 2020, 21(1): 1-25 [百度学术]
Savadel S D, Hartwig T, Turpin Z M, Vera D L, Lung P Y, Sui X, Blank M, Frommer W B, Dennis J H, Zhang J, Bass H W. The native cistrome and sequence motif families of the maize ear. PLoS Genetics, 2021, 17(8): e1009689 [百度学术]
Parvathaneni R K, Bertolini E, Shamimuzzaman M, Vera D L, Lung P Y, Rice B R, Zhang J, Brown P J, Lipka A E, Bass H W, Eveland A L. The regulatory landscape of early maize inflorescence development. Genome Biology, 2020, 21(1): 1-33 [百度学术]
Van de Poel B, Smet D, Van Der Straeten D. Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiology, 2015, 169(1): 61-72 [百度学术]
Liu L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nature Plants, 2021, 7(3): 287-294 [百度学术]
Xu X, Crow M, Rice B R, Li F, Harris B, Liu L, Arevalo E D, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char S N, Yang B, Sylvester A W, Gingeras T R, Schmitz R J, Jackson D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell, 2021, 56(4): 557-568 [百度学术]