摘要
小麦籽粒营养丰富,其面粉可制作成多种食品,是全球超过三分之一人口的主食。随着病虫害加重、环境恶化(干旱、高温、盐碱)等生物和非生物逆境的影响,全球小麦安全生产受到的威胁越来越大。为保障全球粮食安全供给和人民生活对优质产品的需要,提高小麦产量和改进小麦品质仍将是重要的育种目标,要求不断创新育种技术和种质资源。近10年来,转基因和基因编辑等生物技术发展迅速,逐步在小麦改良中发挥重要作用。建立了小麦高效遗传转化体系和基因编辑体系,利用农杆菌转化模式基因型的转化效率50%以上,利用CRISPR/Cas9编辑部分基因的编辑效率40%~70%,利用再生相关基因基本克服了转基因和基因编辑研究中基因型的依赖性。通过转基因和基因编辑改良了小麦抗病性、抗逆性、特性品质、产量潜力和生长发育等多个性状,创制了抗白粉病、条锈病、赤霉病、花叶病毒病、穗发芽,以及耐旱、耐盐、低醇溶蛋白、高谷蛋白、高千粒重和雄性不育系、单倍体诱导系等小麦新材料,丰富了小麦种质资源。本研究旨在综述小麦转基因和基因编辑的最新研究进展,并探讨目前研究中存在的问题和可能的解决途径。
小麦是一种适应性强、分布广泛的粮食作物,籽粒中含有淀粉、蛋白质、脂肪、矿物质、钙、铁、硫胺素、核黄素、烟酸及维生素A等多种物质,营养价值较高,其独特的面筋特性可以用来制作多种面食,是全球35%~40%人口的主食。同时,小麦还是最重要的贸易和国际援助产品。但在以种植小麦为主的温带地区,病虫害流行和灾害性天气频发等生物和非生物胁迫因素造成每年数百万吨小麦产量的损失,需要利用新型生物技术培育抗病性和抗逆性强的优质、高产小麦品
自20世纪末期开始,人们尝试利用多种转化方法和多种外植体转化小麦。转化方法主要包括基因枪、农杆菌、花粉管通道、超声波、离子束注入、激光微束穿刺和聚乙二醇(PEG,polyethylene glycol)等方法,其中,1993年Vasil
总体而言,农杆菌介导法相比基因枪介导法具有一些独特的优势,如操作简单、成本较低、目标基因基因整合的拷贝数较少、T-DNA插入位点能够明确、生物安全性较高等。而基因枪介导法可以转化细胞器,并能够将RNA、蛋白质、纳米颗粒、染料和DNA复合物输送到细胞中。两种转化方法都存在基因型的依赖性,但农杆菌转化对基因型的依赖性更强,因为不同小麦品种具有不同的再生能力和对农杆菌感染的反应能
进入21世纪后,日本烟草公司利用春小麦品种Fielder幼胚建立了农杆菌介导的PureWheat高效转化体
利用PureWheat技术,Richardson
在模式植物中的研究表明,植物生长发育调节因子SERK(Somatic embryogenesis receptor-like kinase)、WUS (Wuschel)、LEC1(Leafy cotyledon1)、NiR(Nitrite reductase)和AGP(Arabinogalactan-protein)等可以促进体细胞胚胎发生和再生芽分化,提高植株再生效
生长调节因子(GRF,growth regulation factor)蛋白具有两个高度保守的结构域QLQ和WRC,分别介导蛋白质间以及与DNA的相互作用,GRF在植物体内可与辅助因子(GIF,GRF-interacting factor)互作。Debernardi
中国农业科学院作物科学研究所转基因中心小麦实验室经过多年探索,在小麦中鉴定到了1个与植株再生相关的转录因子基因TaWOX5(Wuschel related homeobox 5),通过将该基因与PureWheat技术结合用于小麦转化,几乎提高了所有参试小麦品种的转化效率,不但显著提高了Fielder、CB037和科农199等易再生小麦基因型的转化效率,而且提高了济麦22、郑麦7698、苏麦3号和中国春等多个难再生小麦推广品种或重要种质资源的转化效率,尤其成功转化了宁春4号、矮抗58、西农979等难转化的明星小麦品种,转化效率提高了2~10倍。TaWOX5基因的应用基本克服了小麦未成熟胚转化中基因型依赖性的问
随着基因组测序技术的发展,克隆植物基因已经变得容易,利用基因编辑技术可实现对重要基因的精准调控,明确其功能并创造有应用价值的种质资源。基因编辑技术经历了3个发展阶段,包括锌指核酸酶(ZFNs,zinc finger nucleases)、类转录激活因子效应物核酸酶(TALENs,transcription-like activator effector nucleases)和CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats CRISPR associated nuclease 9),编辑效率不断提高,脱靶率逐步降低,可操作性逐步简化。
ZFN是第一代基因编辑技术,由1个锌指蛋白的DNA结合域和1个核酸内切酶FOKⅠ的裂解区域融合而成。DNA复合结构域由多个锌指蛋白串联而成,每个锌指蛋白可以识别3个连续的碱基。多个锌指蛋白串联后,可以识别9~18 bp的特定核苷酸序列。ForkⅠ核酸酶仅在二聚体状态下有活性,在切割双链DNA产生双链断裂(DSB,double strand break)时需要在靶点的两侧设计1个ZFN。当两个ZFN结合时,ForkⅠ可以形成二聚体,以切断靶点的DNA序
TALENs是第二代基因编辑技术,在结构上类似于ZFN,由FokI核酸酶域和1个可定制的DNA结合域融合而
CRISPR/Cas9是第三代基因编辑技术,由高度保守的重复序列和完全不同的间隔序列交替排列组成,Cas9蛋白和单链引导RNA(sgRNA)结合形成嵌合蛋白体,在sgRNA的协助下Cas9蛋白能够识别相对简单的前间隔序列临近基序(PAM,protospacer adjacent motif)5'-NGG-3',并对与sgRNA互补的双链DNA进行切割,断裂的DNA链再通过非同源末端连接或同源重组的方式进行修复,从而实现对目的基因的编辑。进一步在CRISPR/Cas9的基础上开发了新的基因编辑技术,如Cpf1 (CRISPR from prevotella and francisella 1),代替Cas9的功能。CRISPR/Cas9系统的载体构建比较简单,编辑效率高,可同时对植物中的多个基因进行编辑,并且脱靶率较低,因此是小麦中应用最成功的编辑技术。例如,首次开发的CRISPR/Cas9系统在小麦原生质体中验证了序列特异性sgRNA
中国农业科学院作物科学研究所转基因中心小麦实验室对小麦中CRISPR的编辑体系进行了优化,比较了3种启动子(OsU6、TaU3和TaU6)调控目标基因sgRNA、3种CRISPR体系(SpCas9、Cpf1和xCas9)和不同靶点数对目标基因的编辑效率,发现OsU6、TaU3和TaU6编辑效率分别为21.6%、61.6%和36.0%;单靶点的编辑效率为45.7%~64.6%,双靶点的编辑效率为70.1%,并在两个靶点间出现了DNA片段删除现象,删除效率为37.2%;虽然利用CRISPR/Cpf1和CRISPR/xCas9可以获得编辑植株,但与CRISPR/SpCas9系统相比,它们对靶标基因的编辑效率非常低,只有3.1%和1.5%。表明在利用CRISPR/SpCas9编辑系统的前提下,设计TaU3启动子靶向目标基因的多个串联sgRNA,可以显著提高对小麦中目标基因的编辑效
在另外的研究中,比较了Cas9与两个Cpf1基因AsCpf1和LbCpf1在小麦中的编辑效率,发现LbCpf1比AsCpf1和Cas9对靶基因TAPDS的编辑效率更高,Cas9比AsCpf1和LbCpf1诱导的脱靶突变更多,认为CRISPR/LbCpf1是小麦等多倍体植物有效的基因组编辑工
白粉病、锈病、赤霉病、黄矮病(BYDV,barley yellow dwarf virus)、黄化叶病毒病(WYMV,wheat yellow mosaic virus)、全蚀病和纹枯病等是小麦生长期间的主要病害,在小麦产区经常发生,减产严重。如白粉病每年在中国的发病面积60万公顷左右,普通年份减产10%~20%,流行年份减产40%以上。白粉病和赤霉病不仅降低小麦籽粒产量,还降低营养品质和加工品质。小麦中相应的抗病资源逐趋枯竭或缺乏抗源,需要利用转基因技术和基因编辑技术创制抗病新种质,提高小麦的抗病性。将多聚半乳糖醛酸酶抑制剂蛋白酶(PGIP,polygalacturonase-inhibiting protein)编码基因转入小麦,增强了转基因小麦对根腐病的抗
在小麦中表达来自簇毛麦的ERF1-V基因增强了小麦对白粉病的抗
将TaPIMP1、TaERF1和TaSTT3b-2B等抗病相关基因转入小麦,创制了抗纹枯病的转基因小麦新种
随着全球气温升高和工业化发展的加快,干旱和盐碱等非生物胁迫对小麦生产的危害越来越重,利用转基因技术和基因编辑技术改良小麦抗逆性已成为趋势。将来自大豆的GmDREB基因转入小麦,转基因小麦对水分胁迫表现较强耐性。先后将拟南芥中的AtDREB1A基因和玉米中的ZmPEPC的基因转入小麦,转基因小麦耐旱性明显高于受体对
由于细菌中的冷激蛋白(CSPs,cold shock proteins)能增强细菌对不良环境的适应能力,将密码子改造的大肠杆菌SeCspA和SeCspB基因转入小麦,转基因植株在干旱胁迫下丙二醛(MDA)含量、失水率和相对N
将从抗逆性强的大豆品种中克隆的转录因子基因GmTDN1转入小麦,不但显著提高了小麦的抗旱性,同时提高了小麦的氮肥利用效率;将GmTDN1基因导入两个小麦品种后,在节水和缺氮条件下分别比对照增产13.0%和24.5
小麦产量主要由单位面积穗数、穗粒数和千粒重决定,利用转基因技术和基因编辑技术改良小麦产量性状具有较大潜力。将小麦TaBT1基因的RNAi载体转入小麦,发现单株有效分蘖、小穗数和穗粒数没有显著减少,粒长减少了0.7%~1.6%,粒宽减少了8.1%~23.3
2021年以来,利用转基因技术改良小麦产量性状相继取得了突破性进展。通过图位克隆方法定位到1个控制小麦小穗数的主效基因TaCol-B5(该基因编码一个CONSTANS-like家族蛋白),发现TaCol-B5不同等位基因编码蛋白质存在氨基酸位点突变,与蛋白激酶TaK4反应时蛋白磷酸化水平有差异,其显性等位变异存在于二粒小麦中,在小麦种质中非常稀少;进一步在扬麦18中过表达TaCol-B5,发现转基因株系单株有效分蘖数和株高增加,籽粒产量比野生型增加11.9%~19.8
随着人们生活水平的提高,培育优质专用小麦品种的问题越来越突出,而传统育种方法改良小麦品质的目标性不够强,需要利用转基因技术和基因编辑技术予以辅助。研究表明,通过转基因技术在小麦中过表达1Ax1、ama1、SBEIIa和SBEIIb等一些与面粉加工和营养品质相关的目标基因,转基因小麦株系面包品质提高,支链淀粉含量增加。将从小伞山羊草中鉴定的低分子量谷蛋白亚基新基因LMW-N13转入小麦,转基因株系与非转基因株系相比淀粉粒大,蛋白质基质连续紧密,面团加工特性得到改
将从硬粒小麦中克隆的籽粒硬度基因Pinb-D1x转入小麦,改善了籽粒硬度和面粉加工特
研究发现,小麦TaHRC基因编码组氨酸钙结合蛋白,导致小麦对赤霉病的易感性,通过基因编辑随机删除包含TaHRC基因起始密码子的序列,突变体对赤霉病表现一定抗
在大麦、拟南芥和番茄等植物中,通过使Mildew resistance locus(MLO)基因产生缺失突变,突变体植株对白粉病菌产生了持久抗性。通过编辑小麦1A、1B和1D染色体上3个TaMLO基因,获得了6种纯合突变类型(Tamlo-aa、Tamlo-bb、Tamlo-dd、Tamlo-aabb、Tamlo-aadd和Tamlo-aabbdd),3个基因同时编辑的Tamlo-aabbdd突变体对白粉病具有较强抗性,其他5类突变体和野生型对照感染白粉
小麦TaHAG1基因编码1个定位于细胞核中的组蛋白乙酰转移
编辑小麦中的乙酰乳酸合成酶编码基因TaALS-P174,ALS突变体对烟嘧磺隆除草剂具有良好的抗性;编辑乙酰辅酶A羧化酶编码基因TaACCase-A1992,突变体对精喹禾灵除草剂表现一定耐受
小麦成熟期穗发芽严重影响小麦产量和品质,目前推广小麦品种抗穗发芽能力普遍较弱,通过常规育种途径培育抗穗发芽小麦品种的成效不显著,需要利用基因编辑技术解决小麦穗发芽问题。研究表明,小麦中编码丙氨酸转氨酶的TaQsd1基因是控制籽粒休眠的关键基因,利用基因编辑技术敲除小麦第4同源群上3个拷贝的TaQsd1基因获得了TaQsd1-aaBbdd、TaQsd1-AABbDd和TaQsd1-AABBDd突变类型,进一步利用突变体TaQsd1-aaBbdd与野生型杂交获得了TaQsd1位点的8种基因
目前,虽然在小麦中已经定位到多个与每穗小穗数相关的QTL,但克隆到的小穗数控制基因还相对较少,FT-D1基因是其中之一。利用CRISPR/Cas9技术敲除小麦品系CB037中的FT-D1,筛选到3个无转基因载体整合的FT-D1纯合突变体,抽穗期均比野生型CB037晚2~3 d,每穗小穗数显著高于CB03
植酸(PA,phytic acid)是一种重要的抗营养剂,存在于谷物中降低人体对铁和锌的吸收利用度,其中肌醇五磷酸激酶1(IPK1,inositol pentaphosphate kinase 1)编码基因是PA生物合成的关键基因。利用CRISPR/Cas9技术靶向突变小麦中的TaIPK1基因,突变体籽粒中的植酸含量降低,铁和锌的积累水平提
面粉中的谷蛋白富含脯氨酸和谷氨酰胺,容易产生不易消化的多肽,引发面筋过敏反应,肾病或糖尿病人摄入过多会加重肾脏负担。其中,α-和ω-醇溶蛋白及高分子量麦谷蛋白亚基(HMW-GS,high molecular weight glutenin subnit)是依赖运动诱发性过敏症最主要的原因。因此,降低小麦中醇溶蛋白的含量,培育低面筋含量小麦品种作为易感人群的专用面粉,对于降低乳糜泻、哮喘病和依赖运动诱发性过敏症的发病率具有重要价值。在α-醇溶蛋白基因高度保守的乳糜泻过敏肽区域选取两个特异的sgRNA,利用CRISPR/Cas9技术对小麦中α-醇溶蛋白基因进行编辑,获得了低面筋小麦突变体;在其中的1个突变体中,35个α-醇溶蛋白基因发生了突变,大大减少了小麦籽粒中的过敏原,免疫反应性降低了85
目前小麦杂种优势还没有得到充分利用,杂交种品种还比较缺乏,主要原因之一是缺乏优良而稳定的不育系。利用CRISPR/Cas9系统敲除不同小麦品种中A和D基因组上的TaMs1基因(B基因组上的TaMs1为不完整序列的假基因),获得了双等位基因移码编辑植株,突变体完全雄性不育,获得了无转基因成分存在的雄性不育
传统诱导小麦单倍体主要通过花药培养、小孢子培养和远缘杂交介导的染色体消除等技术,但这些方法依赖于基因型和离体培养等条件,存在诱导效率低、操作复杂等缺点,限制了单倍体技术在小麦育种中的应用。而在玉米遗传资源中鉴定到了可以诱导玉米产生单倍体的材料Stock6,发现其诱导产生单倍体籽粒的性状由磷脂酶编码基因MTL/ZmPLA1/NLD控制,进一步利用CRISPR/Cas9技术敲除MTL/ZmPLA1/NLD基因,突变体表现出与诱导系相同的功能。通过设计特异性靶向小麦TaPLA(TaMTL/TaNLD)基因的sgRNA序列,利用CRISPR/Cas9技术敲除小麦4A和4D染色体上共两个拷贝的TaPLA基因,获得了单倍体诱导系,单倍体诱导率为2%~3

图1 小麦TaMTL基因编辑突变体诱导单倍体植株鉴定
Fig.1 Identification of haploid plants in the TaMTL gene editing mutants of wheat
A:TaMTL-aabbdd突变体自交群体植株表型,红色标记的为单倍体植株,表现为不育;B:单倍体植株染色体观察,含有21条染色体;C:TaMTL-aabbdd突变体自交群体籽粒表型,左侧一粒为正常籽粒,右侧2粒为无胚籽粒
A: Plant phenotype in the self-crossing offspring of TaMTL-aabbdd mutant, in which the plants labeled in red are haploid plants showing sterility; B: Chromosome observation of the haploid plants with 21 chromosomes; C: Grain phenotype in the self-crossing offspring of TaMTL-aabbdd mutants, in which the grain on the left is normal type, and the two grains on the right are embryoless type
与传统的杂交育种和诱变育种等方法相比,转基因育种和基因编辑育种目标性强、精准性高,可以进行人工设计和操作,可以有效弥补传统育种方法存在的缺陷,但转基因和基因编辑都依赖于植物组织培养和植株再生,存在着强烈的基因型依赖性。虽然利用再生相关基因可以有效解决小麦基因型依赖性问题,但基于小麦幼胚的转化效率与母体植株和幼胚生理状态的关系很大,生长期间的温度条件、光照条件、病虫危害和农药施用等均影响受体材料的生理状态,进而影响了小麦遗传转化效率。中国农业科学院作物科学研究所转基因中心小麦实验室通过杂交、回交和分子标记辅助选择,将抗白粉病基因Pm21和PmV导入了易转化材料Fielder,培育了新的抗白粉病模式基因型,主要农艺性状与Fielder相似或有所改进,再生效率和转化效率比Fielder提高,生长期间不用施用化学药剂防治白粉
利用转基因技术和基因编辑技术创制的作物新品种用于产业化的主要限制是安全性问题,培育无筛选标记转基因植物非常必要。在众多获得无筛选标记转基因植株的技术中,共转化法效率最高,应用最为广泛。中国农业科学院作物科学研究所转基因中心小麦实验室通过构建双T-DNA载体,利用农杆菌转化幼胚,经筛选培养和分子检测,获得共转化目标基因和标记基因的T0转基因植株,在自交后的T1植株中鉴定到只含有目标基因而不含有筛选标记基因的转基因植株,无筛选标记转基因植株出现频率为5.2%。此外,利用转化效率较高的PureWheat技术将不含筛选标记的表达载体转化小麦模式基因型,在培养基中不添加筛选剂的情况下可以大量获得再生植株,其中2%左右的植株为转基因植株(无筛选标记
基因编辑技术可以不涉及外源DNA序列的整合,在经过遗传转化操作获得的转基因植株后代中很容易鉴定到不含外源DNA序列的基因编辑植株,在本质上等同于传统育种方法获得的遗传变异,理论上比转基因技术培育的作物品种具有更高的生物安全性。然而,基因编辑也利用了转基因技术,其产业化应用也需要较为严格的安全性评价。早期的研究表明,小麦与玉米杂交能够诱导小麦孤雌发育,进而产生小麦单倍体(玉米染色体在合子发育前期由于复制和分离与小麦染色体不同步而自然消除),染色体加倍后可以获得正常结实的小麦双倍体植
随着小麦转基因、基因编辑技术的不断发展和完善,已经能够高效获得小麦转基因植株和基因编辑植株,基本克服了基因型的依赖性,可以定点敲除小麦基因组中的不利基因或负调控基因,实现目标性状的精准改良,将大大提高小麦定向遗传改良的效率。今后的研究重点应该围绕小麦生产和小麦育种中需要迫切解决的重大问题,明确控制拟改良性状的关键基因、作用方式和DNA序列,进而利用转基因技术或基因编辑技术进行解决,培育目标性状显著改良且对产量和品质没有负影响的遗传修饰品种。
参考文献
Tesfaye K D. Climate change in the hottest wheat regions. Nature Food, 2021, 2(1): 8-9 [百度学术]
耿宁杰. 中国转基因作物产业化现状及法规问题. 分子植物育种, 2022, 20(17): 5675-5679 [百度学术]
Geng N J. Research on the current situation and legal issues of the industrialization of genetically modified crops in China. Molecular Plant Breeding, 2022, 20(17): 5675-5679 [百度学术]
黄耀辉, 王艺洁, 杨立桃, 焦悦, 付仲文. 生物育种新技术作物的安全管理. 生物技术进展, 2022, 12(2): 198-204 [百度学术]
Huang Y H, Wang Y J, Yang L T, Jiao Y, Fu Z W. Safety management of new technology crops in biological breeding. Advances in Biotechnology, 2022, 12(2): 198-204 [百度学术]
Vasil V, Srivastava V, Castillo A M, Fromm M E, Vasil I K. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Nature Biotechnology, 1993, 11(12): 1553 [百度学术]
Cheng M, Fry J E, Pang S, Zhou H, Hironaka C M, Duncan D R, Conner T W, Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 1997, 115(3): 971-980 [百度学术]
Li J R, Ye X G, An B Y, Du L P, Xu H J. Genetic transformation of wheat: Current status and future prospects. Plant Biotechnology Reports, 2012, 6(3): 183-193 [百度学术]
Wang K, Riaz B, Ye X G. Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. The Crop Journal, 2018, 6(1): 22-31 [百度学术]
张伟, 尹米琦, 赵佩, 王轲, 杜丽璞, 叶兴国. 我国部分主推小麦品种组织培养再生能力评价. 作物学报, 2018, 44(2): 208-217 [百度学术]
Zhang W, Yin M Q, Zhao P, Wang K, Du L P, Ye X G. Evaluation of tissue culture regeneration ability of some main wheat varieties in China. Acta Agronomica Sinica, 2018, 44(2): 208-217 [百度学术]
Wang K, Liu H Y, Du L P, Ye X G. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 2017, 15(5): 614-623 [百度学术]
Richardson T, Thistleton J, Higgins T J, Howitt C, Ayliffe M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue and Organ Culture, 2014, 119(3): 647-659 [百度学术]
Hayta S, Smedley M A, Demir S U, Blundell R, Hinchliffe A, Atkinson N, Harwood W A. An efficient and reproducible Agrobacterium mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 2019, 15(1): 121 [百度学术]
Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods in Molecular Biology, 2015, 1223: 189-198 [百度学术]
叶兴国, 佘茂云, 王轲, 杜丽璞, 徐惠君. 植物组织培养再生相关基因鉴定、克隆和应用研究进展. 作物学报, 2012, 38(2): 191-201 [百度学术]
Ye X G, She M Y, Wang K, Du L P, Xu H J. Research progress in identification, cloning and application of genes related to plant tissue culture regeneration. Acta Agronomica Sinica, 2012, 38(2): 191-201 [百度学术]
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L J, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z M, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P Z, Bidney D, Falco S C, RegisterIII J C, Zhao Z Y, Xu D P, Jones T J, Gordon-Kamm W J. Morphogenic regulators baby boom and wuschel improve monocot transformation. The Plant Cell, 2016, 28: 1998-2015 [百度学术]
Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491 [百度学术]
Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Ronald P, Palatnik J F, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020, 38(11): 1274-1279 [百度学术]
Wang K, Shi L, Liang X N, Zhao P, Wang W X, Liu J X, Chang Y N, Hiei Y, Yanagihara C, Du L P, Ishida Y, Ye X G. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 2022, 8(2): 110-117 [百度学术]
Bibikova M, Golic M, Golic K G, Carroll D. Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169-1175 [百度学术]
Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao Y Y, Sawbridge T, Davies J P, Mason J, Webb S R, Spangenberg G, Ainley W M, Walsh T A, Hayden M J. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnology Journal, 2018, 16(12): 2088-2101 [百度学术]
Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T. Genome edited crops touch the market: A view on the global development and regulatory environment. Frontiers in Plant Science, 2020, 11: 586027 [百度学术]
Becker S, Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing, 2021, DOI: https://www.sciencedirect.com/science/article/pii/S2666388021000071?via%3Dihub [百度学术]
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947-951 [百度学术]
Shan Q W, Wang Y P, Li J, Gao C X. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 2014, 9(10): 2395-2410 [百度学术]
Zhang S J, Zhang R Z, Song G Q, Gao J, Li W, Han X D, Chen M L, Li Y L, Li G Y. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biology, 2018, 18(1): 302 [百度学术]
Liu H Y, Wang K, Jia Z M, Gong Q, Lin Z S, Du L P, Pei X W, Ye X G. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. Journal of Experimental Botany, 2020, 71(4): 1337-1349 [百度学术]
Dongjin K, Megan H, Eleanor B, Hikmet B. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Functional & Integrative Genomics, 2021, 21(3-4): 1-12 [百度学术]
Janni M, Sella L, Favaron F, Blechl A E, De L G, D'Ovidio R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Molecular Plant-Mcrobe Interactions, 2008, 21(2): 171-177 [百度学术]
Fahim M, Ayala-Navarrete L, Millar A A, Larkin P. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnology Journal, 2010, 8(7): 821-834 [百度学术]
Chen M, Sun L Y, Wu H Y, Chen J, Ma Y Z, Zhang X X, Du L P, Cheng S H, Zhang B Q, Ye X G, Pang J L, Zhang X M, Li L C, Andika I B, Chen J P, Xu H J. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene. Plant Biotechnology Journal, 2014, 12(4): 447-456 [百度学术]
Liu P, Zhang X X, Zhang F, Xu M Z, Ye Z X, Wang K, Liu S, Han X L, Cheng Y, Zhong K L, Zhang T Y, Li L Z, Ma Y Z, Chen M, Chen J P, Yang J. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Molecular Plant, 2021, 14(7): 1088-1103 [百度学术]
Xing L P, Di Z C, Yang W W, Liu J Q, Li M N, Wang X J, Cui C F, Wang X Y, Wang X E, Zhang R Q, Xiao J, Cao A Z. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Frontiers in Plant Science, 2017, 8: 1948 [百度学术]
Jing Y X, Liu J, Liu P, Ming D F, Sun J Q. Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat. Scientific Reports, 2019, 9(1): 1-15 [百度学术]
Eissa H F, Hassanien S E, Ramadan A M, El-Shamy M M, Saleh O M, Shokry A M, Abdelsattar M, Morsy Y B, El-Maghraby M A, Alameldin H F, Hassan S M, Osman G H, Mahfouz H T, Gad E-K G A, Madkour M A, Bahieldin A. Developing transgenic wheat to encounter rusts and powdery mildew by overexpressing barley chi26 gene for fungal resistance. Plant Methods, 2017, 13(1): 41 [百度学术]
Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Molecular Plant, 2014, 7(12): 1740-1755 [百度学术]
Kaur J, Fellers J, Adholeya A, Velivelli S L S, El-Mounadi K, Nersesian N, Clemente T, Shah D. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Transgenic Research, 2017, 26(1): 37-49 [百度学术]
Luo M, Xie L Q, Chakraborty S, Wang A H, Matny O, Jugovich M, Kolmer J A, Richardson T, Bhatt D, Hoque M, Patpour M, Sørensen C, Ortiz D, Dodds P, Steuernagel B, Wulff Brande B H, Upadhyaya N M, Mago R, Periyannan S, Lagudah E, Freedman R, Lynne R T, Steffenson B J, Ayliffe M. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nature Biotechnology, 2021, 39(5): 561-566 [百度学术]
Wang N, Tang C L, Fan X, He M Y, Gan P F, Zhang S, Hu Z Y, Wang X D, Yan T, Shu W X, Yu L G, Zhao J R, He J N, Li L L, Wang J F, Huang X L, Huang L L, Zhou J M, Kang Z S, Wang X J. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185(16):2961-2974 [百度学术]
Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X M. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. The New Phytologist, 2012, 196(4): 1155-1170 [百度学术]
Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany, 2008, 59(15): 4195-4204 [百度学术]
Zhu X L, Rong W, Wang K, Guo W, Zhou M P, Wu J Z, Ye X G, Wei X N, Zhang Z Y. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal, 2021, 20(4): 777-793 [百度学术]
Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill-Macky R, Hohn T M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theoretical and Applied Genetics, 2002, 106(1): 74-83 [百度学术]
Li Z, Zhou M P, Zhang Z Y, Ren L J, Du L P, Zhang B Q, Xu H J, Xin Z Y. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Functional & Integrative Genomics, 2011, 11(1): 63-70 [百度学术]
Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, Trick H, Paul S A, Yu J M, Zhang Z Y, Bai G H. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 2019, 51(7): 1099-1105 [百度学术]
Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368(6493): 5435 [百度学术]
Wang K, Gong Q, Ye X G. Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 2020, 133(5): 1603-1622 [百度学术]
Peng C J, Xu W G, Hu L, Li Y, Qi X L, Wang H W, Hua X, Zhao M Z. Effects of the maize C4 phosphoenolpyruvate carboxylase (ZmPEPC) gene on nitrogen assimilation in transgenic wheat. Plant Growth Regulation, 2018, 84(1): 191-205 [百度学术]
Shavrukov Y, Baho M, Lopato S, Langridge P. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnology Journal, 2016, 14(1): 313-322 [百度学术]
Chen J, Gong Y, Gao Y, Zhou Y B, Chen M, Xu Z S, Guo C H, Ma Y Z. TaNAC48 positively regulates drought tolerance and ABA responses in wheat (Triticum aestivum L.). The Crop Journal, 2020, 9(3): 785-793 [百度学术]
Zhang Y R, Zhou J F, Wei F, Song T Q, Yu Y, Yu M, Fan Q R, Yang Y N, Xue G, Zhang X K. Nucleoredoxin gene TaNRX1 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12: 756338 [百度学术]
Yu Y G, Zhang L. Overexpression of TaWRKY46 enhances drought tolerance in transgenic wheat. Cereal Research Communications, 2021, 21(4): 1321 [百度学术]
Gao H M, Wang Y F, Xu P, Zhang Z B. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 2018, 9: 997 [百度学术]
Zhou Y B, Chen M, Guo J K, Wang Y X, Min D H, Jiang Q Y, Ji H T, Huang C Y, Wei W, Xu H J, Chen X, Li L C, Xu Z S, Cheng X G, Wang C X, Wang C S, Ma Y Z. Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Journal of Experimental Botany, 2020, 71(6): 1842-1857 [百度学术]
Yu T F, Xu Z S, Guo J K, Wang Y X, Abernathy B, Fu J D, Chen X, Zhou Y B, Chen M, Ye X G, Ma Y Z. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 2017, 7(1): 44050 [百度学术]
Rong W, Qi L, Wang A Y, Ye X G, Du L P, Liang H X, Xin Z Y, Zhang Z Y. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014, 12(4): 468-479 [百度学术]
Li P F, Cai J, Luo X, Chang T L, Li J X, Zhao Y W, Xu Y. Transformation of wheat Triticum aestivum with the HvBADH1 transgene from hulless barley improves salinity-stress tolerance. Acta Physiologiae Plantarum, 2019, 41(9): 1-14 [百度学术]
Moghaieb R E A, Sharaf A N, Soliman M H, El-Arabi N I, Momtaz O A. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene. GM Crops & Food, 2014, 5(2): 132-138 [百度学术]
Qiu D, Hu W, Zhou Y, Xiao J, Hu R, Wei Q H, Zhang Y, Feng J L, Sun F S, Sun J T, Yang G X, He G Y. TaASR1‐D confers abiotic stress resistance by affecting ROS accumulation and ABA signaling in transgenic wheat. Plant Biotechnology Journal, 2021, 19(8): 1588-1601 [百度学术]
Wei X N, Xu H J, Rong W, Ye X G, Zhang Z Y. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant, Cell & Environment, 2019, 42(5): 1471-1485 [百度学术]
Zhou Y B, Liu J, Guo J K, Wang Y X, Ji H T, Chu X S, Xiao K, Qi X L, Hu L, Li H, Hu M Y, Tang W S, Yan J J, Yan H S, Bai X X, Ge L H, Lyu M J, Chen J, Xu Z S, Chen M, Ma Y Z. GmTDN1 improves wheat yields by inducing dual tolerance to both drought and low-N stress. Plant Biotechnology Journal, 2022, 20(8): 1606-1621 [百度学术]
Liu Y, Yu T F, Li Y T, Zheng L, Lu Z W, Zhou Y B, Chen J, Chen M, Zhang J P, Sun G Z, Cao X Y, Liu Y W, Ma Y Z, Xu Z S. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilizing TaPYL4 receptor in wheat. New Phytologist, 2022, 236(1): 114-131 [百度学术]
Mei F M, Chen B, Du L Y, Li S M, Zhu D H, Chen N, Zhang Y F, Li F F, Wang Z X, Cheng X X, Ding L, Kang Z S, Mao H D. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell, 2022, DOI: https://pubmed.ncbi.nlm.nih.gov/35959993/ [百度学术]
Wang Y M, Hou J, Liu H, Li T, Wang K, Hao C Y, Liu H X, Zhang X Y. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. Journal of Experimental Botany, 2019, 70(5): 1497-1511 [百度学术]
Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An D G, Li T, Zhang X Y. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2020, 18(5): 1330-1342 [百度学术]
Zhao B, Wu T T, Ma S S, Jiang D J, Bie X M, Sui N, Zhang X S, Wang F. TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnology Journal, 2020, 18(2): 513-525 [百度学术]
Pena P A, Quach T, Sato S, Ge Z X, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente T E. Expression of the maize Dof1 transcription factor in wheat and sorghum. Frontiers in Plant Science, 2017, 8: 434 [百度学术]
Li Y, Fang Y H, Peng C J, Hua X, Zhang Y, Qi X L, Li Z L, Wang Y M, Hu L, Xu W G. Transgenic expression of rice OsPHR2 increases phosphorus uptake and yield in wheat. Protoplasma, 2022, 259(5): 1271-1282 [百度学术]
Zhao X Y, Hong P, Wu J Y, Chen X B, Ye X G, Pan Y Y, Wang J, Zhang X S. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 2016, 170(3): 1578-1594 [百度学术]
Xie L, Zhang Y, Wang K, Luo X M, Xu D A, Tian X L, Li L L, Ye X G, Xia X C, Li W X, Yan L L, Cao S H. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. The New Phytologist, 2019,231(2): 834-848 [百度学术]
Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183 [百度学术]
Wang Y G, Du F, Wang J, Wang K, Tian C H, Qi X Q, Lu F, Liu X G, Ye X G, Jiao Y L. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nature Plants, 2022, 8(8): 930-939 [百度学术]
Wei S B, Li X, Lu Z F, Zhang H, Ye X Y, Zhou Y J, Li J, Yan Y Y, Pei H C, Duan F Y, Wang D Y, Chen S, Wang P, Zhang C, Shang L G, Zhou Y, Yan P, Zhao M, Huang J R, Bock R, Qian Q, Zhou W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377(6604): 8455 [百度学术]
Du X Y, Wei J L, Luo X, Liu Z G, Qian Y Q, Zhu B, Weng Q B, Tang H. Low-molecular-weight glutenin subunit LMW-N13 improves dough quality of transgenic wheat. Food Chemistry, 2020, 327: 127048 [百度学术]
Qiu Y L, Chen H Q, Zhang S X, Wang J, Du L P, Wang K, Ye X G. Development of a wheat material with improved bread-making quality by overexpressing HMW-GS 1Slx2.3* from Aegilops longissimi. The Crop Journal, 2022, DOI: https://www.sciencedirect.com/science/article/pii/S2214514122000848 [百度学术]
Ma X L, Xue H, Sun J Z, Sajjad M, Wang J, Yang W L, Li X, Zhang A M, Liu D C. Transformation of Pinb-D1x to soft wheat produces hard wheat kernel texture. Journal of Cereal Science, 2020, 91(C): 102889 [百度学术]
Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y J, Deng P Y, Yuan C H, Ma C, Chen X, Zang M L, Wang Q, Li K X, Chang J L, Wang Y S, Yang G X, He G Y. Enrichment of provitamin a content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. Journal of Experimental Botany, 2014, 65(9): 2545-2556 [百度学术]
Liang Q J, Wang K, Liu X L, Bisma R, Jiang L, Wan X, Ye X G, Zhang C Y. Improved folate accumulation in genetically modified maize and wheat. Journal of Experimental Botany, 2019, 70(5): 1539-1551 [百度学术]
Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, Ma S W, Kong Z X, Jia L, An X, Jiang G, Liu W X, Cao W J, Zhang R R, Fan J C, Xu X W, Liu Y F, Kong Q Q, Zheng S H, Wang Y, Qin B, Cao S Y, Ding Y X, Shi J X, Yan H S, Wang X, Ran C F, Ma Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019, 51(7): 1106-1112 [百度学术]
Paudel B, Zhuang Y B, Galla A, Dahal S, Qiu Y J, Ma A J, Raihan T, Yen Y. WFhb1-1 plays an important role in resistance against Fusarium head blight in wheat. Scientific Reports, 2020, 10(1): 7794 [百度学术]
Kan J H, Cai Y, Cheng C Y, Jiang C C, Jin Y L, Yang P. Simultaneous editing of host factor gene TaPDIL5-1 homoeoalleles confers wheat yellow mosaic virus resistance in hexaploid wheat. The New Phytologist, 2022, 234(2): 340-344 [百度学术]
Zhang Y, Liang Z, Zong Y, Wang Y P, Liu J X, Chen K L, Qiu J L, Gao C X. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7(1): 12617 [百度学术]
Wang W, Pan Q L, He F, Akhunova A, Chao S, Trick H, Akhunov E. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. The CRISPR Journal, 2018, 1(1): 65-74 [百度学术]
Li S N, Lin D X, Zhang Y W, Deng M, Chen Y X, Lv B, Li B S, Lei Y, Wang Y P, Zhao L, Liang Y T, Liu J X, Chen K L, Liu Z Y, Xiao J, Qiu J L, Gao C X. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 2022, DOI: https://pubmed.ncbi.nlm.nih.gov/35140403/ [百度学术]
Zhang Y W, Bai Y, Wu G H, Zou S H, Chen Y F, Gao C X, Tang D Z. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 2017, 91(4): 714-724 [百度学术]
Zheng M, Lin J C, Liu X B,Chu W, Li J P, Gao Y J, An K X, Song W J, Xin M M, Yao Y Y, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. The Plant Physiology, 2022, 186(4): 1591-1569 [百度学术]
Lin J C, Song N, Liu D B, Liu X B, Chu W, Li J P, Chang S M, Liu Z H, Chen Y M, Yang Q, Liu X Y, Yao Y Y, Guo W L, Xin M M, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 interacts with TaNACL to promote heat stress tolerance in wheat. Plant Biotechnology Journal, 2022, 20(9): 1645-1647 [百度学术]
Zhang R, Liu J X, Chai Z Z, Chen S, Bai Y, Zong Y, Chen K L, Li J Y, Jiang L J, Gao C X. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5): 480-485 [百度学术]
Han H N, Wu Z W, Zheng L, Han J Y, Zhang Y, Li J H, Zhang S J, Li G Y, Ma C L, Wang P P. Generation of a high-efficiency adenine base editor with TadA8e for developing wheat dinitroaniline-resistant germplasm. The Crop Journal, 2022, 10(2): 368-374 [百度学术]
Hisano H, Hoffie R E, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnology Journal, 2021, 20(1): 37-46 [百度学术]
Chen Z Y, Ke W S, He F, Chai L L, Cheng X J, Xu H W, Wang X B, Du D J, Zhao Y D, Chen X Y, Xing J W, Xin M M, Guo W L, Hu Z R, Su Z Q, Liu J, Peng H R, Yao Y Y, Sun Q X, Ni Z F. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2022, 20(5): 920-933 [百度学术]
Wang W, Pan Q L, Tian B, He F, Chen Y Y, Bai G H, Akhunova A, Trick H N, Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. The Plant Journal, 2019, 100(2): 251-264 [百度学术]
Zhang J H, Zhang H T, Li S Y, Li J Y, Yan L, Xia L Q. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. Journal of Integrative Plant Biology, 2021, 63(9): 1649-1663 [百度学术]
Ouyang X, Hong X, Zhao X Q, Zhang W, He X, Ma W Y, Teng W, Tong Y P. Knock out of the PHOSPHATE2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat. Scientific Reports, 2016, 6(1): 29850 [百度学术]
Ibrahim S, Saleem B, Rehman N, Zafar S A, Naeem M K, Khan M R. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. Journal of Advanced Research, 2022, 37: 33-41 [百度学术]
Luo G B, Shen L S, Song Y H, Yu K, Ji J J, Zhang C, Yang W L, Li X, Sun J Z, Zhan K H, Cui D Q, Wang Y P, Gao C X, Liu D C, Zhang A M. The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. Plant Biotechnology Journal, 2021, 19(9): 1863-1877 [百度学术]
Gao Y J, An K X, Guo W W, Chen Y M, Zhang R J, Zhang X, Chang S Y, Rossi V, Jin F M, Cao X Y, Xin M M, Peng H R, Hu Z R, Guo W L, Du J K, Ni Z F, Sun Q X, Yao Y Y. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. The Plant Cell, 2021, 33(3): 603-622 [百度学术]
Sánchez-León S, Gil-Humanes J, Ozuna C V, Giménez M J, Sousa C, Voytas D F, Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16(4): 902-910 [百度学术]
Jouanin A, Gilissen L J W J, Schaart J G, Leigh F J, Cockram J, Wallington E J, Boyd L A, van den Broeck H C, van der Meer I M, America A H P, Visser R G F, Smulders M J M. CRISPR/Cas9 gene editing of gluten in wheat to reduce gluten content and exposure-reviewing methods to screen for coeliac safety. Frontiers in Nutrition, 2020, 7: 51 [百度学术]
Camerlengo F, Frittelli A, Sparks C, Doherty A, Martignago D, Larré C, Lupi R, Sestili F, Masci S. CRISPR-Cas9 multiplex editing of the α-amylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat. Frontiers in Sustainable Food Systems, 2020, 4: 104 [百度学术]
Raffan S, Sparks C, Huttly A, Hyde L, Martignago D, Mead A, Hanley S J, Wilkinson P A, Barker G, Edwards K J, Curtis T Y, Usher S, Kosik O, Halford N G. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnology Journal, 2021, 19(8): 1602-1613 [百度学术]
Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh N S, Tucker E J, Baumann U, Langridge P, Whitford R. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 2019, 17(10): 1905-1913 [百度学术]
Singh M, Kumar M, Albertsen M C, Young J K, Cigan A M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Molecular Biology, 2018, 97(4-5): 371-383 [百度学术]
Tang H L, Liu H Y, Zhou Y, Liu H W, Du L P, Wang K, Ye X G. Fertility recovery of wheat male sterility controlled by Ms2 using CRISPR/Cas9. Plant Biotechnology Journal, 2020, 19(2): 224-226 [百度学术]
Liu C X, Zhong Y, Qi X L, Chen M, Liu Z K, Chen C, Tian X L, Li J L, Jiao Y Y, Wang D, Wang Y W, Li M R, Xin M M, Liu W X, Jin W W, Chen S J. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnology Journal, 2020, 18(2): 316-318 [百度学术]
Lv J, Yu K, Wei J, Gui H P, Liu C X, Liang D W, Wang Y L, Zhou H J, Carlin R, Rich R, Lu T C, Que Q D, Wang W C, Zhang X P, Kelliher T. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nature Biotechnology, 2020, 38(12): 1397-1401 [百度学术]
Liang X N, Bie X M, Qiu Y L, Wang K, Yang Z J, Jia Y Q, Xu Z Y, Yu M, Du L P, Lin Z S, Ye X G. Development of powdery mildew resistant derivatives of wheat variety Fielder for use in genetic transformation. The Crop Journal, 2022, DOI: http://www.sciencedirect.com/science/article/pii/S221451412200160X [百度学术]
陈海强, 刘会云, 王轲, 张双喜, 叶兴国. 植物单倍体诱导技术发展与创新. 遗传, 2020, 42(5): 466-482 [百度学术]
Chen H Q, Liu H Y, Wang K, Zhang S X, Ye X G. Development and innovation of haploid induction technologies in plants. Hereditas (Beijing), 2020, 42(5): 466-482 [百度学术]
Kelliher T, Starr D, Su X J, Tang G Z, Chen Z Y, Carter J, Wittich P E, Dong S J, Green J, Burch E, McCuiston J, Gu W N, Sun Y J, Strebe T, Roberts J, Bate N J, Que Q D. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology, 2019, 37(3): 287-292 [百度学术]
Budhagatapalli N, Halbach T, Hiekel S, Büchner H, Müller A E, Kumlehn J. Site-directed mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnology Journal, 2020, 18(12): 2376-2378 [百度学术]