摘要
偃麦草属是小麦近缘种属中应用较为广泛的野生资源之一,作为小麦遗传改良和种质创新的重要基因源,在创制小麦桥梁材料和遗传育种方面发挥了重要作用。小偃麦创制工作始于20世纪20年代,是通过远缘杂交,将偃麦草属植物的染色体或染色体组遗传成分导入到普通小麦中,培育小偃麦(部分)双二倍体、异附加系、异代换系、易位系和渐渗系。小偃麦(部分)双二倍体主要是八倍体小偃麦(AABBDDXX, 2n=8x=56)和六倍体小偃麦(AABBXX,2n=6x=42),来源于偃麦草的染色体组(XX)多为混合染色体组(异源染色体组)。我国自20世纪50年代开始小麦与偃麦草远缘杂交工作,创制了类型丰富的小偃麦,在小麦抗病研究和新种质创制方面表现突出,在此基础上培育出一系列高产优质的小麦品种。小偃麦创制过程中,中间偃麦草(Thinopyrum intermedium (Host) Barkworth & D. R. Dewey)和3种长穗偃麦草(Thinopyrum elongatum (Host) D. R. Dewey × ponticum (Podp.) Barkworth & D. R. Dewey)因易于同小麦杂交,具有抗寒、抗旱、耐盐碱、抗小麦多种病虫害等特性,成为创制小偃麦的主要亲本来源,应用范围最广。本研究从5部分综述小偃麦的创制与应用研究进展,旨在为小偃麦的研发利用和小麦遗传资源创新提供科学依据。
小麦是世界上重要的粮食作物之一。自20世纪30年代开始小麦遗传改良工作以来,我国培育出一大批高产优质小麦品种,有效提高了小麦生产水平。2021年我国小麦产量达1.34亿吨,比2020年增加了258.9万吨(http://www.stats.gov.cn/tjsj/ndsj)。然而,小麦在其驯化过程中,遗传多样性逐渐降低,遗传背景日趋狭窄。热、冷、干旱等非生物危害以及病虫害等生物胁迫的日趋加重,严重影响了小麦产量和品质,而日益增加的人口数量和市场需求却对小麦生产提出更高要求,这使得现有小麦品种面临着新的挑
偃麦草属(Thinopyrum Á. Löve)属于禾本科多年生疏丛根茎型禾草,有50余种,是小麦近缘种属中应用较为广泛的野生资源之一。我国有长穗偃麦草(Th. elongatum (Host) D. R. Dewey)、中间偃麦草(Th. intermedium (Host) Barkworth & D. R. Dewey)、硬叶偃麦草(Th. smithii)、毛偃麦草(Th. trichophora)等偃麦草属植物6
小偃麦是通过远缘杂交将偃麦草属植物的染色体或染色体组遗传成分导入到普通小麦中,包括小偃麦(部分)双二倍体、异附加系、异代换系、易位系和渐渗系。小偃麦(部分)双二倍体主要是八倍体小偃麦(AABBDDXX,2n=8x=56)和六倍体小偃麦(AABBXX,2n=6x=42),来源于偃麦草的染色体组(XX)多为混合染色体组(异源染色体组)。小偃麦创制工作始于20世纪20年
八倍体小偃麦(AABBDDXX, 2n=8x=56, X来源于偃麦草的混合染色体组)的偃麦草属亲本多为中间偃麦草和十倍体长穗偃麦草,遗传稳定性和可育性较高,易于同普通小麦杂交,杂种后代变异类型丰富,是创制小偃麦衍生材料的主要来源。
前苏联的H.B齐津利用中间偃麦草与小麦杂交、回交,得到带有56条染色体的不完全双二倍体杂种,但因产量不高、性状不稳定,而难以应
随后,利用不同的普通小麦品种与中间偃麦草杂交,研究者创制选育出多种类型的八倍体小偃麦,主要应用于小麦抗病、抗生物以及非生物胁迫等方面。如抗条纹花叶病和大麦黄矮病的TAF4
以普通小麦烟农15创制了山农“TE”系列八倍体小偃麦(双二倍体品系),如TE253、TE257、TE346
普通小麦与中间偃麦草的亚种茸毛偃麦草(Th. intermedium (Host) Barkworth & D. R. Dewey subsp. trichophorum 2n=6x=42, JJ
在长穗偃麦草的3种类型中,十倍体长穗偃麦草的应用最为成功,创制得到的八倍体小偃麦主要应用于抗小麦条纹花叶病、条锈病、赤霉病等小麦病害。利用十倍体长穗偃麦草与普通小麦杂交,获得了抗小麦条纹花叶病的小偃69
名称 Name | 染色体数目 Number of chromosomes | 抗病性及特点 Disease resistance and characteristics | 染色体组构成 Chromosomal constitution | 参考文献 Reference |
---|---|---|---|---|
小偃693 Xiaoyan 693 | 56 | 抗小麦条纹花叶病 |
40W+8J+8 |
[ |
SS156 | 56 | 抗褐斑病、赤霉病、小麦颖枯病 | 42W+14E |
[ |
SS363 | 56 | 抗褐斑病、赤霉病 | 40W+14E+2W/E |
[ |
SS660 | 56 | 抗褐斑病、赤霉病 | 40W+16E |
[ |
SS5 | 56 | 抗褐斑病、赤霉病、小麦颖枯病 | 42W+14E |
[ |
7430 | 56 | 抗条锈病 |
40W+10 |
[ |
小偃68 Xiaoyan 68 | 56 | 抗秆锈病 | — |
[ |
小偃784 Xiaoyan 784 | 56 | 抗大麦黄矮病、秆锈病 |
42W+12St+2 |
[ |
小偃7631 Xiaoyan 7631 | 56 | 抗秆锈病 | — |
[ |
小偃7430 Xiaoyan7430 | 56 | 抗秆锈病 | 44W+10St+2E |
[ |
山农TE19 Shannong TE19 | 54 | 免疫条锈病 |
40W+4St+8 |
[ |
山农TE20 Shannong TE20 | 56 | 免疫白粉病、条锈病 |
42W+2St+10 |
[ |
山农TE122 Shannong TE122 | 56 | 免疫白粉病、条锈病 |
42W+2St+8 |
[ |
BE-1 | 56 | 抗叶锈病、白粉病,免疫叶锈病,高蛋白 | 40W+16E |
[ |
40767-2 | 49 | 抗大麦黄矮病 |
35W+8 |
[ |
OK7211542 | 56 | 抗小麦条纹花叶病、黄矮病 |
38W+8J+8 |
[ |
PWM209 | 56 | 抗小麦条纹花叶病,免疫叶锈病 |
37W+9J+8 |
[ |
ORRPX | 56 | 抗小麦条纹花叶病、黄矮病 |
40W+8J+8 |
[ |
PWM706 | 54~56 | 抗小麦条纹花叶病,免疫叶锈病 |
42W+(6-8)J+6 |
[ |
PWMIII | 56 | 抗小麦条纹花叶病,免疫叶锈病 |
40W+10J+6 |
[ |
Agrotana | 56 | 抗花叶病、卷叶螨、秆锈、根腐病 |
40W+8J+8 |
[ |
—表示原文献未提供;W表示小麦染色体;/表示染色体易位或代换;( )表示染色体的数目或染色体类型;、表示可能;下同
— means the original text was not provided;W indicates the wheat chromosome;/ indicates the translocation chromosome or substitution chromosome;( ) indicates the number range of chromosome or the type of chromosome; 、 indicates a possibility; The same as below
八倍体小偃麦的亲本多为中间偃麦草、十倍体长穗偃麦草和普通小麦,其亚基因组的多样性,导致八倍体小偃麦中的外源染色体组往往是混合基因组(异源染色体组),这为八倍体小偃麦丰富的变异类型提供了遗传基础。现有研究中,仅材料HS2-2、HS2-5、HS2-14八倍体小偃麦外源染色体组由J染色体构成,其他已报道材料的八倍体小偃麦外源染色体组均为不同数目、成对存在的中间偃麦草染色体J、
名称 Name | 染色体数目 Number of chromosomes | 抗病性及特点 Disease resistance and characteristics | 染色体组构成 Chromosomal constitution | 参考文献 Reference |
---|---|---|---|---|
中1 Zhong1 | 53~56 | 高抗条锈病 |
42W+2St+4 |
[ |
中2 Zhong2 | 53~56 | 高抗条锈病 |
42W+2St+4 |
[ |
中3 Zhong3 | 56 | 免疫锈病,高抗黄矮病 |
42W+4St+4 |
[ |
中4 Zhong4 | 54,56 | 免疫锈病,高抗黄矮病 |
42W+4St+4 |
[ |
中5 Zhong5 | 56 | 免疫锈病,高抗黄矮病 |
40W+4St+2 |
[ |
TAF46 | 56 | 中抗小麦条纹花叶病、抗大麦黄矮病 | 42W+6St+8E(J) |
[ |
78829 | 56 | 抗锈病、大麦黄矮病 |
42W+6St+4St/ |
[ |
TAI7044 | 56 | 矮化型 | 42W+6St+8E/J |
[ |
TAI7045 | 56 | 高抗小麦白粉病、条锈病、根腐病 |
42W+8St+4 |
[ |
TAI7047 | 56 | 高抗小麦白粉病、条锈病 |
42W+10J+2 |
[ |
TAI8335 | 56 | 高抗叶锈、茎锈、条锈、白粉病 |
42W+2St+6 |
[ |
89074-1-1-1-1 | 54~56 | 免疫锈病、黄矮病 | — |
[ |
SX12-787 | 56 | 中抗燕麦孢囊线虫,高抗菲利普孢囊线虫,多年生 |
42W+14(St、J、 |
[ |
SX12-480 | 48 | 高抗燕麦孢囊线虫,高抗菲利普孢囊线虫,多年生 |
32W+16(St、J、 |
[ |
名称 Name |
染色体数目 Number of chromosomes |
抗病性及特点 Disease resistance and characteristics |
染色体组构成 Chromosomal constitution |
参考文献 Reference |
SX12-1150 | 56 |
高抗燕麦孢囊线虫、菲利普孢囊线虫, 多年生 |
42W+14(St、J、 |
[ |
SX12-1269 | 54 |
高抗燕麦孢囊线虫、菲利普孢囊线虫, 多年生 |
42W+12(St、J、 |
[ |
山农TE253-I Shannong TE253-I | 56 | 抗白粉病、条锈病 |
42W+2St+8 |
[ |
山农TE257 Shannong TE257 | 56 | 抗白粉病、条锈病 |
42W+2St+8 |
[ |
山农TE346 Shannong TE346 | 56 | 抗白粉病、条锈病 |
42W+2St+8 |
[ |
山农TE256 Shannong TE256 | 56 | 免疫白粉病,高抗条锈病、叶锈病 |
42W+2St+8 |
[ |
山农TE259 Shannong TE259 | 55,56 | 免疫白粉病、条锈病、叶锈病 |
42W+2St+8 |
[ |
山农TE261 Shannong TE261 | 56 | 免疫白粉病、叶锈病,高抗条锈病 |
42W+2St+8 |
[ |
山农TE265 Shannong TE265 | 56 | 免疫白粉病、条锈病、叶锈病 |
42W+6St+4 |
[ |
山农TE267 Shannong TE267 | 56 | 抗白粉病、条锈病 |
42W+4St+10 |
[ |
山农TE262 Shannong TE262 | 56 | 免疫白粉病、条锈病、叶锈病 |
42W+2St+8 |
[ |
山农TE263 Shannong TE263 | 55,56 | 免疫白粉病、条锈病、叶锈病 |
42W+2St+8 |
[ |
山农TE267-1 Shannong TE267-1 | 56 | 中抗白粉病,高抗条锈病 |
42W+2St+8 |
[ |
山农TE270 Shannong TE270 | 54,56 | 免疫白粉病、条锈病、叶锈病 |
42W+2St+8 |
[ |
山农TE274 Shannong TE274 | 54,56 | 中抗白粉病、条锈病,高抗叶锈病 |
42W+4St+6 |
[ |
山农TE261-1 Shannong TE261-1 | 56 | 抗白粉病、条锈病、蚜虫 |
42W+2St+2J+8 |
[ |
山农TE266-1 Shannong TE266-1 | 56 | 抗白粉病、条锈病、蚜虫 |
42W+4St+2J+6 |
[ |
山农TE346-1 Shannong TE346-1 | 56 | 抗白粉病、条锈病、蚜虫 |
42W+2St+2J+8 |
[ |
TE-3 | 54~56 | 高抗条锈病、叶锈病、纹枯病、白粉病 |
42W+8St+4 |
[ |
TE1508 | 54 | 高抗白粉病、条锈病、叶锈病、纹枯病 |
40W+8St+4J+2 |
[ |
山农TE266 Shannong TE266 | 54 | 免疫白粉病、叶锈病,高抗条锈病 |
42W+4St+6 |
[ |
HS2-2 | 56 | 抗赤霉病,高蛋白 |
42W+10J+4(St或 |
[ |
HS2-4 | 56 | 抗赤霉病,高蛋白 |
42W+10J+4(St或 |
[ |
HS2-5 | 56 | 抗赤霉病,高蛋白 | 42W+14J |
[ |
HS2-14 | 54 | 抗赤霉病,高蛋白 | 42W+12J |
[ |
HS2-16 | 54 | 抗赤霉病,高蛋白 | 42W+12J |
[ |
六倍体小偃麦是利用硬粒小麦与偃麦草杂交,再通过回交、连续自交而获得的小麦与偃麦草杂种后代。Schulz
相比于小偃麦(部分)双二倍体而言,小偃麦异附加系、代换系、易位系和渐渗系在生产实践中应用范围更
名称 Name | 染色体数目 Number of chromosomes | 系谱 Pedigree | 抗病性及特点 Disease resistance and characteristics | 附加染色体来源 Additional chromosomal sources | 参考文献 Reference |
---|---|---|---|---|---|
TAI 11 | 44 | 中2/新曙光1号 | 叶片窄小,茎秆较细,籽粒瘦细,发育缓慢 | 中间偃麦草 |
[ |
TAI 12 | 44 | 中2/新曙光1号 | 苗期叶片披垂、散软,籽粒细长,有绒毛 | 中间偃麦草 |
[ |
TAI 13 | 44 | 中2/新曙光1号 | 叶片窄小,呈灰绿色,茎秆细,籽粒长 | 中间偃麦草 |
[ |
TAI 14 | 44 | 中2/新曙光1号 | 叶片窄小、脆硬、呈灰绿色,茎秆细且有弹性 | 中间偃麦草 |
[ |
TAI 15 | 44 | 中2/新曙光1号 | 叶片窄小,叶表面有短刺,节间长,茎秆细 | 中间偃麦草 |
[ |
TAI 16 | 44 | 中2/新曙光1号 | 叶片脆硬、窄小,矮秆,茎秆细,穗小 | 中间偃麦草 |
[ |
TAI 17 | 44 | 中2/新曙光1号 | 叶鞘有绒毛,茎秆软,小穗易脱落 | 中间偃麦草 |
[ |
TAI 21 | 44 | 中4/垦149 | 苗期叶片细长,圆锥形穗,颖壳厚且多绒毛 | 中间偃麦草 |
[ |
TAI 22 | 44 | 中4/垦149 | 成株叶片上举,晚熟,穗细小,籽粒小 | 中间偃麦草 |
[ |
TAI 23 | 44 | 中5/涿城1号 | 抗秆锈病,成株叶片窄小,茎秆细,短芒 | 中间偃麦草 |
[ |
TAI 24 | 44 | 中5/涿城1号 | 叶形长而密集,晚熟,芒长,籽粒长 | 中间偃麦草 |
[ |
TAI 25 | 44 | 中3/3B-2 | 抗叶锈病,叶片窄小,茎秆细,穗小 | 中间偃麦草 |
[ |
TAI 26 | 44 | 中3/3B-2 | 叶色灰绿,叶鞘基部有刺,育性差 | 中间偃麦草 |
[ |
TAI 27 | 44 | 中3/3B-2 | 高抗黄矮病,叶片窄小、叶色灰绿,茎秆细 | 中间偃麦草 |
[ |
Z4 | 44 | 宛7107/中5 | 免疫条锈病,叶锈病,秆锈病 | 中间偃麦草(St) |
[ |
A1 | 44 | 中4/铭贤169 | 高抗条锈病、中抗白粉病、抗旱 | 中间偃麦草 |
[ |
A2 | 44 | 中4/铭贤169 | 抗条锈病 | 中间偃麦草 |
[ |
A3 | 44 | 中4/铭贤169 | 抗条锈病 | 中间偃麦草 |
[ |
Line1 | 44 | 阿勃缺体/中2 | 高抗条锈病、叶锈病 | 中间偃麦草 |
[ |
Line2 | 44 | 阿勃缺体/中2 | 高抗条锈病 | 中间偃麦草 |
[ |
Line4 | 44 | 阿勃缺体/中2 | 高抗条锈病 | 中间偃麦草 |
[ |
St3 | 44 | 阿勃缺体/中4 | 免疫条锈病 | 中间偃麦草(St) |
[ |
St5 | 44 | 阿勃缺体/中4 | 免疫条锈病 | 中间偃麦草(St) |
[ |
St7 | 44 | 阿勃缺体/中4 | 免疫条锈病 | 中间偃麦草(St) |
[ |
ES-24 | 44 | 阿勃缺体/中4 | 高抗条锈病 | 中间偃麦草(7St) |
[ |
L1 | 44 | 小麦/中间偃麦草 | 抗黄矮病 | 中间偃麦草 |
[ |
名称 Name |
染色体数目 Number of chromosomes |
系谱 Pedigree |
抗病性及特点 Disease resistance and characteristics |
附加染色体来源 Additional chromosomal sources |
参考文献 Reference |
CH366 | 44 | TAI7045/普通小麦晋太170 | 高抗或免疫条锈病 | 中间偃麦草 |
[ |
TA3681 | 44 | 普通小麦/中间偃麦草 | 抗条锈病 | 中间偃麦草(1St) |
[ |
CHadd7001 | 44 | TAI7047/晋太170 | 免疫白粉病 |
中间偃麦草( |
[ |
CHadd7002 | 44 | TAI7047/晋太170 | 免疫白粉病 |
中间偃麦草( |
[ |
910180 | 44 | 中5/PH85-4 | 高抗条锈病、白粉病,高蛋白质,抗旱 | 中间偃麦草 |
[ |
DAL66 | 44 | 烟农15/中间偃麦草 | 抗白粉病 | 中间偃麦草 |
[ |
II-1-7-1 | 44 | 烟农15/中间偃麦草 | 抗白粉病 | 中间偃麦草(E) |
[ |
II-3-3-2 | 44 | 烟农15/中间偃麦草 | 抗白粉病 | 中间偃麦草(E) |
[ |
E99015-8 | 43 | 烟农15/中间偃麦草 | 抗白粉病 | 中间偃麦草(E) |
[ |
E99009 | 44 | 烟农15/中间偃麦草 | 抗白粉病、条锈病 | 中间偃麦草(E) |
[ |
E99010 | 44 | 烟农15/中间偃麦草 | 抗白粉病 | 中间偃麦草(E) |
[ |
E99006 | 44 | 烟农15/中间偃麦草 | 抗白粉病 | 中间偃麦草(E) |
[ |
Line15 | 44 | 烟农15/中间偃麦草 | 免疫白粉病 | 中间偃麦草 |
[ |
山农120211 Shannong 120211 | 44 | 烟农15/中间偃麦草 | 免疫白粉病,耐盐 | 中间偃麦草(2E) |
[ |
SN6306 | 44 | 烟农15/中间偃麦草 | 抗旱 | 中间偃麦草(J) |
[ |
C076 | 44 | 宛7107/无芒中4 | 抗条锈病 | 中间偃麦草 |
[ |
AF2 | 44 | 川麦107/中间偃麦草 | 免疫条锈病、高抗白粉病 | 中间偃麦草(E) |
[ |
AF3 | 44 | 川麦107/中间偃麦草 | 矮秆 | 中间偃麦草(St) |
[ |
CI 17881 | 44 | CI 15092/中间偃麦草 | 抗眼斑病 |
中间偃麦草( |
[ |
Du-DA3E | 30 | Langdon/8801 | 旗叶面积大 | 四倍体长穗偃麦草(3E) |
[ |
Du-DA6E | 30 | Langdon/8801 | 旗叶面积大,小穗粒数多、穗粒数高 | 四倍体长穗偃麦草(6E) |
[ |
1-27 | 44 | 普通小麦/十倍体长穗偃麦草 | 抗白粉病 | 十倍体长穗偃麦草 |
[ |
山农87074-519 Shannong 87074-519 | 44 | 十倍体长穗偃麦草/鲁麦5号/济南13 | 免疫条锈病 | 十倍体长穗偃麦草(St) |
[ |
87074 | 44 | 小偃86083/济南13 | 高抗条锈病、白粉病,矮秆 | 十倍体长穗偃麦草 |
[ |
913267 | 44 | 小偃7430/多年生1号 | 高抗条锈病、白粉病 | 十倍体长穗偃麦草 |
[ |
93506-2 | 44 | 小偃693/鲁麦5号 | 高抗条锈病、白粉病,抗旱 | 十倍体长穗偃麦草 |
[ |
913099 | 44 | 小偃87224/山农辐63//鲁麦8号 | 高抗条锈病、中抗白粉病、矮秆、高蛋白质 | 十倍体长穗偃麦草 |
[ |
30201 | 44 | 小偃7430/2鲁麦1号 | 高抗条锈病、中抗白粉病、抗旱、矮秆 | 十倍体长穗偃麦草 |
[ |
WTA55 | 43 | 小偃7430/3/小偃81 | 抗条锈病 | 十倍体长穗偃麦草 |
[ |
利用小麦-中间偃麦草部分双二倍体与普通小麦杂交,创制的抗病异附加系还包括抗黄矮病附加系L
以烟农15与中间偃麦草或八倍体小偃麦杂交,先后选育出抗白粉病的异附加系DAL6
在小麦与长穗偃麦草远缘杂交后代中,创制出旗叶面积大的双体异附加系 Du-DA3E以及小穗粒数多、穗粒数高的双体异附加系Du-DA6
总体来看,小偃麦附加系在抗病方面表现优异,主要应用于抗锈病和白粉病,可进行深度的抗病基因挖掘(
小偃麦异代换系也多应用在小麦抗病育种方面,主要为白粉病、锈病、赤霉病和眼斑病。其中,来源于中间偃麦草的异代换系包括:抗白粉病的E9901
名称 Name | 染色体数目 Number of chromosomes | 系谱 Pedigree | 抗病性及特点 Disease resistance and characteristics | 外源染色体来源或位点 Alien chromosomal origin or locus | 参考文献 Reference |
---|---|---|---|---|---|
E99018 | 42 | 烟农15/中间偃麦草 | 抗白粉病 | 中间偃麦草 |
[ |
山农0095 Shannong0095 | 42 | 烟农15/中间偃麦草 | 高抗条锈病 | 中间偃麦草 |
[ |
SN0606 | 42 | 烟农15/中间偃麦草 | 高抗白粉病 | 中间偃麦草 |
[ |
CH-9916 | 42 | TAI7045/普通小麦 | 免疫条锈病,中抗白粉病 | 中间偃麦草/2D |
[ |
CH08-141 | 42 | TAI7047/晋太170 | 抗秆锈病、白粉病 | 中间偃麦草(J/B) |
[ |
CH188 | 42 | TAI7047/晋太170 | 小穗数、千粒质量优于亲本 | 6St/中间偃麦草 |
[ |
Z2 | 42 | 宛7107/中5 | 抗赤霉病 | 中间偃麦草/2D |
[ |
Du-DS1E (1B) | 28 | Langdon/8801 | 旗叶面积大 | 十倍体长穗偃麦草(1E/1B) |
[ |
蓝58 Blue 58 | 42 | 普通小麦/长穗偃麦草 | 磷高效 | 十倍体长穗偃麦草(4E/4D) |
[ |
Ji806 | 42 | Ji87050/小麦-十倍体长穗偃麦草部分双二倍体品系693 | 抗叶锈病 | 十倍体长穗偃麦草 |
[ |
Ji807 | 42 | Ji87050/小麦-十倍体长穗偃麦草部分双二倍体品系693 | 抗叶锈病 | 十倍体长穗偃麦草 |
[ |
Ji859 | 42 | Ji87050/小麦-十倍体长穗偃麦草部分双二倍体品系693 | 抗叶锈病 | 十倍体长穗偃麦草 |
[ |
SS767 | 42 | 普通小麦Sac75//Sol/长穗偃麦草//Leapland/Meister amphiploid wheat/rye Br215 | 抗眼斑病 | 十倍体长穗偃麦草(4J/4D) |
[ |
山农87074-526 Shannong 87074-526 | 42 | 十倍体长穗偃麦草/鲁麦5号/济南13 |
免疫白粉病、花叶病, 抗叶锈病 | 十倍体长穗偃麦草 |
[ |
山农87074-551 Shannong 87074-551 | 42 | 十倍体长穗偃麦草/鲁麦5号/济南13 | 高抗白粉病 | 十倍体长穗偃麦草 |
[ |
山农87074-557 Shannong 87074-557 | 44 | 十倍体长穗偃麦草/鲁麦5号//济南13 | 免疫白粉病、条锈病 | 十倍体长穗偃麦草(2B/2E) |
[ |
X005 | 42 | 7430/普通小麦 | 抗条锈病 |
中间偃麦草(6 |
[ |
SN19647 | 42 | 八倍体小偃麦SNTE20/济麦22 | 抗白粉病、叶锈病 |
中间偃麦草(1 |
[ |
CH10A5 | 42 | 普通小麦7182/长穗偃麦草 | 抗白粉病、叶锈病 | 十倍体长穗偃麦草(1JS/1D) |
[ |
小偃麦易位系多是通过八倍体小偃麦与普通小麦杂交而来,主要应用在抗病方面,如抗白粉病、锈病、赤霉病等,是新抗病基因的重要来源。其中,带有中间偃麦草遗传成分的易位系材料包括:对多种病原菌具有抗性的T3BS·J易位系中10-14
带有十倍体长穗偃麦草遗传成分的易位系,在生产上发挥作用最大的是抗锈病的小偃6
与易位系相比,携带目的性状的小偃麦渐渗系更具有利用价值,主要应用除了抗白粉病和条锈病以外,还包括耐盐、耐低磷胁迫等,新抗病基因的发现也多于易位系材料。携带长穗偃麦草遗传成分的渐渗系材料包括:耐盐渐渗系II-I-8、II-2、II-1-
名称 Name | 染色体数目 Number of chromosomes | 系谱 Pedigree | 抗病性及特点 Disease resistance and characteristics | 外源染色体来源或位点 Alien chromosomal origin or locus | 类型 Type | 参考文献 Reference |
---|---|---|---|---|---|---|
中10-149 Zhong 10-149 | 44 | Shen 373/Zhong 5//Zhe 246882 | 抗白粉病、条锈病 | 3BS/J | 易位系 |
[ |
GP143 | 42 | 烟农15/中间偃麦草 | 抗白粉病、条锈病 | 中间偃麦草 | 易位系 |
[ |
YU25 | 42 | TAI7047/川麦107 | 免疫白粉病 | 中间偃麦草 | 易位系 |
[ |
AF-1 | 42 | 川麦107/中间偃麦草 | 免疫白粉病 | 中间偃麦草 | 易位系 |
[ |
中梁27 Zhongliang 27 | 42 | 普通小麦/中4 | 高抗条锈病 | A/E、A/St | 易位系 |
[ |
ZH811 | 42 |
(中国春/中间偃麦草)/晋麦33/ 临4133 | 抗条锈病 |
5D/ | 易位系 |
[ |
WTT11 | 42 | 小偃343/小偃78829 | 抗条锈病 | 中间偃麦草/2D | 易位系 |
[ |
TA5566 | 42 | 普通小麦/中间偃麦草 | 抗条锈病 |
3A/7 | 易位系 |
[ |
TA5567 | 42 | 普通小麦/中间偃麦草 | 抗条锈病 |
3A/7 | 易位系 |
[ |
CH4131 | 42 | CS/Z1141/Taichung29 | 抗条锈病 | 3Ai/1B | 易位系 |
[ |
CH4132 | 42 | CS/Z1141/Taichung29 | 抗条锈病 | 3Ai/1B | 易位系 |
[ |
小偃6号 Xiaoyan 6 | 42 | 普通小麦/十倍体长穗偃麦草 | 抗条锈病 | 十倍体长穗偃麦草 | 易位系 |
[ |
GDR1 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
GDR2 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
GDR3 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
GDR4 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
GDR5 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
GDR6 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
GDR7 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
GDR8 | 42 | 小偃2798/(陕优225/Y98206) | 抗条锈病 | 4DS/4St | 易位系 |
[ |
名称 Name |
染色体数目 Number of chromosomes |
系谱 Pedigree |
抗病性及特点 Disease resistance and characteristics |
外源染色体来源或位点 Alien chromosomal origin or locus |
类型 Type |
参考文献 Reference |
西农509 Xinong 509 | 42 | 小偃693/小偃597 | 抗赤霉病 | 7E | — |
[ |
西农511 Xinong 511 | 42 | 小偃693/小偃597 | 抗赤霉病 | 7E | — |
[ |
西农529 Xinong 529 | 42 | 小偃693/小偃597 | 抗赤霉病 | 7E | — |
[ |
54-40-2-5-29 | 44 | 中国春/十倍体长穗偃麦草部分双二倍体Agrotana | 抗根腐病,蓝粒 | 十倍体长穗偃麦草 | 易位系 |
[ |
Du-T1AS·1EL | 28 | Langdon/8801 | 抗倒伏 | 十倍体长穗偃麦草(1E/1B) | 易位系 |
[ |
II-I-8 | 42 | 普通小麦/十倍体长穗偃麦草 | 耐盐 | 十倍体长穗偃麦草 | 渐渗系 |
[ |
II-2 | 42 | 普通小麦/十倍体长穗偃麦草 | 耐盐 | 十倍体长穗偃麦草 | 渐渗系 |
[ |
II-1-3 | 42 | 普通小麦/十倍体长穗偃麦草 | 耐盐 | 十倍体长穗偃麦草 | 渐渗系 |
[ |
31505-1 | 42 | 普通小麦/十倍体长穗偃麦草 | 抗倒伏 | 十倍体长穗偃麦草 | 渐渗系 |
[ |
CH7086 | 42 | 普通小麦/十倍体长穗偃麦草 | 抗白粉病、条锈病 | 十倍体长穗偃麦草 | 渐渗系 |
[ |
SN0293-2 | 42 | SNTE20/Jimai 22 | 抗白粉病 | 十倍体长穗偃麦草 | 渐渗系 |
[ |
SN0293-7 | 42 | SNTE20/Jimai 22 | 抗白粉病 | 十倍体长穗偃麦草 | 渐渗系 |
[ |
CH5382 | 42 | 普通小麦/TAI7044 | 抗白粉病、条锈病 | 中间偃麦草 | 渐渗系 |
[ |
GRY19 | 42 | 普通小麦/中间偃麦草 | 抗白粉病 | 中间偃麦草 | 渐渗系 |
[ |
CH5025 | 42 | 普通小麦/中间偃麦草 | 抗白粉病 | 中间偃麦草 | 渐渗系 |
[ |
CH7124 | 42 | 小偃麦TAI8335/晋麦33 | 抗白粉病 | 中间偃麦草 | 渐渗系 |
[ |
L962 | 42 | MY11/YU25 | 抗白粉病 | 中间偃麦草 | 渐渗系 |
[ |
CH223 | 42 | Jinmai 33/TAI7047//2*Jing 411 | 抗条锈病 | 中间偃麦草 | 渐渗系 |
[ |
YrL693 | 42 | MY11/YU25 | 抗条锈病 | 中间偃麦草 | 渐渗系 |
[ |
山农304 Shannong 304 | 42 | 烟农15/中间偃麦草 | 耐低磷 | 中间偃麦草 | 渐渗系 |
[ |
经过研究人员近百年的努力,通过远缘杂交和染色体工程手段,创育出变异类型丰富的各类小偃麦,其中八倍体小偃麦(部分双二倍体)和小偃麦异附加系最多,通过这些“桥梁”,偃麦草中大量控制优异农艺性状的基因逐步被导入到普通小麦中,为小麦遗传育种,特别是抗病育种提供了新的途径。例如,通过国审的抗赤霉病新品种中科166,其亲本就是高抗赤霉病的六倍体小偃
目前,分子生物学、基因组学、生物信息学发展迅速,在保持原有遗传育种优势的前提下,充分利用新技术、新方法,如SLAF-seq技
致谢
感谢中国农业科学院作物科学研究所李洪杰研究员为本文提供的研究数据和修改建议。
参考文献
罗秀丽, 杨忍, 徐茜. 全球人口与粮食的空间错位演变及影响因素分析. 自然资源学报, 2021, 36(6): 1381-1397 [百度学术]
Luo X L, Yang R, Xu Q. Spatial mismatch evolution of global population and food and its influencing factors. Journal of Natural Resources, 2021, 36(6): 1381-1397 [百度学术]
刘新伦, 王超, 牛丽华, 刘志立, 张录德, 陈春环, 张荣琦, 张宏, 王长有, 王亚娟, 田增荣, 吉万全. 普通小麦-十倍体长穗偃麦草衍生新品种抗赤霉病基因的分子鉴别. 中国农业科学, 2017, 50(20): 3908-3922 [百度学术]
Liu X L, Wang C, Niu L H, Liu Z L, Zhang L D, Chen C H, Zhang R Q, Zhang H, Wang C Y,Wang Y J, Tian Z R, Ji W Q.Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid. Scientia Agricultura Sinica, 2017, 50(20): 3908-3922 [百度学术]
刘成, 韩冉, 汪晓璐, 宫文萍, 程敦公, 曹新有, 刘爱峰, 李豪圣, 刘建军. 小麦远缘杂交现状、抗病基因转移及利用研究进展. 中国农业科学, 2020, 53(7): 1287-1308 [百度学术]
Liu C, Han R, Wang X L, Gong W P, Cheng D G, Cao X Y, Liu A F, Li H S, Liu J J. Research progress of wheat wild hybridization, disease resistance genes transfer and utilization. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308 [百度学术]
张婧. 六种春小麦新种质的分子细胞遗传学研究. 哈尔滨: 哈尔滨师范大学, 2017 [百度学术]
Zhang J. Molecular cytogenetics of six new spring wheat germplasms. Harbin: Harbin Normal University, 2017 [百度学术]
Li H J, Arterburn M, Jones S S, Murray T D.Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Theoretical and Applied Genetics, 2005, 111(5):932-940 [百度学术]
Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L J, Gao X, Sun Y, Sun S C, Tang W H.Effective resources in wheat and wheat-Thinopyrum derivatives for resistance to Heterodera filipjevi in China. Crop Science, 2012, 52(3): 1209-1217 [百度学术]
Li H J, Wang X M. Thinopyrum ponticum and Th. Intermedium: The promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics, 2009, 36(9): 557-565 [百度学术]
Lin Z S, Huang D H, Du L P, Ye X G, Xin Z Y. Identification of wheat-Thinopyrum intermedium 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus. Plant Breeding, 2010, 125(2): 114-119 [百度学术]
Li H J, Conner R L, Murray T D. Resistance to soil-borne diseases of wheat: Contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum. Canadian Journal of Plant Science, 2008, 88(1): 195-205 [百度学术]
刘紫垠, 王长有, 陈春环, 吉万全. 小麦-中间偃麦草衍生后代的细胞学和SSR标记鉴定. 麦类作物学报, 2013, 33(3): 435-439 [百度学术]
Liu Z Y, Wang C Y, Chen C H, Ji W Q.Cytologic and SSR identification of derivatives from wheat-Thinopyrum intermedium. Journal of Triticeae Crops, 2013, 33(3): 435-439 [百度学术]
蒋勃, 张淑欣, 王惠, 史玥, 李紫琪, 朱蕾, 宋维富, 杨雪峰, 宋庆杰, 李新玲, 张延明. 中间偃麦草种质改良及基因组学育种研究进展. 植物遗传资源学报, 2020, 21(6): 1385-1394 [百度学术]
Jiang B, Zhang S X, Wang H, Shi Y, Li Z Q, Zhu L, Song W F, Yang X F, Song Q J, Li X L, Zhang Y M. Genetic improvement and genomics-assisted breeding of the germplasm resource Thinopyrum intermedium. Journal of Plant Genetic Resources, 2020, 21(6): 1385-1394 [百度学术]
韩方普, 李集临. 小偃麦细胞遗传学. 北京:中国农业科技出版社, 1994: 46-47 [百度学术]
Han F P, Li J L. Cytogenetics of trititrigia. Beijing: China Agricultural Science and Technology Press, 1994: 46-47 [百度学术]
孙善澄. 追求与探索. 北京:中国农业出版社, 2015: 37-46 [百度学术]
Sun S C. Pursuit and exploration. Beijing: Chinese Agricultural Press, 2015: 37-46 [百度学术]
傅向东, 刘倩, 李振声, 张爱民, 凌宏清, 童依平, 刘志勇. 小麦基因组研究现状与展望. 中国科学院院刊, 2018, 33(9): 909-914 [百度学术]
Fu X D, Liu Q, Li Z S, Zhang A M, Ling H Q, Tong Y P, Liu Z Y. Research achievement and prospect development on wheat genome. Bulletin of Chinese Academy of Sciences, 2018, 33 (9): 909-914 [百度学术]
庞劲松, 刘宝. 小冰麦研究回顾与展望-纪念郝水院士逝世10周年. 东北师大学报:自然科学版, 2020, 52(3): 1-13 [百度学术]
Pang J S, Liu B. Review and outlook of Triticum aestivum-Agropyron intermedium research-Commemorating the 10th anniversary of academician Hao Shui's death. Journal of Northeast Normal University:Natural Science Edition, 2020,52 (3): 1-13 [百度学术]
Kumar A, Chunduri V, Sharma S, Kumar A, Kumari A, Kapoor P, Kaur S, Garg M. Transfer of Thinopyrum elongatum chromosome-specific 1EL. 1AS translocation to hard wheat could not improve targeted bread-making quality-Failure and lessons learned. Journal of Cereal Science, 2021, 101: 1-03277 [百度学术]
陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定. 作物学报, 2022, 48(2): 511-517 [百度学术]
Tao J, Lan X J. Molecular cytogenetic identification of wheat-Thinopyrum intermedium 2A/6st substitution strain 014-459. Acta Agronomica Sinica, 2022, 48(2): 511-517 [百度学术]
H.B.齐津. 多年生小麦. 北京:农业出版社, 1982: 59-95 [百度学术]
H.B. Q J. Perennial wheat. Beijing:Agricultural Press, 1982: 59-95 [百度学术]
Cui L, Ren Y K, Bao Y G, Nan H, Tang Z H, Guo Q, Niu Y Q, Yan W Z, Sun Y, Li H J.Assessment of resistance to cereal cyst nematode, stripe rust and powdery mildew in the wheat-Thinopyrum intermedium derivatives and their chromosome composition. Plant Disease, 2021, 105(10): 2898-2906 [百度学术]
Cauderon Y. Genome analysis in the genus Agropyron. Hereditas, 1966, 2: 218-234 [百度学术]
Yu Z H, Wang H J, Yang E N, Li G R, Yang Z J. Precise identification of chromosome constitution and rearrangements in Wheat-Thinopyrum intermedium derivatives by ND-FISH and Oligo-FISH painting. Plants-Basel,2022, 11(16): 2109 [百度学术]
畅志坚, 胡河生, 王志国. 矮化型八倍体小偃麦的选育. 生态农业研究, 1996, 4(2): 73-77 [百度学术]
Chang Z J, Hu H S, Wang Z G. On breeding dwarf octoploid Trtitrigia. Chinese Journal of Eco-agriculture, 1996, 4(2): 73-77 [百度学术]
Chang Z J, Zhang X J, Yang Z J, Zhan H X, Li X, Liu C, Zhang C Z. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010, 147(6): 304-312 [百度学术]
杨足军, 任正隆. 导入矮秆基因的小偃麦材料的细胞学和储藏蛋白研究. 四川农业大学学报, 2000, 18(2): 104-108 [百度学术]
Yang Z J, Ren Z L. Cytological and seed storage protein analysis of dwarf lines with wheat-Thinopyrum intermedium chromatin. Journal of Sichuan Agricultural University, 2000, 18 (2): 104-108 [百度学术]
Cui L, Ren Y K, Zhang Y M, Tang Z H, Guo Q, Niu Y Q, Yan W Z, Sun Y, Li H J. Characterization of resistance to cereal cyst nematode,agronomic performance, and end-use quality parameters in four perennial wheat-Thinopyrum intermedium lines. Frontiers in Plant Science, 2020, 11: 594197 [百度学术]
王洪刚, 朱军, 刘树兵. 利用细胞学和RAPD技术鉴定抗病小偃麦易位系. 作物学报, 2001, 27(6): 886-890 [百度学术]
Wang H G, Zhu J, Liu S B. Identification of Tritelytrigia translocation line with disease resistance by cytology and RAPD analysis. Acta Agronomica Sinica, 2001, 27(6): 886-890 [百度学术]
Bao Y G, Wu X, Zhang C, Li X F, He F, Qi X L, Wang H G. Chromosomal constitutions and reactions to powdery mildew and stripe rust of four novel wheat-Thinopyrum intermedium partial ajmphiploids. Journal of Genetics and Genomics, 2014, 41(12):663-666 [百度学术]
亓晓蕾, 鲍印广, 李兴锋, 钱兆国, 王瑞霞, 吴科, 王洪刚. 十个八倍体小偃麦的细胞学鉴定和染色体构成分析. 作物学报, 2017, 43(7): 967-973 [百度学术]
Qi X L, Bao Y G, Li X F, Qian Z G, Wang R X, Wu K, Wang H G. Cytological identification and chromosome composition analysis of ten octoploid trititrigia accessions. Acta Agronomica Sinica, 2017, 43(7): 967-973 [百度学术]
刘树兵, 王洪刚, 高居荣. 抗白粉病小麦-中间偃麦草八倍体小偃麦的鉴定//洪绂曾. 21世纪小麦遗传育种展望-小麦遗传育种国际学术讨论会文集. 郑州: 中国农业科技出版社, 2001: 309-312 [百度学术]
Liu S B, Wang H G, Gao J R. Identification of wheat-Thinopyrum intermedium amphiploid resistant to powdery mildew//Hong F Z.Prospects of wheat genetics and breeding for the 21st century-paper collection of international wheat genetics and breeding symposium. Zhengzhou: China Agricultural Science and Technology Press, 2001: 309-312 [百度学术]
林小虎, 周印富, 张志雯, 陈于和, 马为民, 贺字典, 王洪刚. 兼抗白粉病和条锈病的八倍体小偃麦的鉴定. 麦类作物学报, 2008, 28(4): 686-690 [百度学术]
Lin X H, Zhou Y F, Zhang Z W, Chen Y H, Ma W M, He Z D, Wang H G. Identification of octoploid trititrigia with resistance to powdery mildew and stripe rust. Journal of Triticeae Crops, 2008, 28 (4): 686-690 [百度学术]
Cui Y, Xing P Y, Qi X L, Bao Y G, Wang H G, Wang R R, Li X F. Characterization of chromosome constitution in three wheat-Thinopyrum intermedium amphiploids revealed frequent rearrangement of alien and wheat chromosomes. BMC Plant Biology, 2021, 21(1): 129 [百度学术]
杨足君, 刘登才, 李光蓉. 一个多抗性小麦中间偃麦草新种质的遗传鉴定. 四川大学学报: 自然科学版, 2000, 37(S1): 20-25 [百度学术]
Yang Z J, Liu D C, Li G R.Genetic identification of a new wheat Thinopyrum intermedium germplasm with multi-resistance. Journal of Sichuan University: Natural Science Edition, 2000, 37 (S1): 20-25 [百度学术]
Wang H, Cheng S W, Shi Y, Zhang S X, Yan W, Song W F, Yang X F, Song Q J, Jang B, Qi X Y, Li X L, Friebe B, Zhang Y M. Molecular cytogenetic characterization and fusarium head blight resistance of five wheat-Thinopyrum intermedium partial amphiploids. Molecular Cytogenetics,2021, 14(1): 15 [百度学术]
Li G R, Zhang T, Yu Z H, Wang H J, Yang E N, Yang Z J. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant Journal, 2021, 105(4):978-993 [百度学术]
Oliver R E, Xu S S, Stack R W, Friesen T L, Jin Y, Cai X. Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theoretical and Applied Genetics, 2006, 112(8): 1473-1479 [百度学术]
Hu L J, Li G R, Zeng Z, Chang Z J, Liu C, Yang Z J. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. Journal of Applied Genetics, 2011, 52(3): 279-285 [百度学术]
Zheng Q, Lv Z L, Niu Z X, Li B, Li H W, Xu S S, Han F P, Li Z S. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. Journal of Genetics and Genomics, 2014, 41(11): 591-599 [百度学术]
Jia H W, Feng H, Yang G T, Li H W, Fu S L, Li B, Li Z S, Zheng Q. Establishment and identification of six wheat-Thinopyrum ponticum disomic addition lines derived from partial amphiploid Xiaoyan 7430. Theoretical and Applied Genetics, 2022,DOI:10.1007/s00122-022-04185-x [百度学术]
He F, Xing P Y, Bao Y G, Ren M J, Liu S B, Wang Y H, Li X F, Wang H G.Chromosome pairing in hybrid progeny between Triticum aestivum and Elytrigia elongata. Frontiers in Plant Science, 2017, 8: 2161 [百度学术]
Sepsi A, Molnar I, Szalay D, Molnar-Lang M. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theoretical and Applied Genetics, 2008, 116(6): 825-834 [百度学术]
Fedak G, Chen Q, Conner R L, Laroche A, Comeau A, Pierre C A. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica, 2001, 120 (3): 373-378 [百度学术]
Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe--a landmark approach for Thinopyrum genome research. Cytogenetic and Genome Research, 2005, 109(1-3): 350-359 [百度学术]
Zheng Q, Lv Z L, Niu Z X, Li B, Li H W, Xu S S, Han F P, Li Z S. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. Journal of Genetics and Genomics, 2014, 41(11): 591-599 [百度学术]
Chen Q, Conner R L, Li H J, Sun S C, Ahmad F, Laroche A, Graf R J. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat-Thinopyrum intermedium partial amphiploids. Genome, 2003, 46(1): 135-145 [百度学术]
Cseh A, Yang C, Hubbart-Edwards S, Scholefeld D, Ashling S S, Burridge A J, Wilkinson P A, King P I, King J, Grewal S. Development and validation of an exome-based SNP marker set for identification of the St,
Schulz S J, Mcneal S J, Mcneal F H. Alien chromosome addition in wheat. Crop Science, 1977, 17(6): 891-896 [百度学术]
李集临, 曲敏, 张延明. 小麦染色体工程. 北京: 科学出版社, 2001: 50-60 [百度学术]
Li J L, Qu M, Zhang Y M. Wheat chromosome engineering. Beijing:Science Press, 2001: 50-60 [百度学术]
韩方普, 李集临, 张贵友, 白瑞珍, 祁适雨. 硬粒小麦与天兰偃麦草杂交选育六倍体小偃麦的研究. 黑龙江农业科学, 1991(2): 10-12 [百度学术]
Han F P, Li J L, Zhang G Y, Bai R Z, Qi S Y. Breeding of hexaploid Thinopyrum by crossing durum wheat with Thinopyrum Tianlan. Heilongjiang Agricultural Science, 1991(2): 10-12 [百度学术]
宋维富, 赵蕾, 赵海滨, 张延明, 李集临. 六倍体小偃麦与普通小麦杂交后代的分子细胞遗传学检测. 核农学报, 2014, 28(9): 1549-1558 [百度学术]
Song W F, Zhao L, Zhao H B, Zhang Y M, Li J L. Molecular and cytogenetical identification of offsprings between common wheat and Triticum trititrigia(6X). Journal of Nuclear Agricultural Sciences, 2014, 28 (9): 1549-1558 [百度学术]
Li D, Long D, Li T, Wu Y, Wang Y, Zeng J, Xu L L, Fan X, Sha L, Zhang H Q, Zhou Y H, Kang H Y. Cytogenetics and stripe rust resistance of wheat-Thinopyrum elongatum hybrid derivatives. Molecular Cytogenetics, 2018, 11(1): 1-9 [百度学术]
Larkin P J, Banks P M, Lagudah E S, Appels R, Mcintosh R A, Chen X, Xin Z Y, Ohm H W.Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistance. Genome, 1995, 38(2): 385-394 [百度学术]
张忠军, 楼东芳, 张美蓉. 3个抗条锈病小偃麦附加系中偃麦草染色体同源性鉴定. 北京农业大学学报, 1995, 21(1): 85-89 [百度学术]
Zhang Z J, Lou D F, Zhang M R. Identification of two pairs of Agropyron intermedium chromosomes with resistance to puccinia striiformis in different wheat aline addition lines. Journal of Agricultural University of Beijing, 1995, 21(1): 85-89 [百度学术]
李凤珍, 吉万全, 王长有, 吴金华. 小麦-中间偃麦草衍生系的分子细胞遗传学鉴定. 麦类作物学报, 2005, 25(5): 14-17 [百度学术]
Li F Z, Ji W Q, Wang C Y, Wu J H. Molecular cytogenetic identification of wheat-Thinopyrum intermedium derivative lines. Journal of Triticeae Crops, 2005, 25(5): 14-17 [百度学术]
王长有, 吉万全, 薛秀庄, 王秋英. 小麦-中间偃麦草异附加系条锈病抗性的研究. 西北植物学报, 1999, 19(6): 54-58 [百度学术]
Wang C Y, Ji W Q, Xue X Z, Wang Q Y. Studies on yellow rust resistance of wheat-Th.intermedium alien disomic addition lines. Acta Botanica Boreali-Occidentalia Sinica, 1999, 19(6): 54-58 [百度学术]
Wang S W, Wang C Y, Feng X B, Zhao J L, Deng P C, Wang Y J, Zhang H, Liu X L, Li T D, Chen C H, Wang B T, Ji W Q. Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat-Thinopyrum intermedium and wheat-Thinopyrum ponticum substitution lines. BMC Plant Biology, 2022, 22(1):111 [百度学术]
Banks P M, Larkin P J, Bariana H S, Lagudah E S, Appels R, Waterhouse P M, Brettell R I S, Chen X, Xu H J, Xin Z Y, Qian Y T, Zhou X M, Cheng Z M, Zhou G H. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome, 1995, 38(2): 395-405 [百度学术]
郑瑗, 李欣, 贾举庆, 郭慧娟, 雷梦林, 张树伟, 常利芳, 畅志坚, 乔麟轶, 陈芳, 张晓军. 抗条锈病小偃麦附加系CH366的FISH鉴定. 山西农业科学, 2021, 49(3): 278-280,284 [百度学术]
Zheng Y, Li X, Jia J Q, Guo H J, Lei M L, Zhang S W, Chang L F, Chang Z J, Qiao L Y, Chen F, Zhang X J. FISH identification of wheat-Thinopyrum intermedium addition line CH366 with resistance to stripe rust. Journal of Shanxi Agricultural Sciences, 2021, 49 (3): 278-280,284 [百度学术]
Li J B, Bao Y G, Han R, Wang X L, Xu W J, Li G R, Yang Z J, Zhang X J, Li X, Liu A F, Li H S, Liu J J, Zhang P, Liu C. Molecular and cytogenetic identification of stem rust resistant wheat-Thinopyrum intermedium introgression lines. Plant Disease, 2022, DOI: 10.1094/PDIS-10-21-2274-RE [百度学术]
张晓军, 畅志坚, 阎晓涛, 詹海仙, 李欣. 2个抗白粉病小偃麦异附加系的GISH鉴定. 山西农业科学, 2011, 39(2): 103-105 [百度学术]
Zhang X J, Chang Z J, Yan X T, Zhan H X, Li X. GISH analysis of two Thinopyrum intermedium derived wheat aline addition lines resistant to powdery mildew. Journal of Shanxi Agricultural Sciences, 2011, 39 (2): 103-105 [百度学术]
姜丽君, 王洪刚, 孔令让, 张德水. 12个优良小麦种质系的细胞学和性状特点的研究. 山东农业大学学报: 自然科学版, 1995, 26(3): 273-279 [百度学术]
Jiang L J, Wang H G, Kong L R, Zhang D S. Studies on cytology and main traits of twelve new wheat germ plasm lines. Journal of Shandong Agricultural University: Natural Science Edition, 1995, 26 (3): 273-279 [百度学术]
王洪刚, 张建民, 刘树兵. 抗白粉病小麦-中间偃麦草异附加系的细胞学和RAPD鉴定. 西北植物学报, 2000, 20(1): 64-67 [百度学术]
Wang H G, Zhang J M, Liu S B. Identification of wheat-Elytrigia intermedium alien addition line with resistance to powdery mildew by cytology and RAPD analysis. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20 (1): 64-67 [百度学术]
刘树兵, 王洪刚. 抗白粉病小麦-中间偃麦草(Thinopyrum intermedium,2n=42)异附加系的选育及分子细胞遗传鉴定. 科学通报, 2002, 47(19): 1500-1503 [百度学术]
Liu S B, Wang H G. Breeding and molecular cell genetic identification of powdery mildew resistant wheat Thinopyrum intermedium (2n=42). Chinese Science Bulletin, 2002, 47(19): 1500-1503 [百度学术]
林小虎, 王黎明, 李兴锋, 陆文辉, 赵逢涛, 李文才, 高居荣, 王洪刚. 抗白粉病八倍体小偃麦和双体异附加系的鉴定. 作物学报, 2005, 31(8): 1035-1040 [百度学术]
Lin X H, Wang L M, Li X F, Lu W H, Zhao F T, Li W C, Gao J R, Wang H G. Identification of octoploid Thinopyrum and alien disomic addition lines with powdery mildew resistance.Acta Agronomica Sinica, 2005, 31 (8): 1035-1040 [百度学术]
徐林涛, 马莹雪, 张超, 吴瑕, 亓晓蕾, 何方, 鲍印广, 王洪刚. 抗白粉病耐盐小麦-中间偃麦草附加系‘山农120211’的鉴定. 西北植物学报, 2014, 34(9): 1757-1763 [百度学术]
Xu L T, Ma Y X, Zhang C, Wu X, Qi X L, He F, Bao Y G, Wang H G. Identification of wheat-Thinopyrum intermedium alien disomic addition line ‘Shannong 120211’with resistance to powdery mildew and salt tolerance. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34 (9): 1757-1763 [百度学术]
黄春丽, 宋静, 李全权, 郭庆东, 田秋菊, 高居荣, 王洪刚, 封德顺. 小偃麦异附加系TaXTH基因的克隆与生物信息学分析. 山东农业科学, 2015, 47(7): 1-6 [百度学术]
Huang C L, Song J, Li Q Q, Guo Q D, Tian Q J, Gao J R, Wang H G, Feng D S. Cloning and bioinformatics analysis of TaXTH from wheat-Thinopyrum alien alien addition line. Shandong Agricultural Science, 2015, 47 (7): 1-6 [百度学术]
胡英考, 辛志勇, 陈孝. 抗条锈病小麦-中间偃麦草异附加系的生化与分子标记. 西北植物学报, 2002, 22(1): 136-140 [百度学术]
Hu Y K, Xin Z Y, Chen X. Biochemical and molecular markers of a yellow rust resistance wheat-Th.intermedium addition line. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22 (1): 136-140 [百度学术]
石丁溧, 傅体华, 任正隆. 抗白粉病小麦-中间偃麦草染色体小片段易位系的选育与鉴定. 植物病理学报, 2008, 38(3): 298-303 [百度学术]
Shi D L, Fu T H, Ren Z L. Development and identification of a small-fragment-translocation line of wheat and Agropyrum intermedium resistant to powdery mildew. Acta Phytopathologica Sinica, 2008, 38(3): 298-303 [百度学术]
段亚梅, 罗贤磊, 陈士强, 高勇, 陈建民, 戴毅. 硬粒小麦-长穗偃麦草附加系、代换系和易位系的创制. 作物学报, 2021, 47(7): 1402-1414 [百度学术]
Duan Y M, Luo X L, Chen S Q, Gao Y, Chen J M, Dai Y. Creation of durum wheat-Thinopyrum elongatum addition lines, substitution and translocation lines. Acta Agronomica Sinica, 2021, 47(7): 1402-1414 [百度学术]
Li X J, Hu X G,Hu T Z,Li G,Ru Z G,Zhang L L,Lang Y M. Identification of a novel wheat-Thinopyrum ponticum addition line revealed with cytology, SSR, EST-SSR, EST-STS and PLUG markers. Cereal Research Communications, 2015, 43(4): 544-553 [百度学术]
刘爱峰, 王洪刚, 郝元峰, 段友臣, 王玉海, 吴新儒, 李岩, 朱玉丽, 高居荣. 抗条锈病小偃麦双体异附加系山农87074-519的鉴定. 分子细胞生物学报, 2007, 40(3): 217-223 [百度学术]
Liu A F, Wang H G, Hao Y F, Duan Y C, Wang Y H, Wu X R, Li Y, Zhu Y L, Gao J R. Identification of Tritielytrigia alien disomic addition line Shangnong 87074-519 with yellow rust resistance. Journal of Molecular Cell Biology, 2007, 40(3): 217-223 [百度学术]
王黎明, 林小虎, 张平杰, 张志雯, 王玉海, 赵逢涛, 高居荣, 李文才, 李兴峰, 王洪刚. 小麦-中间偃麦草二体异代换系山农0095的选育及其鉴定. 中国农业科学,2005, 38(10): 1958-1964 [百度学术]
Wang L M, Lin X H, Zhang P J, Zhang Z W, Wang Y H, Zhao F T, Gao J R, Li W C, Li X F, Wang H G. Breeding and characterization of wheat-Thinopyrum intermedium alien substitution line Shannong 0095. Scientia Agricultura Sinica,2005, 38(10): 1958-1964 [百度学术]
王黎明, 王合坚, 李萍, 王洪刚. 小偃麦种质系SN0606的形态学和细胞学分析. 安徽农业科学, 2007, 35(28): 8825-8829 [百度学术]
Wang L M, Wang H J, Li P, Wang H G. Morphological and cytological analysis on germplasm line SN0606 of Trititrigia. Journal of Anhui Agricultural Sciences, 2007, 35(28): 8825-8829 [百度学术]
任永康, 畅志坚, 詹海仙, 张晓军, 董春林, 温智坚. 小麦-中间偃麦草异代换系的细胞学和SSR标记鉴定. 山西农业科学, 2007, 35(1): 22-25 [百度学术]
Ren Y K, Chang Z J, Zhan H X, Zhang X J, Dong C L, Wen Z J. Cytological and SSR identification of wheat-Elytrigia intermedium alien substitution line. Journal of Shanxi Agricultural Sciences, 2007, 35(1): 22-25 [百度学术]
胡静, 李欣, 阎晓涛, 任永康, 郭慧娟, 詹海仙, 乔麟轶, 畅志坚, 张晓军. 一个新的小麦-中间偃麦草异代换系的分子细胞学鉴定. 山西农业科学, 2014, 42(5): 425-427,431 [百度学术]
Hu J, Li X, Yan X T, Ren Y K, Guo H J, Zhan H X, Qiao L Y, Chang Z J, Zhang X J. Identification for a new wheat alien substitution lines derived from Th.intermedium by molecular cytology. Journal of Shanxi Agricultural Sciences, 2014, 42(5): 425-427,431 [百度学术]
罗小军, 乔麟轶, 李欣, 郭慧娟, 阎晓涛, 张树伟, 常利芳, 闫金龙, 畅志坚, 张晓军. 小麦-中间偃麦草代换系CH188分子细胞学鉴定. 山西农业科学, 2020, 48(3): 317-320 [百度学术]
Luo X J, Qiao L Y, Li X, Guo H J, Yan X T, Zhang S W, Chang L F, Yan J L, Chang Z J, Zhang X J. Molecular cytogenetic identification of wheat-Thinopyrum intermedium substitution line CH188. Journal of Shanxi Agricultural Sciences, 2020, 48(3): 317-320 [百度学术]
李振声, 穆素梅, 周汉平, 李滨, 英加. 蓝粒小麦(蓝58), 蓝单体小麦和蓝粒小麦易位系. 中国专利: CN1435086A, 2003-08-13 [百度学术]
Li Z S, Mu S M, Zhou H P, Li B, Ying J. Blue grain wheat (blue 58), blue monomer wheat and blue grain wheat translocation line. Chinese Patent: CN1435086A, 2003-08-13 [百度学术]
Li H J, Chen Q, Conner R L, Guo B H, Zhang Y M, Graf R J, Laroche A, Jia X, Liu G S, Chu C C. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome, 2003, 46(5): 906-913 [百度学术]
Li H J, Arterburn M, Jones S S, Murray T D. A new source of resistance to Tapesia yallundae associated with a homoeologous group 4 chromosome in Thinopyrum ponticum. Phytopathology, 2004, 94(9): 932-937 [百度学术]
王洪刚, 李丹丹, 刘树兵, 高居荣, 李兴锋. 抗白粉病小偃麦异代换系的细胞学和RAPD鉴定. 西北植物学报, 2003, 23(2): 280-284 [百度学术]
Wang H G, Li D D, Liu S B, Gao J R, Li X F. Identification of Tritelytrigia alien substitution line with powdery mildew resistance by cytology and RAPD analysis. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(2): 280-284 [百度学术]
刘爱峰, 李豪圣, 刘建军, 程敦公, 宋健民, 王洪刚. 小偃麦异代换系抗病基因的鉴定及其SSR分子标记. 分子植物育种, 2008, 6(2): 257-262 [百度学术]
Liu A F, Li H S, Liu J J, Cheng D G, Song J M, Wang H G. Identification of disease resistance gene in Tritielytrigia alien addition line and its SSR molecular marker. Molecular Plant Breeding, 2008, 6(2): 257-262 [百度学术]
Li M Z, Wang Y Z, Liu X, Li X F, Wang H G, Bao Y G. Molecular cytogenetic identification of a novel wheat-Thinopyrum ponticum1
Wang Y Z, Cao Q, Zhang J J, Wang S W, Chen C H, Wang C Y, Zhang H,Wang Y J, Ji W Q. Cytogenetic analysis and molecular marker development for a new wheat-Thinopyrum ponticum 1
马强, 罗培高, 任正隆, 蒋华仁, 杨足君. 两个抗小麦白粉病新基因的遗传分析与染色体定位. 作物学报, 2007, 33(1): 1-8 [百度学术]
Ma Q, Luo P G, Ren Z L, Jiang H R, Yang Z J. Genetic analysis and chromosomal location of two new genes for resistance to powdery mildew in wheat (Triticum aestivum L.). Acta Agronomica Sinica, 2007, 33(1): 1-8 [百度学术]
李爱博, 李金荷, 宋建荣, 王化俊, 张耀辉, 尚勋武, 曹世勤, 李葆春. 小麦-中间偃麦草抗锈易位系中梁27的鉴定及分析. 麦类作物学报, 2015, 35(11): 1489-1493 [百度学术]
Li A B, Li J H, Song J R, Wang H J, Zhang Y H, Shang X W, Cao S Q, Li B C. Identification and analysis of zhongliang 27, a wheat-Thinopyrum intermedium translocation line with resistance to stripe rust. Journal of Triticeae Crops, 2015, 35(11): 1489-1493 [百度学术]
王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估. 作物学报, 2021, 47(8): 1511-1521 [百度学术]
Wang Y, Feng Z W, Ge C, Zhao J J, Qiao L, Wu B B, Yan S X, Zheng J, Zheng X W. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding. Acta Agronomica Sinica, 2021, 47(8): 1511-1521 [百度学术]
Yang G T, Zheng Q, Hu P, Li H W, Luo Q L, Li B, Li Z S. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat-Thinopyrum intermedium translocation line WTT11. aBIOTECH, 2021, 4: 343-356 [百度学术]
Zheng X W, Tang C G, Han R, Zhao J J, Liu C, Qiao L, Zhang S W, Qiao L Y, Ge C, Zheng J. Identification,characterization and evaluation of novel stripe rust resistant wheat-Thinopyrum intermedium chromosome translocation lines. Plant Disease, 2020, 104(3): 875-881 [百度学术]
李万隆, 李振声, 穆素梅. 小麦品种小偃6号染色体结构变异的细胞学研究. 遗传学报, 1990, 17(6): 430-437 [百度学术]
Li W L, Li Z S, Mu S M. A cytological study of chromosomal structure changes in a common wheat variety, xiaoyan No.6. Acta Genetica Sinica, 1990, 17(6): 430-437 [百度学术]
郝薇薇, 汤才国, 李葆春, 郝晨阳, 张学勇. 小麦-十倍体长穗偃麦草广谱抗锈易位系的鉴定及分析. 中国农业科学, 2012, 45(16): 3240-3248 [百度学术]
Hao W W, Tang C G, Li B C, Hao C Y, Zhang X Y. Analysis of wheat-Thinopyrum ponticum translocation lines with broad spectrum resistance to stripe rusts. Scientia Agricultura Sinica, 2012, 45(16): 3240-3248 [百度学术]
Li H J, Conner R L, Chen Q, Li H Y, Laroche A, Graf R J, Kuzyk A D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome, 2004, 47(1): 215-223 [百度学术]
Chen S Y, Xia G M, Quan T Y, Xiang F N, Jin Y, Chen H M. Introgression of salt-tolerance fromsomatic hybrids between common wheat and Thinopyrum ponticum. Plant Science, 2004, 167(4) :773-779 [百度学术]
Chen G L, Zheng Q, Bao Y G, Liu S B,Wang H G, Li X F. Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. Journal of Biosciences, 2012, 37(1): 149-155 [百度学术]
Zhan H X, Li G R, Zhang X J, Li X, Guo H J, Gong W P, Jia J Q, Qiao L Y, Ren Y K, Yang Z J, Chang Z J. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS ONE, 2014, 9(11): e113455 [百度学术]
Hou L Y, Jia J Q, Zhang X J, Li X, Yang Z J, Ma J, Guo H J, Zhan H X, Qiao L Y, Chang Z J. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Disease, 2016, 100(8): 1717-1724 [百度学术]
Li M Z, Yuan Y Y, Ni F, Li X F, Wang H G, Bao Y G. Characterization of two wheat-Thinopyrum ponticum introgression lines with pyramiding resistance to powdery mildew. Frontiers in Plant Science, 2022, 13: 943669 [百度学术]
詹海仙, 李光蓉, 张晓军, 李欣, 畅志坚. 小偃麦渐渗系对白粉病和条锈病抗性的遗传分析. 华北农学报, 2012, 27(5): 163-167 [百度学术]
Zhan H X, Li G R, Zhang X J, Li X, Chang Z J. Inheritances of resistance to powdery mildew and stripe rust in cryptic alien introgression from Thinopyrum intermedium. Acta Agriculturae Boreali-Sinica, 2012, 27 (5): 163-167 [百度学术]
Luo P G, Luo H Y, Chang Z J, Zhang H Y, Zhang M, Ren Z L. Characterization and chromosomal location of Pm40 in common wheat: A new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theoretical and Applied Genetics, 2009, 118(6): 1059-1064 [百度学术]
He R L, Chang Z J, Yang Z J, Yuan Z L, Zhan H X, Zhang X J, Liu J X. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theoretical and Applied Genetics, 2009, 118(6): 1173-1180 [百度学术]
李建波, 乔麟轶, 李欣, 张晓军, 詹海仙, 郭慧娟, 任永康, 畅志坚. 小麦-中间偃麦草渗入系抗白粉病基因PmCH7124的分子定位. 作物学报, 2015, 41(1): 49-56 [百度学术]
Li J B, Qiao L Y, Li X, Zhang X J, Zhan H X, Guo H J, Ren Y K, Chang Z J. Molecular localization of powdery mildew resistance gene PmCH7124 in wheat-Thinopyrum intermedium introgression line. Acta Agronomica Sinica , 2015, 41 (1): 49-56 [百度学术]
Shen X K, Ma L X, Zhong S F, Liu N, Zhang M, Chen W Q, Zhou Y L, Li H J, Chang Z J, Li X, Bai G H, Zhang H Y, Tan F Q, Ren Z L, Luo P G. Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theoretical and Applied Genetics, 2015, 128(3): 517-528 [百度学术]
Liu J, Chang Z J, Zhang X J, Yang Z J, Li X, Jia J Q, Zhan H X, Guo H J, Wang J M. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theoretical and Applied Genetics, 2013, 126(1): 265-274 [百度学术]
Huang Q, Li X, Chen W Q, Xiang Z P, Zhong S F, Chang Z J, Zhang M, Zhang H Y, Tan F Q, Ren Z L, Luo P G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theoretical and Applied Genetics, 2014, 127(4): 843-853 [百度学术]
Zhang X, Cui C H, Bao Y G, Wang H G, Li X F. Molecular cytogenetic characterization of a novel wheat-Thinopyrum intermedium introgression line tolerant to phosphorus deficiency. The Crop Journal, 2021, 9(4): 816-822 [百度学术]
Liu L Q, Luo Q L, Li H W, Li B, Li Z S, Zheng Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theoretical and Applied Genetics, 2018, 131(11): 2359-2370 [百度学术]
Baker L, Grewal S, Yang C Y, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge A J, Przewieslik-Allen A M,Wilkinson P A, King I P, King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theoretical and Applied Genetics, 2020, 133(9): 2213-2226 [百度学术]
Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W, Li W Y, Xiao G L, Zhao J X, Hao Y C, Xu Y, GaoY, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368(6493): 5435 [百度学术]