摘要
近些年来,我国农田镉、砷污染日益严重,导致稻米镉、砷超标事件时有发生。稻米是全球约一半人口的主粮,也是人体从食物中摄入镉和砷的主要来源,土壤中的镉和砷被水稻吸收后,通过食物链的富集作用在人体内积累,进而危害人体健康。因此,减少镉、砷在稻米中的积累成为保障我国粮食质量安全和促进水稻产业发展亟待解决的重要问题。研究水稻对镉和砷的累积机制,在此基础上培育镉、砷低积累水稻品种,是解决稻米镉和砷超标最经济的方法,对实现污染农田的稻米安全生产具有重要意义。本研究主要综述了农田镉和砷的存在形态及生物有效性,阐述了水稻吸收、转运镉和砷的分子机制,以及镉、砷耐受机制,概述了镉、砷低积累水稻育种进展,并对未来的发展方向进行了展望,旨在为减少水稻籽粒镉、砷含量的研究提供一些参考。
由于矿山开采、冶炼、污染水灌溉及过度施用农药化肥等人为活动的长期进行,土壤镉(Cd, cadmium)、砷(As, arsenic)污染加剧。2014年我国发布的《全国土壤污染状况调查公报》显示,农田土壤Cd、As污染物的点位超标率分别为7.0%、2.7
水稻(Oryza sativa L.)是全球约一半人口的主粮,也是人体摄入Cd和As的主要来
Cd在土壤中以无机态+2价形式存在,As则不同,除+3价和+5价的无机态As,还包括甲基As。As的甲基化形式主要包含单甲基砷(MMA, monomethylarsonic acid)、二甲基砷(DMA, dimethylarsinic acid)和三甲基砷(TMA, trimethylarsenic acid)。
土壤的氧化还原状态(Eh)会影响土壤中Cd、As的生物有效性。水稻在营养生长期需要长时间灌溉,而在分蘖盛期和成熟前需要排水晒田,因此稻田会经历周期性的淹水和排水。淹水后,由于微生物活动消耗氧气,导致土壤Eh降低,硫酸盐被还原为硫化物,C
土壤酸碱度(pH)也是影响Cd、As生物有效性的重要因素。淹水条件下,酸性土壤的pH升高至中性,土壤中铁锰(氢)氧化物表面的吸附位点增加,促进对C
水稻对Cd和As的吸收、转运和分配过程涉及多个转运蛋白的跨膜运输。目前已克隆和鉴定出多个参与该过程的Cd、As转运体基因。
根系吸收的Cd总量决定了植株整体的Cd积累量,目前已发现OsNRAMP5、OsNRAMP1、OsIRT1、OsIRT2、OsCd1、OsZIP5和OsZIP9等转运体参与水稻对Cd的吸

图1 水稻根部Cd、As的吸收转运
Fig.1 Uptake and transport of Cd and As in rice roots
A:水稻根部Cd的吸收和转运;B:水稻根部As的吸收和转运。红色突出标注、黄色突出标注分别代表内皮层和外皮层的远轴面与近轴面
A: Uptake and transport of Cd in rice roots; B: Uptake and transport of As in rice roots. The red highlights and yellow highlights representthe distal and proximal sides of the exodermis and endodermis, respectively
水稻对不同形态As的吸收机制不同,As(Ⅲ)是稻田淹水条件下As的主要形态。硅(Si, silicon)吸收途径是As(Ⅲ)进入水稻根部的主要方式,已报道硅转运蛋白Lsi1和Lsi2介导Si和As(Ⅲ)的吸
As(Ⅴ)主要存在于干水条件下的稻田。由于As(Ⅴ)与磷酸盐(Pi, phosphate)具有相似的化学结构,因此磷酸盐转运蛋白也介导As(Ⅴ)的吸收。目前已发现OsPT1、OsPT4和OsPT8对As(Ⅴ)和Pi的吸收均有贡
土壤中的Cd被水稻根系吸收后,大部分Cd被截留在根细胞的液泡中,少部分Cd由木质部装载并借助根压和蒸腾作用的动力运输到地上部。OsHMA3、OsABCC9均定位于根细胞液泡膜,通过将Cd区隔化在根细胞的液泡中,进而调节木质部装载的Cd总
木质部装载也是决定水稻籽粒中As含量的关键过程。As(Ⅲ)是木质部伤流液中As的主要存在形式。Tang
茎节是地上部Cd和As的分配的枢纽。根系中的Cd和As转运到地上部分后,大部分的Cd和As在水稻茎节处发生由扩大维管束(EVBs, enlarged vascular bundles)向分散维管束(DVBs,diffuse vascular bundles)的转移。
目前,已鉴定出转运蛋白OsLCT1、OsHMA2、OsZIP7、OsCCX2参与茎节中Cd的转运和分

图2 水稻茎节中Cd、As的转运
Fig.2 Transfer of Cd and As in rice nodes
红色突出标注代表维管束鞘细胞的远轴面
Yellow highlights represent the distal side of bundle sheath cell
有关As在水稻地上部运输和分配的研究较少,目前报道的转运体主要有Lsi2、OsABCC1和OsPTR
基因名称 Gene name | 基因号 Gene ID | 主要表达部位 Main expression organ | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 References |
---|---|---|---|---|---|
OsNRAMP1 | LOC_Os07g15460 |
除中央维管束外的所有 根细胞以及叶肉细胞 | 质膜 | 参与根部Cd、Mn的吸收 |
[ |
OsNRAMP5 | LOC_Os07g15370 | 根部内、外皮层 | 质膜 | 参与根部Cd、Mn的吸收 |
[ |
OsIRT1 | LOC_Os03g46470 | 根部的表皮、外皮层、靠近内皮层的皮层细胞、中柱 | 质膜 | 参与根部Cd、Fe的吸收 |
[ |
OsIRT2 | LOC_Os03g46454 | 根部 | 质膜 | 参与根部Cd、Fe的吸收 |
[ |
OsCd1 | LOC_Os03g02380 | 根部内皮层、外皮层、皮层薄壁细胞、中柱细胞 | 质膜 | 参与根部Cd、Mn的吸收 |
[ |
OsZIP5 | LOC_Os05g39560 |
大部分组织(如根、茎、 叶鞘、叶片、穗、颖壳等) | 质膜 | 参与根部Zn、Cd的吸收 |
[ |
OsZIP9 | LOC_Os05g39540 | 根、茎、颖壳 | 质膜 | 参与根部Zn、Cd的吸收 |
[ |
OsHMA2 | LOC_Os06g48720 | 根、基部茎、上部茎节 | 质膜 | 参与Zn、Cd从根部向地上部的转运及地上部的分配 |
[ |
OsHMA3 | LOC_Os07g12900 | 根部 | 液泡膜 | 负责将Cd隔离在根部液泡中 |
[ |
OsZIP7 | LOC_Os05g10940 |
根中柱和茎节维管束 薄壁细胞 | 质膜 | 参与Zn、Cd从根部向地上部的转运及地上部的分配 |
[ |
OsCAL1 | LOC_Os02g41904/ | 根、茎节、叶鞘 | 细胞壁(分泌蛋白) | 参与Cd从根部向地上部的转运 |
[ |
OsCAL2 | LOC_Os04g44130 | 根尖 | 细胞壁 | 参与Cd从根部向地上部的转运 |
[ |
OsCCX2 | LOC_Os03g45370 | 茎节的木质部区域 | 质膜 | 参与地上部的Cd分配 |
[ |
OsLCT1 | LOC_Os06g38120 | 茎节、叶片 | 质膜 | 参与地上部的Cd分配 |
[ |
OsLCT2 |
GenBank acces- sion number: MW757982 | 根部 | 内质网 | 参与Cd从根部向地上部的转运 |
[ |
OsABCC9 | LOC_Os04g13210 | 根部 | 液泡膜 | 负责将Cd隔离在根部液泡中 |
[ |
OsABCG36 | LOC_Os01g42380 | 根部 | 质膜 | 参与根部Cd的外排 |
[ |
Lsi1 | LOC_Os02g51110 | 根部内、外皮层 | 质膜 | 参与根部As(Ⅲ)的吸收和外排以及部分DMA、MMA的吸收 |
[ |
Lsi2 | LOC_Os03g01700 | 根部内皮层、外皮层、茎节 | 质膜 |
参与As(Ⅲ)的根部吸收以及 地上部的分配 |
[ |
OsNIP3;2 | LOC_Os08g05590 | 侧根、初生根的中柱 | 质膜 | 参与根部As(Ⅲ)的吸收 |
[ |
OsPTR7 | LOC_Os01g04950 | 地上部、根部 | 质膜 | 参与地上部的DMA分配 |
[ |
OsABCC1 | LOC_Os04g52900 | 根、茎节、叶 | 液泡膜 | 负责将As(Ⅲ)-PCs隔离在液泡 |
[ |
OsABCC7 | LOC_Os04g49900 | 根部中柱 | 质膜 |
参与As(Ⅲ)-PC2及As(Ⅲ)-GS3 从根到地上部的转运 |
[ |
OsPT1 | LOC_Os03g05620 | 根、地上部 | 质膜 | 参与根部As(Ⅴ)的吸收 |
[ |
OsPT4 | LOC_Os04g10750 | 根、胚 | 质膜 | 参与根部As(Ⅴ)的吸收 |
[ |
OsPT8 | LOC_Os10g30790 | 根尖、侧根 | 质膜 | 参与根部As(Ⅴ)的吸收 |
[ |
为减轻Cd和As的毒害作用,水稻形成了耐受Cd和As的机制,主要包括外排、与硫醇类化合物络合和液泡隔离。
质膜转运蛋白OsABCG36可将Cd外排出根细胞,以此来增强水稻对Cd的耐受
植物螯合肽是由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成的富含巯基的小分子多肽,它不是由基因直接编码形成,而是由PC合成酶(PCS, phytochelatin synthase enzyme)催化底物谷胱甘肽(GSH, glutathione)聚合而
液泡隔离对水稻耐受Cd、As的毒害也十分重要。过表达OsHMA3显著减少Cd由根向地上部的转移,这与OsHMA3将Cd隔离到根部液泡中的功能一
OsNRAMP5是目前发现的对水稻吸收Cd贡献最大的转运蛋白,被广泛应用于Cd低积累水稻育种。理化诱变和基因编辑获得的osnramp5对Cd的吸收均大幅度降
分子标记辅助育种是开展低Cd新品种培育的有效策略。目前已有初步尝试,王天抗
过表达OsHMA3和下调OsLCT1的表达均可降低糙米Cd含量,且不影响水稻的生长、产量及其他矿质元素的含
与Cd相比,As低积累水稻育种的报道相对较少。Si、Pi对水稻生长发育、产量品质和抗逆性等方面至关重要,而As(Ⅲ)与Si共享转运途径,As(Ⅴ)与Pi共享转运途径,突变Lsi2或敲除磷酸盐转运体基因尽管能显著降低籽粒As积累,但也不可避免地减少Si、Pi的吸收和积累,从而导致稻谷减产和植株生长受抑制的问
籽粒中Cd、As的积累呈显著负相
当前,我国部分稻米存在Cd、As含量超标的问题,威胁着食品安全和人体健康。近些年来,Cd和As在水稻中吸收、转运、耐受的分子机制研究和Cd、As低积累品种的培育已取得了一系列进展,但在以下方面有待加强研究:(1)水稻Cd、As积累的分子机制研究多限于单个转运蛋白的功能解析,不同转运蛋白之间的相互关系及耦合效应研究相对不足,且转运蛋白上游的调控网络研究尚不清晰。(2)突变Cd转运体基因在降低稻米Cd积累的同时,可能造成水稻中Mn、Fe、Zn等必需矿质元素的缺乏,突变As转运体基因在降低稻米As积累的同时,可能造成水稻Si、Pi等元素的缺乏,已发现的不影响水稻生长发育和主要农艺性状的低Cd或低As等位基因还不足,因此,迫切需要在水稻自然群体中鉴定更多的低Cd和低As优异等位变异,以开展Cd、As低积累水稻的分子设计育种。(3)通过基因编辑,可对负责Cd积累的主效转运蛋白OsNRAMP5和负责As积累的主效转运蛋白Lsi2进行关键氨基酸残基的定向突变,尝试创制不吸收Cd、专一性吸收Mn的OsNRAMP5理想型变异体,以及不吸收As、专一性吸收Si的Lsi2理想型变异体。(4)由于在稻田淹水、排水过程中,籽粒Cd和As的积累变化规律表现相反,因此Cd、As复合污染土壤安全生产水稻面临巨大挑战。目前可通过稻田水分管理、施加土壤改良剂来控制水稻对Cd、As的吸收和积累;另外,种植OsNRAMP5突变的Cd低积累水稻材
参考文献
中华人民共和国生态环境部. 全国土壤污染状况调查公报. 中国环保产业, 2014(5): 10-11 [百度学术]
Ministry of Ecology and Environment of the People's Republic of China. The report on the national general survey of soil contamination. China Environmental Protection Industry, 2014(5): 10-11 [百度学术]
Mu T, Wu T, Zhou T, Li Z, Ouyang Y, Jiang J, Zhu D, Hou J, Wang Z, Luo Y, Christie P, Wu L. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. The Science of the Total Environment, 2019, 677: 373-381 [百度学术]
Wang P, Chen H, Kopittke P M, Zhao F J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249: 1038-1048 [百度学术]
GB 2762—2017 《食品安全国家标准 食品中污染物限量》. 中国食品卫生杂志, 2018, 30(3): 329-340 [百度学术]
GB 2762—2017 “National Food Safety Standard Limits of Contaminants in Food”. Chinese Journal of Food Hygiene, 2018, 30 (3): 329-340 [百度学术]
Zhu Y G, Sun G X, Lei M, Teng M, Liu Y X, Chen N C, Wang L H, Carey A M, Deacon C, Raab A, Meharg A A, Williams P N. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science & Technology, 2008, 42 (13): 5008-5013 [百度学术]
Liao X Y, Chen T B, Xie H, Liu Y R. Soil as contamination and its risk assessment in areas near the industrial districts of Chenzhou city, Southern China. Environment International, 2005, 31 (6): 791-798 [百度学术]
Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum M F, Hafeez F, Ok Y S. Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: A critical review. Environmental Science and Pollution Research International, 2016, 23 (18): 17859-17879 [百度学术]
Li G, Sun G X, Williams P N, Nunes L, Zhu Y G. Inorganic arsenic in Chinese food and its cancer risk. Environment International, 2011, 37 (7): 1219-1225 [百度学术]
Meharg A A, Norton G, Deacon C, Williams P, Adomako E E, Price A, Zhu Y, Li G, Zhao F J, McGrath S, Villada A, Sommella A, De Silva P M, Brammer H, Dasgupta T, Islam M R. Variation in rice cadmium related to human exposure. Environmental Science & Technology, 2013, 47 (11): 5613-5618 [百度学术]
Agency for Toxic Substances and Disease Registry.Delailed data table for the 2019 priority list of hazardous substances, the subject of toxicological profiles. (2020-1-17)[2022-05-04]. https://www.atsdr.cdc.gov/spl/#2019spl [百度学术]
Nawrot T S, Staessen J A, Roels H A, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J. Cadmium exposure in the population: From health risks to strategies of prevention. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 2010, 23 (5): 769-782 [百度学术]
Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano J H, Ahsan H. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicology and Applied Pharmacology, 2009, 239 (2): 184-192 [百度学术]
Fulda B, Voegelin A, Kretzschmar R. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science & Technology, 2013, 47 (22): 12775-12783 [百度学术]
Xu X, Chen C, Wang P, Kretzschmar R, Zhao F J. Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environmental Pollution, 2017, 231 (Pt 1): 37-47 [百度学术]
Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 2011, 83 (7): 925-932 [百度学术]
Li R Y, Stroud J L, Ma J F, McGrath S P, Zhao F J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science & Technology, 2009, 43 (10): 3778-3783 [百度学术]
Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology, 2009, 43 (24): 9361-9367 [百度学术]
Wang J, Wang P M, Gu Y, Kopittke P M, Zhao F J, Wang P. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environmental Science & Technology, 2019, 53 (5): 2500-2508 [百度学术]
Zhu H, Chen C, Xu C, Zhu Q, Huang D. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 2016, 219: 99-106 [百度学术]
陈静, 王学军, 朱立军. pH对砷在贵州红壤中的吸附的影响. 土壤, 2004, 36 (2): 211-214 [百度学术]
Chen J, Wang X J, Zhu L J. Effect of pH on adsorption and transformation of arsenic in red soil in guizhou. Soils, 2004, 36 (2): 211-214 [百度学术]
史高玲, 周东美, 余向阳, 娄来清, 童非, 樊广萍, 刘丽珠, 高岩. 水稻和小麦累积镉和砷的机制与阻控对策. 江苏农业学报, 2021, 37 (5): 1333-1343 [百度学术]
Shi G L, Zhou D M, Yu X Y, Lou L Q, Tong F, Fan G P, Liu L Z, Gao Y. Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies. Jiangsu Journal of Agricultural Sciences, 2021, 37 (5): 1333-1343 [百度学术]
Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao F J. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice, 2017, 10 (1): 9 [百度学术]
Sasaki A, Yamaji N, Yokosho K, Ma J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 2012, 24 (5): 2155-2167 [百度学术]
Chang J D, Huang S, Konishi N, Wang P, Chen J, Huang X Y, Ma J F, Zhao F J. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Journal of Experimental Botany, 2020, 71 (18): 5705-5715 [百度学术]
Chang J D, Huang S, Yamaji N, Zhang W, Ma J F, Zhao F J. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant, Cell & Environment, 2020, 43 (10): 2476-2491 [百度学术]
Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the F
Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. Rice plants take up iron as an F
Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, Feng L, Chen X, Zhang T, Dai C, Li T, Lin X, Zhang Z, Wang X, Li F, Zhu X, Li J, Li Z, Chen C, Ma M, Zhang H, He Z. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications, 2019, 10 (1): 2562 [百度学术]
Tan L, Qu M, Zhu Y, Peng C, Wang J, Gao D, Chen C. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiology, 2020, 183 (3): 1235-1249 [百度学术]
Ma J F, Yamaji N, Mitani N, Xu X Y, Su Y H, McGrath S P, Zhao F J. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (29): 9931-9935 [百度学术]
Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature, 2006, 440 (7084): 688-691 [百度学术]
Ma J F, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. An efflux transporter of silicon in rice. Nature, 2007, 448 (7150): 209-212 [百度学术]
Chen Y, Sun S K, Tang Z, Liu G, Moore K L, Maathuis F J M, Miller A J, McGrath S P, Zhao F J. The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. Journal of Experimental Botany, 2017, 68 (11): 3007-3016 [百度学术]
Li R Y, Ago Y, Liu W J, Mitani N, Feldmann J, McGrath S P, Ma J F, Zhao F J. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiology, 2009, 150 (4): 2071-2080 [百度学术]
Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Science & Plant Nutrition, 2013, 59 (4): 580-590 [百度学术]
Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma L Q. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environmental Science & Technology, 2017, 51 (21): 12131-12138 [百度学术]
Wang P, Zhang W, Mao C, Xu G, Zhao F J. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. Journal of Experimental Botany, 2016, 67 (21): 6051-6059 [百度学术]
Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (38): 16500-16505 [百度学术]
Yang G, Fu S, Huang J, Li L, Long Y, Wei Q, Wang Z, Chen Z, Xia J. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Plant Science, 2021, 307: 110894 [百度学术]
Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Feng Ma J. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013, 162 (2): 927-939 [百度学术]
Tan L, Zhu Y, Fan T, Peng C, Wang J, Sun L, Chen C. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochemical and Biophysical Research Communications, 2019, 512 (1): 112-118 [百度学术]
Tang L, Dong J, Tan L, Ji Z, Li Y, Sun Y, Chen C, Lv Q, Mao B, Hu Y, Zhao B. Overexpression of OsLCT2, a low-affinity cation transporter gene, reduces cadmium accumulation in shoots and grains of rice. Rice, 2021, 14 (1): 89 [百度学术]
Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018, 9 (1): 645 [百度学术]
Luo J S, Xiao Y, Yao J, Wu Z, Yang Y, Ismail A M, Zhang Z. Overexpression of a defensin-like gene CAL2 enhances cadmium accumulation in plants. Frontiers in Plant Science, 2020, 11: 217 [百度学术]
Tang Z, Chen Y, Miller A J, Zhao F J. The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice. Plant & Cell Physiology, 2019, 60 (7): 1525-1535 [百度学术]
Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (52): 20959-20964 [百度学术]
Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Frontiers in Plant Science, 2018, 9: 476 [百度学术]
Chen Y, Moore K L, Miller A J, McGrath S P, Ma J F, Zhao F J. The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany, 2015, 66 (13): 3717-3724 [百度学术]
Song W Y, Yamaki T, Yamaji N, Ko D, Jung K H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma J F. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (44): 15699-15704 [百度学术]
Tang Z, Chen Y, Chen F, Ji Y, Zhao F J. OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant & Cell Physiology , 2017, 58 (5): 904-913 [百度学术]
Fu S, Lu Y, Zhang X, Yang G, Chao D, Wang Z, Shi M, Chen J, Chao D Y, Li R, Ma J F, Xia J. The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany, 2019, 70 (20): 5909-5918 [百度学术]
Zhao F J, Ago Y, Mitani N, Li R Y, Su Y H, Yamaji N, McGrath S P, Ma J F. The role of the rice aquaporin Lsi1 in arsenite efflux from roots. The New Phytologist, 2010, 186 (2): 392-399 [百度学术]
Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt D E, Chao D Y, Zhao F J. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiology, 2016, 172 (3): 1708-1719 [百度学术]
Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao F J, Wu Z. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. The New Phytologist, 2017, 215 (3): 1090-1101 [百度学术]
Pal R, Rai J P. Phytochelatins: Peptides involved in heavy metal detoxification. Applied Biochemistry and Biotechnology, 2010, 160 (3): 945-963 [百度学术]
Uraguchi S, Tanaka N, Hofmann C, Abiko K, Ohkama-Ohtsu N, Weber M, Kamiya T, Sone Y, Nakamura R, Takanezawa Y, Kiyono M, Fujiwara T, Clemens S. Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains. Plant & Cell Physiology, 2017, 58 (10): 1730-1742 [百度学术]
Hayashi S, Kuramata M, Abe T, Takagi H, Ozawa K, Ishikawa S. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. The Plant Journal, 2017, 91 (5): 840-848 [百度学术]
Chen J, Huang X Y, Salt D E, Zhao F J. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain. New Phytologist, 2020, 226 (3): 838-850 [百度学术]
Sun S K, Xu X, Tang Z, Tang Z, Huang X Y, Wirtz M, Hell R, Zhao F J. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nature Communications, 2021, 12 (1): 1392 [百度学术]
Lu C, Zhang L, Tang Z, Huang X Y, Ma J F, Zhao F J. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environment International, 2019, 126: 619-626 [百度学术]
Lv Q, Li W, Sun Z, Ouyang N, Jing X, He Q, Wu J, Zheng J, Zheng J, Tang S, Zhu R, Tian Y, Duan M, Tan Y, Yu D, Sheng X, Sun X, Jia G, Gao H, Zeng Q, Li Y, Tang L, Xu Q, Zhao B, Huang Z, Lu H, Li N, Zhao J, Zhu L, Li D, Yuan L, Yuan D. Resequencing of 1,143 Indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11 (1): 4778 [百度学术]
王天抗, 李懿星, 宋书锋, 傅岳峰, 余应弘, 柏连阳, 李莉. 水稻籽粒镉低积累资源挖掘及其新材料创制. 杂交水稻, 2021, 36 (1): 68-74 [百度学术]
Wang T K, Li Y X, Song S F, Fu Y F, Yu Y H, Bai L Y, Li L. Excavation of rice resources with low cadmium accumulation in grains and development of new materials. Hybrid Rice, 2021, 36 (1): 68-74 [百度学术]
Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (47): 19166-19171 [百度学术]
Cao Z Z, Lin X Y, Yang Y J, Guan M Y, Xu P, Chen M X. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. BMC Plant Biology, 2019, 19 (1): 250 [百度学术]
韶也, 彭彦, 毛毕刚, 余丽霞, 唐丽, 李曜魁, 胡远艺, 张丹, 袁智成, 罗武中, 彭选明, 李文建, 周利斌, 柏连阳, 赵炳然. M1TDS技术及镉低积累杂交水稻亲本创制与组合选育. 杂交水稻, 2022, 37 (1): 1-11 [百度学术]
Shao Y, Peng Y, Mao B G, Yu L X, Tang L, Li Y K, Hu Y Y, Zhang D, Yuan Z C, Luo W Z, Peng X M, Li W J, Zhou L B, Bai L Y, Zhao B R. M1TDS technology and creation of low-cadmium accumulation parents for hybrid rice breeding.Hybrid Rice, 2022, 37 (1): 1-11 [百度学术]
Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 2017, 7 (1): 14438 [百度学术]
Wang T, Li Y, Fu Y, Xie H, Song S, Qiu M, Wen J, Chen M, Chen G, Tian Y, Li C, Yuan D, Wang J, Li L. Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traitsin rice (Oryza sativa L.). Frontiers in Plant Science, 2019, 10: 1081 [百度学术]
Yang C H, Zhan G Y, Huang C F. Reduction in cadmium accumulation in Japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. Journal of Integrative Agriculture, 2019, 18 (3): 688-697 [百度学术]
龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻. 中国水稻科学, 2019, 33 (5): 407-420 [百度学术]
Long Q Z, Huang Y L, Tang X Y, Wang H M, Lu M, Yuan L F, Wan J L. Creation of low-cd-accumulating Indica rice by disruption of OSNRAMP5 gene via CRISPR/Cas9. Chinese Journal of Rice Science, 2019, 33 (5): 407-420 [百度学术]
董家瑜, 吴天昊, 孙远涛, 何含杰, 李曜魁, 彭彦, 冀中英, 孟前程, 赵炳然, 唐丽. 不同锰浓度环境下OsNRAMP5突变对水稻耐热性和主要经济性状的影响. 杂交水稻, 2021, 36 (2): 79-88 [百度学术]
Dong J Y, Wu T H, Sun Y T, He H J, Li Y K, Peng Y, Ji Z Y, Meng Q C, Zhao B R, Tang L. Effects of OsNRAMP5 mutation on heat tolerance and main economic traits of rice under the conditions of different manganese concentration. Hybrid Rice, 2021, 36 (2): 79-88 [百度学术]
Liu C L, Gao Z Y, Shang L G, Yang C H, Ruan B P, Zeng D L, Guo L B, Zhao F J, Huang C F, Qian Q. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. Journal of Integrative Plant Biology, 2020, 62 (3): 314-329 [百度学术]
Wang K, Yan T Z, Xu S L, Yan X, Zhou Q F, Zhao X H, Li Y F, Wu Z X, Qin P, Fu C J, Fu J, Zhou Y B, Yang Y Z. Validating a segment on chromosome 7 of Japonica for establishing low-cadmium accumulating indica rice variety. Scientific Reports, 2021, 11 (1): 6053 [百度学术]
Sun S K, Chen Y, Che J, Konishi N, Tang Z, Miller A J, Ma J F, Zhao F J. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. The New Phytologist, 2018, 219 (2): 641-653 [百度学术]
Deng F, Yamaji N, Ma J F, Lee S K, Jeon J S, Martinoia E, Lee Y, Song W Y. Engineering rice with lower grain arsenic. Plant Biotechnology Journal, 2018, 16 (10): 1691-1699 [百度学术]
Huang B Y, Zhao F J, Wang P. The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy. Environmental Pollution, 2022, 293: 118497 [百度学术]
Jiang Y, Zhou H, Gu J F, Zeng P, Liao B H, Xie Y H, Ji X H. Combined amendment improves soil health and brown rice quality in paddy soils moderately and highly Co-contaminated with Cd and As. Environmental Pollution, 2022, 295: 118590 [百度学术]
Ishikawa S, Makino T, Ito M, Harada K, Nakada H, Nishida I, Nishimura M, Tokunaga T, Shirao K, Yoshizawa C, Matsuyama M, Abe T, Arao T. Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Science & Plant Nutrition, 2016,62(4):327-339 [百度学术]