摘要
水稻是全球重要的粮食作物之一,近年来随着人们生活质量提升,对稻米的品质逐渐重视。胚乳是稻米的主要组成成分,为种子萌发和种胚发育提供能量,其中淀粉含量约占水稻种子干物质积累的80%,研究淀粉生物合成的分子机制对水稻品质改良具有重要理论意义与应用价值。虽然淀粉的基本合成途径已比较清晰,但是大田条件下淀粉的合成是一个受遗传和环境条件共同决定的复杂生物学过程。由于表型鉴定相对困难,很难通过QTL等方法对稻米品质的影响因子进行图位克隆。通过物理化学诱变获得的淀粉合成缺陷突变体多为单基因控制,这些突变体由于淀粉颗粒形态改变或填充不紧密,通常表现为胚乳粉质的表型,加代纯合后构建群体可对突变基因进行图位克隆。近年来,利用突变体克隆的新调控因子逐渐增多,参与合成的路径多样化,充实完善了淀粉合成的调控网络。本研究通过对近年来的此类突变体进行概括综述,探讨影响淀粉合成的不同调控因子类型及代谢通路,以期对水稻品质改良提供参考。
水稻(Oryza sativa L.)是世界上重要的粮食作物之一,全球超过一半的人口将水稻作为主
淀粉是水稻种子中最主要的储藏物质,约占胚乳干物质积累的80%,是植物中储存最丰富、分布最广泛的碳水化合物,也是人类日常饮食中碳水化合物的主要来
水稻种子的主要组成部分是胚乳,它吸收来自母体组织的营养,作为支持种子萌发和种胚发育的储备能
淀粉根据其结构差异主要分为直链淀粉和支链淀粉。直链淀粉是由α-1,4-糖苷键连接而成的多聚葡萄糖链构成,几乎没有分支。支链淀粉高度分支,分支由α-1,6-糖苷键连接而成,每20~25个α-1,4-糖苷键就有1个α-1,6-糖苷键分支。支链淀粉具有串联的簇结构,簇由无定形层和结晶层组成,其半结晶性使淀粉不溶于水,大多数分支点位于无定形层
胚乳中淀粉合成是植物通过光合作用合成葡萄糖,随后转化为蔗糖,蔗糖再通过维管束被运输到籽粒造粉体中,接着在尿苷二磷酸葡萄糖焦磷酸化酶(UGPase,UDP-glucose pyrophosphorylase)的作用下水解为UDP-葡萄糖(UDPG,UDP-glucose)和果糖,然后转化为1-磷酸葡萄糖(Glc-1-P,Glucose-1-phosphate),接着在腺苷二磷酸葡萄糖焦磷酸化酶(AGPase,ADP glucose pyrophosphorylase)的催化下合成腺苷二磷酸葡萄糖(ADPG,ADP glucose),最后通过一系列的酶促反应将淀粉合成前体ADPG转化为葡聚糖的生化过
水稻粉质胚乳突变体是经过物理化学诱变,淀粉的合成受阻与积累异常而形成的胚乳外观不透明的材料。根据种子突变表型的不同,可将胚乳突变体分为粉质(Floury)、糯性(Waxy)、皱缩(Shrunk)、垩白(Chalky)、糖质(Sugary)、暗色(Dull)等6
水稻中参与直链淀粉和支链淀粉合成的关键酶基因突变时,往往表现异常的淀粉合成,呈现粉质胚乳表型。FLOURY ENDOSPERM8(FLO8)编码UDP-葡萄糖焦磷酸化酶1(Ugp1,UDP-glucose pyrophosphorylase 1),突变后UGPase活性降低,影响UDPG的合成,且大部分淀粉合成相关酶基因表达改变,从而呈现粉质胚乳,淀粉粒小而圆,直链淀粉和总淀粉含量降
尽管目前研究已经明确了淀粉合成关键酶在淀粉合成过程中的协同表达,但除淀粉合成关键酶的重要作用外,还有其他大量的因子调控这些淀粉合成酶基因。
水稻Waxy(Wx)基因是直链淀粉合成的最主效基因,对稻米的蒸煮和食味品质起着重要作用。研究表明,多个暗色胚乳突变体通过影响W
核因子NF-Y家族广泛调控贮藏物质(蛋白和淀粉)的积累,影响胚乳的发育过
造粉体与叶绿体相同,是由原质体发育而来,其中造粉体属于白色体的一种,是植物细胞中唯一合成与储藏淀粉的细胞器。造粉体的基本结构主要包括外膜(OEM,outer envelope membrane)、内膜(IEM,inner envelope membrane)、膜间隙(IMS,intermembrane space)与淀粉颗粒之间的基质部
线粒体是一种半自主复制细胞器,主要进行ATP合成、细胞内信号转导、代谢调控和程序性细胞死亡等生物过程,在植物生长发育中具有重要作
线粒体中的NADH脱氢酶在生物代谢过程中起着重要作用,是线粒体呼吸链的入口酶,nad(NADH dehydrogenase subunit)系列基因编码蛋白是NADH脱氢酶的重要亚基,对于正常线粒体的结构和功能至关重要。线粒体的呼吸作用为需氧细胞提供了几乎全部的能量,所以NADH脱氢酶的缺陷可能会造成需氧细胞的死亡,影响淀粉合成和胚乳发
Pentatricopeptide repeat(PPR)是一种三角状五肽重复结构域,具有该结构域的蛋白称为PPR蛋白。PPR蛋白家族主要包括两个亚家族,P型PPR蛋白和PLS型PPR蛋白(E型、
线粒体基质是由内膜包裹封闭形成的空间,三羧酸循环(TCA cycle,tricarboxylic acid cycle)主要在线粒体基质中进行,糖类、脂质、氨基酸等的代谢产物经TCA循环进行最终的氧化分解,从而关联磷酸戊糖途径、乙二醛酶系统、苹果酸代谢、糖酵解等多种代谢途
贮藏蛋白是水稻胚乳的重要组成部分,约占蛋白总量的90%,贮藏蛋白主要积累于两种类型蛋白体(Protein body)中:蛋白体Ⅰ(PBⅠ)和蛋白体Ⅱ(PBⅡ)。PBⅠ主要积累醇溶蛋白,PBⅡ主要积累谷蛋白和α-球蛋
包被蛋白复合体Ⅱ(COPⅡ,coat protein complex Ⅱ)介导内质网中新合成蛋白质向高尔基体的正向运输(Anterograde transport),COPⅠ介导内质网和高尔基体之间的逆向运输(Retrograde transport
GPA1、GPA2、GPA3、GPA5、GPA6、GPA7和GPA8这些基因的突变体都出现了致密囊泡错误靶向到质外体空间,形成了异常的壁旁体结构,使得致密囊泡携带的谷蛋白前体没有正常到达蛋白储藏囊泡,PBⅡ显著变小,突变体内谷蛋白前体异常积累,影响胚乳发育并产生粉质表
半乳糖基二酰甘油酯(MGDG,monogalactosyldiacylglycerol)和二半乳糖基二酰甘油酯(DGDG,digalactosyldiacylglycerol)是质体膜的主要组成部分,MGDG由MGDG合成酶催化UDP-半乳糖上的半乳糖基转移到甘油二酯(DAG,diacylglycerol)上合成,DGDG由DGDG合成酶催化UDP-半乳糖上的半乳糖基添加到MGDG上合
通过对水稻发育胚乳的转录组分析,发现高垩白水稻胚乳的淀粉合成相关基因趋向于表达量上升,而糖类代谢相关基因多为表达量下降,蛋白质降解及参与胁迫反应的相关基因表达与稻米垩白相关基因表达变化趋势相近,说明水稻垩白表型的形成是受多基因控制、涉及多条代谢通路的复杂过程,除了上述六类代谢通路,还存在其他调控基因参
代谢通路 Metaboic pathway | 基因号 Gene ID | 基因名称 Gene name | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization | 突变体胚乳表型 Endosperm phenotype of mutant | 参考文献 Reference |
---|---|---|---|---|---|---|
淀粉合成相关基因 | Os09g0553200 | FLO8/Ugp1 |
UDP-葡萄糖 焦磷酸化酶 | 细胞质 |
胚乳粉质, 淀粉粒松散排列 |
[ |
Os03g0320900 | FSE2/ OsGK1 | 鸟苷酸激酶 | 线粒体和质体 | 胚乳粉质皱缩 |
[ | |
Os01g0633100 | GIF2 |
ADP-葡萄糖 焦磷酸化酶 | 细胞质 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os08g0191433 | FLO5/OsSSⅢa | 淀粉合成酶Ⅲa | 质体 |
胚乳心白粉质, 淀粉粒圆且小 |
[ | |
Os02g0528200 | OsBEⅡb | 淀粉分支酶Ⅱb | 质体 | 籽粒粉质皱缩 |
[ | |
调控淀粉合成基因的因子 | OSJNBa0017EO8.20 | Du1 | Prp1蛋白 | — | 暗胚乳 |
[ |
Os02g3989000 | Du3 | 帽子结合蛋白20 | 细胞核 | 暗胚乳 |
[ | |
Os06g0648530 | Du13 | 锌指蛋白 | 细胞核 | 暗胚乳 |
[ | |
Os05g0121600 | RSR1 | AP2/EREBP家族的转录因子 | 细胞核 |
籽粒变大, 胚乳心白 |
[ | |
Os10g0191900 | NF-YC12 |
核因子Y转录 因子C亚基 | 细胞核 |
籽粒变小, 胚乳粉质 |
[ | |
Os02g0725900 | NF-YB1 |
核因子Y转录 因子B亚基 |
细胞核和 细胞质 |
籽粒变小, 胚乳垩白率增加 |
[ | |
Os07g0182000 | OsbZIP58/RISBZ1 | bZIP转录因子 | 细胞核 | 籽粒腹白 |
[ | |
造粉体发育相关基因 | Os01g0179400 | SSG4 | 含DUF490结构域的功能未知蛋白 | 造粉体基质 |
籽粒垩白增多, 淀粉粒变大 |
[ |
Os06g0130400 | SSG6 | 氨基转移酶 | 造粉体膜 |
籽粒轻度垩白, 淀粉粒增大 |
[ | |
Os03g0686900 | FLO6 | 含CBM48结构域的蛋白质 | 质体 |
胚乳粉质不透明, 淀粉粒变小 |
[ | |
Os10g0463800 | FLO7 | 含DUF1338结构域的功能未知蛋白 | 造粉体基质 |
籽粒外围粉质, 中心透明 |
[ | |
Os12g0244100 | FLO11 | 热激蛋白70 | 质体 | 籽粒中心部位和外围粉质 |
[ | |
线粒体相关基因 | Os09g2976000 | FSE5/OsPPOR1 | 含PORR结构域的蛋白质 | 线粒体 |
籽粒粉质皱缩, 淀粉粒松散排列 |
[ |
Os02g0816800 | FLO13 |
线粒体呼吸链 复合体Ⅰ附属亚基 | 线粒体 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os03g0720000 | FLO10 | P型PPR蛋白 | 线粒体 |
籽粒小且粉质, 淀粉粒小且松散排列 |
[ | |
Os05g0207200 | PPR5 | P型PPR蛋白 | 线粒体 | 籽粒小且粉质皱缩 |
[ | |
Os07g0688100 | FLO18 | P型PPR蛋白 | 线粒体 |
胚乳粉质不透明, 淀粉粒小且松散排列 |
[ | |
Os08g0290000 | FGR1/OsNPPR1 | P型PPR蛋白 | 细胞核 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os01g0908800 | OsNPPR2 | P型PPR蛋白 | 细胞核 | 胚乳粉质皱缩不透明 |
[ | |
Os07g0508300 | FLO14/OsNPPR3 | P型PPR蛋白 | 细胞核 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os05g0230900 | FLO15 | 乙二醛酶Ⅰ | 质体 |
籽粒中心粉质, 外围半透明 |
[ | |
Os10g0478200 | FLO16 | NAD依赖的胞质苹果酸脱氢酶 | 细胞质 | 籽粒粉质 |
[ | |
Os10g2513000 | OsAlaAT1 | 丙氨酸转氨酶 | 细胞质 |
胚乳里面粉质, 外部正常 |
[ | |
Os05g0405000 | FLO4/OsPPDKB | 丙酮酸磷酸双激酶 |
叶绿体和 细胞质 |
胚乳心白粉质, 外部正常 |
[ | |
贮藏蛋白相关基因 | Os12g0631100 | GPA1 | GTP酶 | 前液泡区室和高尔基体 |
籽粒粉质, 谷蛋白前体增加 |
[ |
Os03g0262900 | GPA2 | 鸟苷酸交换因子 | 细胞质 | 胚乳粉质 |
[ | |
Os03g0835800 | GPA3 |
含Kelch repeat 基序的蛋白质 | 反面高尔基体管网结构和前液泡区室 | 胚乳粉质 |
[ | |
Os03g0209400 | GPA4 | 膜蛋白GOT1B | 内质网输出位点 | 胚乳粉质 |
[ | |
Os06g0643000 | GPA5 | 含PX结构域的蛋白质 | 致密囊泡 |
籽粒心白, 淀粉粒松散排列 |
[ | |
Os09g0286400 | GPA6 |
N |
高尔基体, 反面高尔基体管网结构和前液泡区室 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os08g3307600 | GPA7 | 含DUF1712结构域的CCZ1蛋白 | 前液泡区室 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os01g4698000 | GPA8 |
液泡 | 反面高尔基管网结构和液泡膜 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os01g0874900 | FLO20 | 含丝氨酸羟甲基转移酶的蛋白质 | 细胞核 |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os01g2362000 | Sar1a/b/c/d | 小G蛋白 | 内质网 | 籽粒粉质皱缩 |
[ | |
Os12g3736000 | ||||||
Os01g1501000 | ||||||
Os06g1209000 | ||||||
Os05g0187800 | OsDER1 | 类DERLIN蛋白 | 内质网 | 籽粒粉质皱缩 |
[ | |
脂质合成相关基因 | Os04g0290000 |
FLO1 | 丙酮酸脱氢酶复合物E1组分ɑ1亚基 | 质体 |
胚乳粉质, 淀粉粒松散排列 |
[ |
Os04g4670000 | ESG1 |
ATP结合脂质 转运体 |
叶绿体膜和 造粉体膜 |
胚乳粉质, 淀粉粒变大 |
[ | |
Os08g0192000 | FSE1 | 类磷脂酶蛋白 |
细胞质和 细胞内膜 | 籽粒粉质皱缩 |
[ | |
Os05g0540000 | FSE6 | 糖基转移酶 |
高尔基体和 前液泡区室 |
籽粒粉质皱缩, 淀粉粒松散排列 |
[ | |
其他调控基因 | Os04g0413500 | GIF1 | 细胞壁转化酶 | 细胞壁 |
籽粒垩白增多, 淀粉粒松散排列 |
[ |
Os04g0645100 | FLO2 | 含TPR结构域的蛋白质 | — |
籽粒变小, 胚乳粉质 |
[ | |
Os03g4806000 |
FLO1 | 谷氨酰胺转移酶Ⅰ | — |
胚乳粉质, 淀粉粒松散排列 |
[ | |
Os05g0455500 | FSE4 | Δ1-吡咯啉-5-羧酸合成酶 | 细胞质 |
籽粒粉质皱缩, 淀粉粒松散排列 |
[ | |
Os03g2154000 | FLR1 | 类FERONIA蛋白 | 质体膜 | 籽粒垩白增多 |
[ |
稻米品质包括籽粒的碾磨品质、外观品质(粒型、垩白率、垩白度和透明度等)、营养品质和蒸煮食味品质(直链淀粉含量、胶稠度和糊化温度等)。常规稻米硬度高,碾磨过程中易产生受损淀粉,最终影响稻米品质;粉质胚乳稻米内部淀粉排列松散,硬度较低容易粉碎,干磨产生受损淀粉较
目前为止,人们对参与淀粉合成过程中的酶的功能已经相对清楚,但是人类仍然不能在体外的系统中自主大量且廉价地合成淀粉,这说明目前已知的调控网络并不清晰,还有许多未知的因子参与其中。粉质胚乳突变体表型易于观察和鉴定,因此可用于在水稻中发掘、克隆新的调控淀粉合成基因,阐明其调控分子机制,具有重要的科学意义;同时进一步挖掘利用新基因,对高产优质育种具有重要的指导意义。
参考文献
方慧敏, 张龙, 韦存虚. 水稻粉质胚乳突变体基因的克隆与功能研究进展. 扬州大学学报: 农业与生命科学版, 2020, 41 (6): 15-21 [百度学术]
Fang H M, Zhang L, Wei C X. Research progress on cloning and functional analysis of rice floury endosperm mutant genes. Journal of Yangzhou University: Agricultural and Life Science Edition, 2020, 41 (6): 15-21 [百度学术]
杜溢墨, 潘天, 田云录, 刘世家, 刘喜, 江玲, 张文伟, 王益华, 万建民. 水稻粉质皱缩胚乳突变体fse4的表型分析与基因克隆. 中国水稻科学, 2019, 33 (6): 499-512 [百度学术]
Du Y M, Pan T, Tian Y L, Liu S J, Liu X, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene cloning of rice floury endosperm mutant fse4. Chinese Journal of Rice Science, 2019, 33 (6): 499-512 [百度学术]
张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016, 49 (22): 4267-4283 [百度学术]
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Scientia Agricultura Sinica, 2016, 49 (22): 4267-4283 [百度学术]
Rao Y C, Li Y Y, Qian Q. Recent progress on molecular breeding of rice in China. Plant Cell Reports, 2014, 33 (4): 551-564 [百度学术]
Zhang L, Ren Y L, Lu B Y, Yang C Y, Feng Z M, Liu Z, Chen J, Ma W W, Wang Y, Yu X W, Wang Y L, Zhang W W, Wang Y H, Liu S J, Wu F Q, Zhang X, Guo X P, Bao Y Q, Jiang L, Wan J M. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany, 2016, 67 (3): 633-647 [百度学术]
Smith A M. Prospects for increasing starch and sucrose yields for bioethanol production. The Plant Journal, 2008, 54 (4): 546-558 [百度学术]
Zhang S S, Zhan J P, Yadegari R. Maize opaque mutants are no longer so opaque. Plant Reproduction, 2018, 31 (3): 319-326 [百度学术]
Wu M M, Ren Y L, Cai M H, Wang Y L, Zhu S S, Zhu J P, Hao Y Y, Teng X, Zhu X P, Jing R N, Zhang H, Zhong M S, Wang Y F, Lei C L, Zhang X, Guo X P, Cheng Z J, Lin Q B, Wang J, Jiang L, Bao Y Q, Wang Y H, Wan J M. Rice FLOURY ENDOSPERM10 encodes a pentatricopeptide repeat protein that is essential for the trans‐splicing of mitochondrial nad1 intron 1 and endosperm development. New Phytologist, 2019, 223 (2): 736-750 [百度学术]
Oisen O A, Potter R H, Kalla R. Histo-differentiation and molecular biology of developing cereal endosperm. Seed Science Research, 1992, 2 (3): 117-131 [百度学术]
Yu M Z, Wu M M, Ren Y L, Wang Y H, Li J F, Lei C L, Sun Y L, Bao X H, Wu H M, Yang H, Pan T, Wang Y F, Jing R N, Yan M Y, Zhang H D, Zhao L, Zhao Z C, Zhang X, Guo X P, Cheng Z J, Yang B, Jiang L, Wan J M. Rice FLOURY ENDOSPERM 18 encodes a pentatricopeptide repeat protein required for 5′ processing of mitochondrial nad5 messenger RNA and endosperm development. Journal of Integrative Plant Biology, 2021, 63 (5): 834-847 [百度学术]
Ball S G, Morell M K. From becterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology, 2003, 54: 207-233 [百度学术]
Streb S, Zeeman S C. Starch metabolism in Arabidopsis. The Arabidopsis Book, 2012, 2012 (10): 160 [百度学术]
Denyer K, Dunlap F, Thornbjornsen T, Peter K, Alison M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiology, 1996, 112: 779-785 [百度学术]
Ballicora M A, Iglesias A A, Preiss J. ADP-glucose pyrophosphorylase: A regulatory enzyme for plant starch synthesis. Photosynthesis Research, 2004, 79 (1): 1-24 [百度学术]
Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H, An G, Hahn T R, Jeon J S. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports, 2007, 26 (7): 1083-1095 [百度学术]
于艳芳, 刘喜, 田云录, 刘世家, 陈亮明, 朱建平, 王云龙, 江玲, 张文伟, 王益华, 万建民. 水稻粉质胚乳fse3突变体的表型分析及基因定位. 中国农业科学, 2018, 51 (11): 2023-2037 [百度学术]
Yu Y F, Liu X, Tian Y L, Liu S J, Chen L M, Zhu J P, Wang Y L, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene mapping of a floury and shrunken endosperm mutang fse3 in rice. Scientia Agricultura Sinica, 2018, 51 (11): 2023-2037 [百度学术]
应逸宁, 庞悦涵, 包劲松. 胚乳突变体在水稻淀粉合成调控研究中的作用. 核农学报, 2019, 33 (12): 2362-2375 [百度学术]
Ying Y N, Pang Y H, Bao J S. Progresses in the studies on rice endosperm mutants for starch biosynthesis and regulation. Journal of Nuclear Agricultural Sciences, 2019, 33 (12): 2362-2375 [百度学术]
周立军, 江玲, 翟虎渠, 万建民. 水稻垩白的研究现状与改良策略. 遗传, 2009, 31 (6): 563-572 [百度学术]
Zhou L J, Jiang L, Zhai H Q, Wan J M. Current status and strategies for improvement of rice grain chalkiness. Hereditas (Beijing), 2009, 31 (6): 563-572 [百度学术]
Long W H, Dong B N, Wang Y H, Pan P Y, Wang Y L, Liu L L, Chen X L, Liu X, Liu S J, Tian Y L, Chen L M, Wan J M. FLOURY ENDOSPERM8, encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm. Journal of Plant Biology, 2017, 60 (5): 513-522 [百度学术]
李景芳, 田云录, 刘喜, 刘世家, 陈亮明, 江玲, 张文伟, 徐大勇, 王益华, 万建民. 鸟苷酸激酶OsGK1对水稻种子发育至关重要. 中国水稻科学, 2018, 32 (5): 415-426 [百度学术]
Li J F, Tian Y L, Liu X, Liu S J, Chen L M, Jiang L, Zhang W W, Xu D Y, Wang Y H, Wan J M. The guanylate kinase OsGK1 is essential for seed development in rice. Chinese Journal of Rice Science, 2018, 32 (5): 415-426 [百度学术]
Wei X J, Jiao G A, Lin H Y, Sheng Z H, Shao G N, Xie L H, Tang S Q, Xu Q G, Hu P S. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. Journal of Integrative Plant Biology, 2017, 59 (2): 134-153 [百度学术]
Tanaka N, Fujita N, Nishi A, Satoh H, Hosaka Y, Ugaki M, Kawasaki S, Nakamura Y. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnology Journal, 2004, 2 (6): 507-516 [百度学术]
Zeng D L, Yan M X, Wang Y H, Liu X F, Qian Q, Li J Y. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Molecular Biology, 2007, 65 (4): 501-509 [百度学术]
Isshiki M, Nakajima M, Satoh H, Shimamoto K. dull: Rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. The Plant Journal, 2000, 23 (4): 451-460 [百度学术]
Isshiki M, Matsuda Y, Takasaki A, Wong H L, Satoh H, Shimamoto K. Du3, a mRNA cap-binding protein gene, regulates amylose content in Japonica rice seeds. Plant Biotechnology, 2008, 25 (5): 483-487 [百度学术]
Cai Y, Zhang W W, Fu Y S, Shan Z Z, Xu J H, Wang P, Kong F, Jin J, Yan H G, Ge X Y, Wang Y X, You X M, Chen J, Li X, Chen W W, Chen X G, Ma J, Tang X J, Zhang J, Bao Y Q, Jiang L, Wang H Y, Wan J M. Du13 encodes a C2H2 zinc-finger protein that regulates W
Fu F F, Xue H W. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiology, 2010, 154 (2): 927-938 [百度学术]
Bello B K, Hou Y X, Zhao J, Jiao G A, Wu Y W, Li Z Y, Wang Y F, Tong X H, Wang W, Yuan W Y, Wei X J, Zhang J. NF‐YB1‐YC12‐bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnology Journal, 2019, 17 (7): 1222-1235 [百度学术]
Xiong Y F, Ren Y, Li W, Wu F S, Yang W J, Huang X L, Yao J L. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. Journal of Experimental Botany, 2019, 70 (15): 3765-3780 [百度学术]
Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. Journal of Experimental Botany, 2013, 64 (11): 3453-3466 [百度学术]
Xu H, Li X F, Zhang H, Wang L C, Zhu Z G, Gao J P, Li C S, Zhu Y. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice. Plant, Cell & Environment, 2020, 43 (8): 1879-1896 [百度学术]
Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. The Plant Journal, 2009, 59 (6): 908-920 [百度学术]
Yamamoto M P, Onodera Y, Touno S M, Takaiwa F. Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiology, 2006, 141 (4): 1694-1707 [百度学术]
Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, Kumamaru T, Okazaki M, Kusano M, Saito K, Toyooka K, Sato M, Ai Y F, Jane J L, Nakamura Y, Fujita N. Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiology, 2016, 170 (3): 1255-1270 [百度学术]
Yun M S, Kawagoe Y. Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. Plant & Cell Physiology, 2010, 51 (9): 1469-1479 [百度学术]
Cai Y, Chen H Y, Xiao N, Wu Y Y, Yu L, Chen Z C, Liu J J, Shi W, Pan C H, Li Y H, Zhou C H, Ji H J, Huang N S, Zhang X X, Zhang Y H, Li A H. Substandard starch grain4 may function in amyloplast development by influencing starch and lipid metabolism in rice endosperm. Journal of Plant Physiology, 2022, 270: 153638 [百度学术]
Matsushima R, Maekawa M, Kusano M, Tomita K, Kondo H, Nishimura H, Crofts N, Fujita N, Sakamoto W. Amyloplast membrane protein SUBSTANDARD STARCH GRAIN6 controls starch grain size in rice endosperm. Plant Physiology, 2016, 170 (3): 1445-1459 [百度学术]
Peng C, Wang Y H, Liu F, Ren Y L, Zhou K N, Lv J, Zheng M, Zhao S L, Zhang L, Wang C M, Jiang L, Zhang X, Guo X P, Bao Y Q, Wan J M. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal, 2014, 77 (6): 917-930 [百度学术]
Zhang L, Ren Y L, Lu B Y, Yang C Y, Feng Z M, Liu Z, Chen J, Ma W W, Wang Y, Yu X W, Wang Y L, Zhang W W, Wang Y H, Liu S J,Wu F Q, Zhang X, Guo X P, Bao Y Q, Jiang L, Wan J M. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany, 2016, 67 (3): 633-647 [百度学术]
Zhu X P, Teng X, Wang Y L, Hao Y Y, Jing R N, Wang Y F, Liu Y, Zhu J P, Wu M M, Zhong M S, Chen X L, Zhang Y Y, Zhang W W, Wang C M, Wang Y H, Wan J M. FLOURY ENDOSPERM11 encoding a plastid heat shock protein 70 is essential for amyloplast development in rice. Plant Science, 2018, 277: 89-99 [百度学术]
Logan D C. The mitochondrial compartment. Journal of Experimental Botany, 2006, 57 (6): 1225-1243 [百度学术]
Dudkina N V, Heinemeyer J, Sunderhaus S, Boekema E J, Braun H P. Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends in Plant Science, 2006, 11 (5): 232-240 [百度学术]
郝媛媛, 赵向前, 黄福灯, 李春寿. PPR蛋白在植物细胞器组分转录后调控中的作用机制. 遗传, 2021, 43 (11): 1050-1065 [百度学术]
Hao Y Y, Zhao X Q, Huang F D, Li C S. The role of PPR proteins in posttranscriptional regulation of organelle components in plants. Hereditas (Beijing), 2021, 43 (11): 1050-1065 [百度学术]
Rasmusson A G, V Heiser V, Zabaleta E, Brennicke A, Grohmann L. Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1998, 1364 (2): 101-111 [百度学术]
Wang L, Zhang W W, Liu S J, Tian Y L, Liu X, Yan H G, Cai Y, Teng X, Dong H, Chen R B, Jiang X K, Wang Y H, Wan J M. Rice FLOURY SHRUNKEN ENDOSPERM 5 encodes a putative plant organelle RNA recognition protein that is required for cis-splicing of mitochondrial nad4 intron 1. Rice, 2021, 14 (1): 29 [百度学术]
Hu T T, Tian Y L, Zhu J P, Wang Y L, Jing R N, Lei J, Sun Y L, Yu Y F, Li J F, Chen X L, Zhu X P, Hao Y Y, Liu L L, Wang Y H, Wan J M. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Reports, 2018, 37 (12): 1667-1679 [百度学术]
Zhang L, Qi Y Z, Wu M M, Zhao L, Zhao Z C, Lei C L, Hao Y Y, Yu X W, Sun Y L, Zhang X, Guo X P, Ren Y L, Wan J M. Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. The Crop Journal, 2020, 9 (2): 282-296 [百度学术]
Asano T, Miyao A, Hirochika H, Kikuchi S, Kadowakia K I. A pentatricopeptide repeat gene of rice is required for splicing of chloroplast transcripts and RNA editing of ndhA. Plant Biotechnology Journal, 2013, 30 (1): 57-64 [百度学术]
Tang J P, Zhang W W, Wen K, Chen G M, Sun J, Tian Y L, Tang W J, Yu J, An H Z, Wu T T, Kong F, Terzaghi W, Wang C M, Wan J M. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Molecular Biology, 2017, 95 (4-5): 1-13 [百度学术]
Kim S R, Yang J I, Moon S, Ryu C H, An K, Kim K M, Yim J, An G. Rice OGR1 encodes a pentatricopeptide repeat‒DYW protein and is essential for RNA editing in mitochondria. The Plant Journal, 2009, 59 (5): 738-749 [百度学术]
Hao Y Y, Wang Y L, Wu M M, Zhu X P, Teng X, Sun Y L, Zhu J P, Zhang Y Y, Jing R N, Lei J, Li J F, Bao X H, Wang C M, Wang Y H, Wan J M. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. Journal of Experimental Botany, 2019, 70 (18): 4705-4720 [百度学术]
毕梦蕾, 唐小涵, 王云龙, 段二超, 滕烜, 张元燕, 江玲, 张文伟, 王益华, 万建民. 一个细胞核定位PPR蛋白OsNPPR2在水稻种子发育中起重要作用. 植物生理学报, 2019, 56 (4): 789-798 [百度学术]
Bi M L, Tang X H, Wang Y L, Duan E C, Teng X, Zhang Y Y, Jiang L, Zhang W W, Wang Y H, Wan J M. A nucleus-localized PPR protein OsNPPR2 is important for seed development in rice. Plant Physiology Journal, 2019, 56 (4): 789-798 [百度学术]
Xue M Y, Liu L L, Yu Y F, Zhu J P, Gao H, Wang Y H, Wan J M. Lose-of-function of a rice nucleolus localized pentatricopeptide repeat protein is responsible for the floury endosperm14 mutant phenotypes. Rice, 2019, 12 (1): 100 [百度学术]
Schwarzlander M, Fuchs P. Plant mitochondrial membranes: Adding structure and new functions to respiratory physiology. Current Opinion in Plant Biology, 2017, 40: 147-157 [百度学术]
Ishimaru T, Ida M, Hirose S, Shimamura S, Masumura T, Nishizawa N K, Nakazono M, Kondo M. Laser microdissection-based gene expression analysis in the aleurone layer and starchy endosperm of developing rice caryopses in the early storage phase. Rice, 2015, 8 (1): 22 [百度学术]
You X M, Zhang W W, Hu J L, Jing R N, Cai Y, Feng Z M, Kong F, Zhang J, Yan H G, Chen W W, Chen X G, Ma J, Tang X J, Wang P, Zhu S S, Liu L L, Wan J M. FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. Plant Cell Reports, 2019, 38 (3): 345-359 [百度学术]
Teng X, Zhong M S, Zhu X P, Wang C M, Ren Y L, Wang Y L, Zhang H, Jiang L, Wang D, Hao Y Y, Wu M M, Zhu J P, Zhang X, Guo X P, Wang Y H, Wan J M. FLOURY ENDOSPERM16 encoding a NAD‐dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnology Journal, 2019, 17 (10): 1914-1927 [百度学术]
Yang J, Kim S R, Lee S K, Choi H, Jeon J S, An G. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Science, 2015, 240: 79-89 [百度学术]
Kang H G, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant Journal, 2005, 42 (6): 901-911 [百度学术]
Bachtel D B, Juliano B O. Formation of protein bodies in the starchy endosperm of rice (Oryza sativa L.): A re-investigation. Annals of Botany, 1980, 45 (5): 503-509 [百度学术]
Yamagata H, Sugimoto T, Tanaka K, Kasai Z. Biosynthesis of storage proteins in developing rice seeds. Plant Physiology, 1982, 70 (4): 1094-1100 [百度学术]
Krishnan H B, Franceschi V R, Okita T W. Immunochemical studies on the role of the Golgi complex in protein-body formation in rice seeds. Planta, 1986, 169 (4): 471-480 [百度学术]
Zhu J P, Ren Y L, Zhang Y Y, Yang J, Duan E C, Wang Y L, Liu F, Wu M M, Wang Y F, Hu T T, Hao Y Y, Teng X, Zhu X P, Lei J, Jing R N, Yu Y F, Sun Y L, Bao X H, Bao Y Q, Wang Y H, Wan J M. Subunit E isoform 1 of vacuolar
Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS Letters, 2007, 581 (11): 2076-2082 [百度学术]
Wang Y H, Liu F, Ren Y L, Wang Y L, Liu X, Long W H, Wang D, Zhu J P, Zhu X P, Jing R N, Wu M M, Hao Y Y, Jiang L, Wang C M, Wang H Y, Bao Y Q, Wan J M. GOLGI TRANSPORT 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells. The Plant Cell, 2016, 28 (11): 2850-2865 [百度学术]
Tian L H, Dai L L, Yin Z J, Fukuda M, Kumamaru T, Dong X B, Xu X P, Qu L Q. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm. Journal of Experimental Botany, 2013, 64 (10): 2831-2845 [百度学术]
Qian D D, Tian L H, Qu L Q. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Scientific Reports, 2015, 5: 14255 [百度学术]
Qian D D, Chen G Q, Tian L H, Qu L Q. OsDER1 is an ER-associated protein degradation factor that responds to ER stress. Plant Physiology, 2018, 178 (1): 402-412 [百度学术]
Wang Y H, Ren Y L, Liu X, Jiang L, Chen L M, Han X H, Jin M N, Liu S J, Liu F, Lv J, Zhou K N, Su N, Bao Y Q, Wan J M. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. The Plant Journal, 2010, 64 (5): 812-824 [百度学术]
Liu F, Ren Y L, Wang Y H, Peng C, Zhou K N, Lv J, Guo X P, Zhang X, Zhong M S, Zhao S L, Jiang L, Wang H Y, Bao Y Q, Wan J M. OsVPS9A functions cooperatively with OsRAB5A to regulate post-Golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells. Molecular Plant, 2013, 6 (6): 1918-1932 [百度学术]
Ren Y L, Wang Y H, Liu F, Zhou K N, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma W W, Han X H, Zhang X, Guo X P, Wu F Q, Cheng Z J, Wang J L, Lei C L, Lin Q B, Jiang L, Wu C Y, Bao Y Q, Wang H Y, Wan J M. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. The Plant Cell, 2014, 26 (1): 410-425 [百度学术]
Ren Y L, Wang Y H, Pan T, Wang Y L, Wang Y F, Gan L, Wei Z Y, Wang F, Wu M M, Jing R N, Wang J C, Wan G X, Bao X H, Zhang B L, Zhang P C, Zhang Y, Ji Y, Lei C L, Zhang X, Cheng Z J, Lin Q B, Zhu S S, Zhao Z C, Wang J, Wu C Y, Qiu L J, Wang H Y, Wan J M. GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins. The Plant Cell, 2020, 32 (3): 758-777 [百度学术]
Pan T, Wang Y H, Jing R N, Wang Y F, Wei Z Y, Zhang B L, Lei C L, Qi Y Z, Wang F, Bao X H, Yan M Y, Zhang Y, Zhang P C, Yu M Z, Wan G X, Chen Y, Yang W K, Zhu J P, Zhu Y, Zhu S S, Cheng Z J, Zhang X, Jiang L, Ren Y L, Wan J M. Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1‒CCZ1. Plant Physiology, 2021, 187 (4): 2174-2191 [百度学术]
Zhu J P, Ren Y L, Wang Y L, Liu F, Teng X, Zhang Y Y, Duan E C, Wu M M, Zhong M S, Hao Y Y, Zhu X P, Lei J, Wang Y F, Yu Y F, Pan T, Bao Y Q, Wang Y H, Wan J M. OsNHX5-mediated pH homeostasis is required for post-Golgi trafficking of seed storage proteins in rice endosperm cells. BMC Plant Biology, 2019, 19 (1): 295 [百度学术]
Yan M Y, Pan T, Zhu Y, Jiang X K, Yu M Z, Wang R Q, Zhang F, Luo S, Bao X H, Chen Y, Zhang B L, Jing R N, Cheng Z J, Zhang X, Lei C L, Lin Q B, Zhu S S, Guo X P, Ren Y L, Wan J M. FLOURY ENDOSPERM20 encoding SHMT4 is required for rice endosperm development. Plant Biotechnology Journal, 2022, 20 (8): 1438-1440 [百度学术]
Heemskerk J W M, Storz T, Schmidt R R, Heinz E. Biosynthesis of digalactosyldiacylglycerol in plastids from 16∶3 and 18∶3 plants. Plant Physiology, 1990, 93 (4): 1286-1294 [百度学术]
Lei J, Teng X, Wang Y F, Jiang X K, Zhao H H, Zheng X M, Ren Y L, Dong H, Wang Y L, Duan E C, Zhang Y Y, Zhang W W, Yang H, Chen X L, Chen R B, Zhang Y, Yu M Z, Xu S B, Bao X H, Zhang P C, Liu S J, Liu X, Tian Y L, Jiang L, Wang Y H, Wan J M. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. Plant Biotechnology Journal, 2022, 20 (3): 437-453 [百度学术]
Wang R Q, Ren Y L, Yan H G, Teng X, Zhu X P, Wang Y P, Zhang X, Guo X P, Lin Q B, Cheng Z J, Lei C L, Wang J L, Jiang L, Wang Y H, Wan J M. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. Plant Science, 2021, 305: 110831 [百度学术]
Xu C C, Fan J L, Rroehlich J E, Awai K, Benning C. Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. The Plant Cell, 2005, 17 (11): 3094-3110 [百度学术]
Long W H, Wang Y L, Zhu S S, Jing W, Wang Y H, Ren Y L, Tian Y L, Liu S J, Liu X, Chen L M, Wang D, Zhong M S, Zhang Y Y, Hu T T, Zhu J P, Hao Y Y, Zhu X P, Zhang W W, Wang C M, Zhang W H, Wan J M. FLOURY SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice. Plant Physiology, 2018, 177 (2): 698-712 [百度学术]
Yang H, Liu L L, Wu K, Liu S J, Liu X, Tian Y L, Wang Y L, Duan E C, Lei J, Bao X H, Chen R B, Chen X L, Ji Y, Zhang Y, Wang Y H, Wan J M. FLOURY AND SHRUNKEN ENDOSPERM6 encodes a glycosyltransferase and is essential for the development of rice endosperm. Journal of Plant Biology, 2021, 65: 187-198 [百度学术]
Liu X L, Guo T, Wan X Y, Wang H Y, Zhu M Z, Li A L, Su N, Shen Y Y, Mao B G, Zhai H Q, Mao L, Wan J M. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics, 2010, 11: 730 [百度学术]
Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40 (11): 1370-1374 [百度学术]
She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Maito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell, 2010, 22 (10): 3280-3294 [百度学术]
Suzuki R, Imamura T, Nonaga Y, Kusano H, Teramura H, Sekine K T, Yamashita T, Shimada H. A novel FLOURY ENDOSPERM2 (FLO2)-interacting protein, is involved in maintaining fertility and seed quality in rice. Plant Biotechnology, 2020, 37 (1): 47-55 [百度学术]
Lou G M, Chen P L, Zhou H, Li P B, Xiong J W, Wan S S, Zheng Y Y, Alam M, Liu R J, Zhou Y, Yang H Y, Tian Y H, Bai J J, Rao W T, Tan X, Gao H Z, Li Y H, Gao G J, Zhang Q L, Li X H, Liu C G, He Y Q. FLOURY ENDOSPERM19 encoding a class I glutamine aminotransferase affects grain quality in rice. Molecular Breeding, 2021, 41 (5): 36 [百度学术]
Li C Y, Wang L, Cui Y C, He L M, Qi Y Y, Zhang J X, Lin J Z, Liao H D, Lin Q L, Yang T, Yu F, Liu X M. Two FERONIA-like receptor (FLR) genes are required to maintain architecture, fertility, and seed yield in rice. Molecular Breeding, 2016, 36 (11): 151 [百度学术]
Wang L, Wang D D, Yang Z H, Jiang S, Qu J N, He W, Liu Z M, Xing J J, Ma Y C, Lin Q L, Yu F. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Science China Life Sciences, 2021, 64 (2): 294-310 [百度学术]
Mo Y J, Jeung J U, Shin Y S, Park C S, Kang K H, Kim B K. Agronomic and genetic analysis of Suweon 542, a rice floury mutant line suitable for dry milling. Rice, 2013, 6 (1): 37 [百度学术]
Long X H, Liu Q Q, Chan M L, Wang Q, Sun S S M. Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnology Journal, 2012, 11 (4): 490-501 [百度学术]
Raigond P, Ezekeel R, Raigond B. Resistant starch in food: A review. Jouranal of the Science of Food and Agriculture, 2015, 95 (10): 1968-1978 [百度学术]
Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J, Yu H, Smith S M, Wu D X, Li J Y. Critical roles of soluble starch synthase SSⅢa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy Sciences of the United States of America, 2016, 113 (45): 12844-12849 [百度学术]