摘要
核仁显性在植物多倍化进程中发挥着重要作用,通过调节rDNA基因表达控制核糖体数量,使多倍体植物能够应对多倍化带来的遗传变化。串连重复的rDNA基因表达调控是一种大规模、整体基因表达调控模式,rDNA基因沉默往往发生在整个核仁组织区,受所处位置染色质状态控制,而不受基因前序列的影响。核仁显性不但在调控蛋白质合成中发挥着重要作用,还与多倍体染色体组稳定性相关,相应基因组的rDNA基因沉默往往引起该基因组的染色体消除,染色体消除也是多倍体形成过程中的一种应答机制。虽然大量证据表明核仁显性与染色体消除之间存在必然的联系,但rDNA基因表达稳定染色体的遗传机制仍不清晰,尤其是染色体消除的基因组特异性更难解释。因此,对核仁显性稳定染色体组的遗传机制进一步研究将揭示核仁在多倍体形成中的作用。本研究旨在阐述植物如何通过核仁显性应对多倍化带来的基因组冲击,呈现植物多倍化进程的一个侧面。
1934年Navashi
参与形成核糖体的45S rDNA有18S、5.8S、28S和5S rDNA。45S rDNA前体包含18S、5.8S和28S三段,中间由2个间隔区分开,上游还有增强子、核心启动子和复制起点等控制元件,共同组成1个重复单元rDNA,成百上千个这样的重复单元首尾相接分布在次缢痕处,形成核仁组织

图1 核仁组织区(NOR)结构
Fig.1 Structure of nucleolar organizer region (NOR)
IGS:基因间隔区;Pol Ⅰ:聚合酶Ⅰ;虚线箭头:转录方向
IGS:Intergenic spacer region; Pol Ⅰ: Polymerase Ⅰ; Dotted arow: Derection of transcription
多拷贝串连重复排列的rDNA基因持续转录,以转录产物和相关蛋白为原料,组装成核糖体过程中便在NOR处形成核仁。核仁是细胞核中特定位置形成的动态无膜结构,在细胞分裂间期,采用硝酸银染色方法处理细胞可观察到核仁。组装完成的核糖体从核仁迁移到核质并进一步成熟,最终形成有活性的核糖体亚
参与细胞生长、增殖、分化等活动的各种蛋白质均来自于核糖体的生物功能,因此,蛋白质的需求状况调控着核榶体的生物合成。核糖体的产生数量与细胞蛋白质的合成过程紧密相关,在细胞生长和增殖过程中发挥着基础性作用。核仁作为核糖体的合成场所,其数量和活性直接控制着核糖体的生物合成过程。在旺盛生长细胞中,蛋白质生物合成旺盛,核糖体的需求量大,NOR就会非常活跃;而在分化程度较高、处于静止状态的细胞中核糖体的数量也相对减少,同时核仁的活性也降
在人工合成多倍体中,某一基因组的rDNA基因发生沉默不形成核仁,只表达其他基因组的rDNA基因,推动该基因组的染色体形成核仁,此现象被称作核仁显性。rDNA基因表达调控是一种大规模的表观遗传调节模式。研究发现rDNA基因转录调节是对整个串联重复序列整簇进行,而不是对单个基因调控。而且发现转录调控机制是通过调节染色质所处的状态,而不受基因前的序列影
多倍体核仁显性现象的发生与rDNA基因的表达紧密相关,rDNA基因的表达调控研究是揭示核仁显性规律的重要途
多倍化在植物自然进化历程中发挥了巨大作用,自然界约70%的开花植物是多倍体,而且多种重要的栽培植物,如小麦、烟草、咖啡、棉花和甘蓝型油菜等都是在进化史上经过多倍化形成的异源多倍体。基因组序列研究结果表明所有植物经历过至少一次的多倍
多倍体形成过程中常发生核仁显性现象,即仅由1个亲本的染色体形成细胞核仁。在小麦与山羊草种间杂种中,C基因组的NOR位点表现为显性,其他基因组的NOR位点不表达,这种关系不受两亲本正反交组合的影响。在不同的多倍体杂种中C基因组还表现出不同强度的显性,在四倍体三芒山羊草(Aegilops triuncialis L.,CtCtUtUt)中C基因组所有染色体NOR位点都有活性,但在四倍体圆柱山羊草(A. cylindrica Host,CcCcDcDc)中,C基因组只有一对染色体(1Cc 或5Cc)有活
核仁显性具有一定的稳定性。四倍体植物牧豆树(Prosopis juliflora (Sw.) DC.)中来自1个祖先的染色体组rDNA基因处于非活性状态,另一亲本染色体组的NOR有活性形成核仁。非活性的NOR染色质高度浓缩处于异染色质状态,这种NOR转录活性的抑制在多倍体胚胎形成的早期就已经建
核仁显性还具有组织器官特异性。尾稃草属植物不但有二倍体种,也进化出了多种四倍体。作为与小麦有较近亲缘关系的单子叶植物,具有很强的耐热特性。Urochloa ruziziensis (R. Germ. & C. M. Evrard) Crins与臂形草U. brizantha (Hochst. ex A. Rich.) R. D. Webster两个四倍体杂交后代中,在叶片中U. brizantha (Hochst. ex A. Rich.) R. D. Webster rDNA基因表达占优势,而另一亲本Urochloa ruziziensis (R. Germ. & C. M. Evrard) Crins的rDNA基因不表达,在根中两亲本的rDNA基因全都正常表达。由此可推断这是一个组织特异性核仁显性模
染色体消除是指远缘杂交时,某基因组的染色体在杂种合子或幼胚发育初期细胞有丝分裂过程中丢失的现象,杂种细胞单一亲本基因组的染色体消除在多种生物中发
染色体基因组间选择性消除在多种植物的远缘杂交中被发
自从20世纪50年代,染色体消除现象在普通烟草与蓝茉莉叶烟草的杂种和普通大麦与球茎大麦的杂种中发现以来,学者们对其遗传机制进行了深入研究。从细胞水平和分子水平对杂种体内染色体消除作出了解释:(1) 由于两亲本细胞周期不同步,引起不同基因组的染色体行为差异,或者核蛋白合成不同步,致使某一基因组的染色体在细胞分裂过程中丢失。(2) 来自不同基因组的染色体在细胞分裂中期分布在不同的区域,以及有丝分裂细胞多极纺缍体形成引起染色体消
杂种细胞内染色体消除与rDNA基因的沉默有相同的规律,即发生染色体消除的基因组的rDNA基因往往被抑制,而染色体较稳定的基因组的rDNA基因往往能正常表达并形成核仁,表现出核仁显性现象。例如芸薹属3个二倍体栽培种的基因组在自然多倍体和人工合成多倍体杂种细胞中稳定性关系均表现为B>A>C,而它们的核仁显性的关系也表现为B>A>
rRNA是核糖体的一种重要成分,通过参与所有mRNA的合成影响着整个细胞蛋白质的合成。rDNA基因和NOR是影响整个细胞行为的一个潜在因素,它影响着细胞周期调控、细胞衰老与凋亡、细胞分化、基因表达以及细胞内和细胞间物质与信息的传
杂交使不同遗传物质进入同一细胞给植物带来了极大的基因组冲击,相伴发生的基因组加倍又引起巨大的遗传变化。植物通过表观遗传学手段大规模地调节rDNA表达控制细胞内核糖体的数量,从而使多倍体有效应对大规模遗传变化带来的影响。虽然细胞内存在过量的基因,但通过控制其表达量可实现生物代谢的经济
参考文献
Navashin M. Chromosome alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia, 1934, 5(2): 169-203 [百度学术]
Mc Clintock M. The relationship of a particular chromosomal element to the developmet nucleoli Zei mays. External Resources Cross Reference, 1934, 21: 294-328 [百度学术]
Wallace H, Langridge W H R. Differential amphiplasty and the control of ribosomal RNA synthesis. Heredity, 1971, 27(1): 1-13 [百度学术]
Zhao Y, Zhang W Y, Wang R L, Niu D L. Divergent domains of 28S ribosomal RNA gene: DNA barcodes for molecular classification and identification of mites. Parasites Vectors, 2020, 13: 251 [百度学术]
Patel J, Lama L, Hoffmann N A. RNA polymerase Ⅲ initiation on coligo DNA templates containing loops of variable sequence, size and nucleotide chemistry. Gene, 2017, 612:49-54 [百度学术]
Schäffer A A, McVeigh R, Robbertse B, Schoch C L, Johnston A, Underwood B A, Mizrachi I K, Nawrocki E P. Ribovore: Ribosomal RNA sequence analysis for GenBank submissions and database curation. BioMed Central Bioinformatics, 2021, 22: 400 [百度学术]
Correll C C, Bartek J, Dundr M. The Nucleolus: A multiphase condensate balancing ribosome synthesis and translational capacity in health,aging and ribosomopathies. Cells, 2019, 8(8): 869 [百度学术]
Micol-Ponce R, Sarmiento-Manus R, Ruiz-Bayón A, Montacié C, Saez-Vasquez J, Ponce M R. Arabidopsis ribosomal RNA processing7 is required for 18s rRNA maturation. The Plant Cells, 2018, 30: 2855-2872 [百度学术]
Tomecki R, Sikorski P J, Laczek M Z. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells-focus on coordinated action of endo-and exoribonucleases. Federatoin of European Biochemical Societies Letters, 2017, 591(13): 1801-1850 [百度学术]
Phan T, Khalid F, Iben S. Nucleolar and ribosomal dysfunction- a common pathomechanism in childhood progerias. Cells, 2019, 8(6): 534 [百度学术]
Moss T, Mars J C, Tremblay M G, Sabourin-Felixe M. The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosome Research, 2019, 27: 31-40 [百度学术]
Pecoraro A, Pagano M, Russo G, Russo A. Ribosome biogenesis and cancer: Overview on ribosomal proteins. International Journal of Molecular Sciences, 2021, 22(11): 5496 [百度学术]
Ferreira M T M, Rocha L C, Vitoriano M B Z, Mittelmann A, Techio V H. Relationship between epigenetic marks and the behavior of 45S rDNA sites in chromosomes and interphase nuclei of Lolium-Festuca complex. Molecular Biology Reports, 2018, 45: 1663-1679 [百度学术]
Saradadevi G, Priyadarshini N, Bera A. Together we are on together we are off -a conserved rule for ribosomal RNA (rRNA) gene regulation. Journal of Plant Biochemistry and Biotechnology, 2020, 29: 743-753 [百度学术]
Saez-Vasquez J, Delseny M. Ribosome biogenesis in plants:From functional 45s ribosomal DNA organization to ribosome assembly factors. The Plant Cell, 2019, 31(9):1945-1967 [百度学术]
Ilyeong C, Young J, Youngki Y, Hyun-Soo C, Hyun-Sook P. The in vivo functions of ARPF2 and ARRS1 in ribosomal RNA processing and ribosome biogenesis in Arabidopsis. Journal of Experimental Botany, 2020 (9): 9 [百度学术]
Liu Y, Ryozo I. Function of plant dexd/h-box RNA helicases associated with ribosomal RNA biogenesis. Frontiers in Plant Science, 2018, 9: 125 [百度学术]
Greil F, Ahmad K. Nucleolar dominance of the Y chromosome in Drosophila melanogaster. Genetics, 2012, 191(4): 1119-1128 [百度学术]
Horigome C, Kobayashi T. Rejuvenation of ribosomal RNA gene repeats at the nuclear pore. Current Genetics, 2020, 66: 7-13 [百度学术]
Chen X S, Lu L, Qian S M. Canonical and noncanonical actions of arabidopsis histone deacetylases in ribosomal RNA processing. Plant Cell, 2018, 30: 134-152 [百度学术]
Chen X, Ding A B, Zhong X. Functions and mechanisms of plant histone deacetylases. Science China Life Sciences, 2020, 63: 206-216 [百度学术]
王蓉. 柑橘体细胞杂种核仁共显性机制研究. 武汉: 华中农业大学, 2016 [百度学术]
Wang R. Mechanism of nucleolus co-dominance in citrus somatic hybrids. Wuhan: Huazhong Agriculture University, 2016 [百度学术]
Vallabhaneni A R, Kabashi M, Haymowicz M, Bhatt K, Wayman V, Conrad-Webb S A H. HSF1 induces RNA polymerase Ⅱ synthesis of ribosomal RNA in S. cerevisiae during nitrogen deprivation. Current Genetics, 2021, 67: 937-951 [百度学术]
Hao Q, Prasanth K V. Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mammalian Genome, 2022, 33: 402-411 [百度学术]
Kim H K, Fuchs G, Wang S C, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J P, Chu K, Zhang F J, Chua M S, So S, ZhangQ F, Sarnow P, Kay M A. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 2017, 552(7683): 57-62 [百度学术]
Fawcett J, Maere S, Vajknm de Peer Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proceedings of the National Academy of Sciences of The United States of America, 2009, 106(14): 5737-5742 [百度学术]
Marcusse N T, Sandve S R, Heier L. Ancienthy-hybridizatons among theanestral genome of breadwheat. Science, 2014, 354(6194): 1250092 [百度学术]
Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Journal of Botany, 1935, 7(2): 389-452 [百度学术]
Lunerová J, Renny-Byfield S, Matyášek R, Leitch A, Kovařík A. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Systematics and Evolution, 2017, 303: 1043-1060 [百度学术]
邵玉娇, 曾攀, 李再云. 芸薹属种间和属间杂种和异源多倍体的偏亲表型及遗传机制.植物遗传资源学报, 2021, 22(6): 1474-1482 [百度学术]
Shao Y J, Zeng P, Li Z Y. Phenotypic bias and genetic mechanisms in interspecific/intergeneric hybrids and allopolyploids of Brassica. Journal of Plant Genetic resources, 2021, 22(6): 1474-1482 [百度学术]
Kozlowski D K L, Hassanaly-Goulamhoussen R, Rocha M D, Koutsovoulos G D, Bailly-Bechet M, Danchin E G J. Movements of transposable elements contribute to the genomic plasticity and species diversification in an asexually reproducing nematode pest. Evolutionary Applications, 2021,14: 1844-1866 [百度学术]
Shang J Z, Tian J P, Cheng H H, Yan Q M, Li L, Jamal A, Xu Z P, Xiang L, Saski C A, Jin S X, Zhao K G, Liu X Q, Chen L Q. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology, 2020, 21(1): 200 [百度学术]
Mirzaghaderi G, Abdolmalaki G, Zohouri M, Moradi Z, Mason A S. Dynamic nucleolar activity in wheat × Aegilops hybrids: Evidence of C-genome dominance. Plant Cell Reports, 2017, 36(8): 1277-1285 [百度学术]
Florek M, Kosina R. rDNA cytogenetics and some structural variability in an Avena barbata Pott ex Link × A. sativa subsp. nuda (L.) Gillet et Magne amphiploid after 5-azaC treatment. Genetic Resources and Crop Evolution, 2017, 64: 1723-1741 [百度学术]
Fernando T P. Differential amphiplasty and nucleolar dominance in somatic metaphase cells as evidence of hybridization in Prosopis juliflora (Leguminosae, Mimosoideae):Regular article. Cytologia, 2020, 85(4): 295-299 [百度学术]
Natalia B Z, Ewa R, Elzbieta W, Alexander B, Robert H. Ribosomal DNA loci derived from Brachypodium stacei are switched off for major parts of the life cycle of Brachypodium hybridum. Journal of Experimental Botany, 2019, 70(3): 805-815 [百度学术]
Natalia B Z, Ales K, Ewa R, Metin T, Savas T G, Sean G, Vogel J P, Robert H. The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum. The Plant Journal for Cell and Molecular Biology, 2020, 103(5): 1810-1825 [百度学术]
Santos Y D, Pereira W A, de Paula C M P, Rume G C, Lima A A, Chalfun-Junior A, Sobrinho F S, Techio V H. Epigenetic marks associated to the study of nucleolar dominance in Urochloa P. Beauv.. Plant Molecular Biology Reporter, 2020, 38: 380-393 [百度学术]
Sosnowska K, Majka M, Majka J, Jan Bocianowski, Kasprowicz M, KsiążczykT, Szała L Cegielska-Taras T. Chromosome instabilities in resynthesized Brassica napus revealed by FISH. Journal of Applied Genetics, 2020, 61: 323-335 [百度学术]
Bobkov S V, Selikhova T N. Marker-assisted selection of pea interspecific hybrids with introgressive alleles of convicilin. // Popkova E G, Sergi B S. Sustainable Agriculture. Environmental footprints and eco-design of products and processes. Singapore: Springer, 2022: 283-293 [百度学术]
李亚洲, 罗江陶, 张舒洁, 黄磊, 张连全, 袁中伟, 甯顺腙, 刘登才, 郝明. 合成小麦-黑麦杂种D染色体优先消除的细胞学基础分析//中国作物学会.第十届全国小麦基因组学及分子育种大会摘要集.烟台: 中国作物学会, 2019: 298 [百度学术]
Li Y Z, Luo J T, Zhang S J, Huang L, Zhang L Q, Yuan Z W, Ning S Z, Liu D C, Hao M. Cytological analysis of preferential elimination of D chromosome in synthetic wheat-rye hybrid//Crop Science Society of China. The 10th national congress on wheat genomics and molecular breeding. Yantai:Crop Science Society of China, 2019: 298 [百度学术]
Jiang M D, He M D, Ding M Q, Rong J K. Chromosome elimination of hexaploid common wheat mediated by interaction between chinese spring cytoplasm and a genetic factor(s) on chromosome arm 1BL of wild emmer. Euphytica, 2016, 209(3): 615-625 [百度学术]
Polgári D, Mihók E, Sági L. Composition and random elimination of paternal chromosomes in a large population of wheat × barley (Triticum aestivum L. × Hordeum vulgare L.) hybrids. Plant Cell Reports, 2019, 38: 767-775 [百度学术]
Thomas B, Murray B G, Murphy D J. Encyclopedia of applied plant sciences. Second Edition. Massachusetts: Acidamic Press, 2017:147-151 [百度学术]
Sharma P, Chaudhary H K, Manoj N V, Singh K, Relan A, Sood V Kl. Haploid induction in Triticale × Wheat and Wheat × Rye derivatives following imperata cylindrica-mediated chromosome elimination approach. Cereal Research Communications, 2019, 47: 701-713 [百度学术]
Chaudhary H K, Badiyal A, Jamwal N S, Sharma P, Manoj N V, Singh K. Recent advances in chromosome elimination-mediated doubled haploidy breeding: Focus on speed breeding in bread and durum wheats//Gosal S, Wani S. Accelerated plant breeding. Cham: Springer, 2020: 167-189 [百度学术]
Mehta I, Chaudhary H K, Sharma P, Manoj N V, Singh K, Sran R S. In vivo colchicine manipulation for enhancing DH production efficiency in Triticum durum using Imperata cylindrica-mediated chromosome elimination approach. Cereal Research Communications, 2020, 48:217-224 [百度学术]
Kapoor C, Chaudhary H K, Relan A, Manoj A V, Singh K, Sharmaet P. Haploid induction efficiency of diverse Himalayan maize (Zea mays) and cogon grass (Imperata cylindrica) gene pools in hexaploid and tetraploid wheats and triticale following chromosome elimination-mediated approach of doubled haploidy breeding. Cereal Research Communications, 2020, 48:539-545 [百度学术]
Ge X H, Wang J, Li Z Y. Different genome-specific chromosome stabilities in synthetic Brassica allopolyploids revealed by wide cross with Orychophragms. Annals of Botany, 2009, 104(1): 19-31 [百度学术]
Carmen E M, Clara M. Histone H3 phosphorylation and elimination of paternal X chromosomes at early cleavages in sciarid flies. Journal of Cell Science, 2013, 126(14): 3214-3222 [百度学术]
Watts A, Sankaranarayanan S, Raipuria R K, Watts A. Production and application of doubled haploid in Brassica improvement//Wani S, Thakur A, Jeshima Khan Y.Brassica improvement. Cham: Springer, 2020: 67-84 [百度学术]
Zhou J N, Tan C, Cui C, Ge X H, Li Z Y. Distinct subgenome stabilities in synthesized Brassica allohexaploids. Theoretical and Applied of Genetics, 2016, 129: 1257-1271 [百度学术]
Kobayashi T. A new role of the rDNA and nucleolus in the nucleus—rDNA instability maintains genome integrity. Biology Essays, 2008, 30(3): 267-272 [百度学术]
Byrne M E. A role for the ribosome in development. Trends Plant Science, 2009, 14(9): 512-519 [百度学术]
Potapova T A, Gerton J L. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Research, 2019, 27: 109-127 [百度学术]
Zhu M, Mu H, Jia M, Deng L, Dai X. Control of ribosome synthesis in bacteria: The important role of rRNA chain elongation rate. Science China Life Sciences, 2021, 64: 795-802 [百度学术]
Denisenko O. Epigenetics of ribosomal RNA genes. Biochemistry Moscow, 2022, 87: S103-S110 [百度学术]
Dong H J, Zhang R, Kuang Y, Wang X X. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Archives of Microbiology, 2021, 203: 1021-1032 [百度学术]
Xue S F, Barna M. Specialized ribosomes: A new frontier in gene regulation and organismal biology. Nature Reviews Molecular Cell Biology, 2012, 13: 355-369 [百度学术]
Paredes S, Branco A T, Hartl D L, Maggert K A, Lemos B, Clark A G. Ribosomal DNA deletions modulate genome-wide gene expression: “rDNA-sensitive” genes and natural variation. The Public Library of Science Genetics, 2011, 7(4): 1376-1382 [百度学术]
Khaova E A, Kashevarova N M, Tkachenko A G. Ribosome hibernation: Molecular strategy of bacterial survival (review). Applied Biochemistry and Microbiology, 2022, 58:213-231 [百度学术]
Chandrasekhara C, Mohannath G, Blevins T, Pontvianne F, Pikaard C S. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes and Development, 2016, 30(2):177-190 [百度学术]