摘要
通过对谷子主要农艺性状遗传变异分析,探讨影响谷子直链淀粉和黄色素含量的主要因素,筛选出综合性状优良的株系,为谷子遗传改良和创造新种质提出理论参考。本研究以嫩选15和黄金苗杂交获得的重组自交系群体为材料,于2020年和2021年种植于山西农业大学东阳示范基地,对籽粒直链淀粉、黄色素2个品质性状和株高、穗长、叶面积、茎粗、穗粗、茎节数、单穗重、穗粒重8个主要农艺性状进行了遗传变异分析、相关性分析和回归分析。综合两年试验结果表明:亲本之间黄色素含量、直链淀粉含量、叶面积和穗粗存在显著差异;RIL群体所调查性状变异丰富,分布近似符合正态分布,表现双向超亲分离。各个性状的变异系数范围为8.05%~35.32%,综合分析两年数据可知,单穗重和穗粒重变异系数较高,株高和直链淀粉含量的变异系数较低。黄色素含量与直链淀粉、株高、茎节数呈极显著正相关,与穗粒重呈显著正相关,与叶面积呈极显著负相关。直链淀粉含量与叶面积、茎粗、穗长呈极显著负相关,和茎节数呈极显著正相关。进一步回归分析可知,叶面积、株高和穗长是影响黄色素含量的最主要因素,叶面积、穗长对直链淀粉含量存在负向的影响作用,单穗重、穗粗、茎节数对直链淀粉含量存在正向的影响作用。
谷子(Setaria italica)是起源于中国的作物,被驯化成为农耕文化的主栽作物,目前的种植面积和产量占世界80%以
以嫩选15为母本,黄金苗为父本杂交后,得到杂种F1,F1单株自交获得F2,通过F2单粒传法获得含有400个株系的重组自交系群体(RILs)为供试材料。嫩选15是黑龙江齐齐哈尔育成的优质品种,具有高产、抗倒伏、中矮秆、中熟、抗病等特点,但同时也具有适口性不好和色泽差等缺点。黄金苗是市场上的优质品种之一,产于内蒙古赤峰,米色鲜黄、适口性好、不回生、适宜煮粥和焖饭,但是具有晚熟、不抗倒伏、秆高不高产、区域适应性差等缺点。两个亲本不仅生态类型不同,而且株高、穗型等多个农艺性状的差异也较
供试材料分别于2020年和2021年的5月播种于山西农业大学东阳示范基地(37.6°N, 112.7°E),供试土壤为黄色土,中等肥力。田间试验按照随机区组设计,2次重复,小区面积6 m×2 m,行距33 cm,每个小区种植6行。于8月中旬进行田间性状调查,9月下旬收获并考种。
测定株高、叶面积、茎粗、穗长、穗粗、茎节数、单穗重、穗粒重8个主要农艺性状,均参照《谷子种质资源描述规范和数据标准
亲本主要性状方差分析可知(
性状 Trait | 年份Year | 亲本Parent | 重组自交系RIL | ||||||
---|---|---|---|---|---|---|---|---|---|
嫩选15 Nenxuan15 | 黄金苗 Huangjinmiao | F | 变异范围 Range | 平均值±标准差Mean±SD | 偏度Skewness | 峰度Kurtosis | 变异系数 (%)CV | ||
黄色素(μg/g) YP | 2020 | 20.03 | 30.13 |
8.95 | 15.27~35.72 | 23.04±3.17 | 0.416 | 0.598 | 13.76 |
2021 | 22.48 | 29.70 |
3.27 | 15.82~40.33 | 27.10±3.61 | 0.354 | 0.854 | 13.32 | |
直链淀粉( mg/g) AL | 2020 | 10.36 | 8.95 |
6.02 | 5.01~11.54 | 8.27±1.10 | 0.066 | -0.451 | 13.30 |
2021 | 10.75 | 8.56 |
3.45 | 6.66~12.04 | 9.27±1.09 | -0.032 | -0.807 | 11.76 | |
株高( cm) PH | 2020 | 137.83 | 143.3 |
3.54 | 70.24~129.93 | 100.47±10.06 | 0.083 | 0.491 | 10.01 |
2021 | 101.30 | 112.17 | 0.761 | 69.27~133.03 | 102.98±10.79 | 0.293 | -1.150 | 10.48 | |
叶面积(c LA | 2020 | 40.37 | 62.33 |
10.6 | 27.63~65.48 | 45.03±6.74 | -0.073 | -0.06 | 14.97 |
2021 | 31.62 | 50.13 |
5.4 | 15.80~65.41 | 34.81±8.23 | 0.306 | 0.359 | 23.64 | |
茎粗( mm) SD | 2020 | 5.85 | 7.00 |
3.4 | 4.71~11.12 | 7.21±0.90 | 0.309 | 0.667 | 12.50 |
2021 | 7.66 | 8.14 | 2.43 | 4.72~9.81 | 7.17±0.72 | 0.147 | 0.449 | 10.04 | |
茎节数 SPN | 2020 | 11 | 11 | 0.22 | 8.33~14 | 10.77±0.867 | 0.263 | 0.455 | 8.05 |
2021 | 11 | 12 | 2.19 | 8~14 | 11.29±1.86 | -0.165 | 0.460 | 16.47 | |
穗长(cm) PL | 2020 | 21.83 | 28.13 | 2.44 | 17.00~35.87 | 25.29±3.52 | 0.233 | -0.341 | 13.92 |
2021 | 23 | 21.8 |
4.6 | 17.00~41.00 | 26.05±4.23 | 0.414 | -0.07 | 16.25 | |
穗粗(mm) PD | 2020 | 30.84 | 38.54 |
3.6 | 17.41~48.25 | 30.34±5.30 | 0.532 | 0.531 | 17.47 |
2021 | 32.48 | 38.07 |
3.1 | 21.07~50.65 | 30.42±5.46 | 0.941 | 0.847 | 17.95 | |
单穗重(g) SPW | 2020 | 15.11 | 25.95 |
3.0 | 7.18~38.30 | 19.11±5.54 | 0.46 | 0.404 | 29.11 |
2021 | 25.50 | 30.25 | 2.52 | 8.09~52.03 | 22.11±7.81 | 0.799 | 0.933 | 35.32 | |
穗粒重(g) PGW | 2020 | 11.18 | 20.67 |
3.1 | 4.46~41.07 | 14.87±4.78 | 0.261 | -0.215 | 32.15 |
2021 | 21.01 | 22.54 | 2.50 | 14.87~4.78 | 16.73±5.60 | 0.639 | 0.864 | 33.47 |
*和**分别表示两亲本间同一性状差异达到P<0.05和P<0.01显著水平;下同
*and** respectively indicate that the difference of the same trait between the two parents reaches P<0.05 and P<0.01 significant levels;YP: Yellow pigment; AL: Amylose; PH: Plant height; LA: Leaf area; SD: Stem diameter; SPN: Stem pitch number; PL: Panicle length; PD: Panicle diameter; SPW: Single panicle weight; PGW: Panicle grain weight; The same as below

图 1 2020年调查性状频率分布
Fig.1 Frequency distribution of investigated characters in 2020
:代表母本嫩选15;
:代表父本黄金苗;下同
:Represents female parent Nenxuan 15;
:Represents male parent Huangjinmiao; The same as below

图 2 2021年调查性状频率分布
Fig.2 Frequency distribution of investigated characters in 2021
指标 Index | 年份Year | 黄色素YP | 直链淀粉AL | 株高PH | 叶面积LA | 茎粗SD | 节数SPN | 穗长PL | 穗粗PD | 单穗重SPW | 穗粒重PGW |
---|---|---|---|---|---|---|---|---|---|---|---|
高于高值亲本个数 The number of higher than the high parents | 2020 | 7 | 9 | 59 | 1 | 211 | 111 | 77 | 27 | 36 | 41 |
2021 | 79 | 37 | 72 | 12 | 45 | 36 | 24 | 34 | 39 | 49 | |
低于低值亲本个数 The number of lower than the low parents | 2020 | 65 | 272 | 267 | 90 | 22 | 260 | 65 | 220 | 96 | 88 |
2021 | 29 | 106 | 166 | 125 | 274 | 176 | 95 | 256 | 268 | 293 |
由RIL群体品质性状和主要农艺性状相关性分析可知(

图 3 RIL群体品质性状和主要农艺性状相关性分析
Fig.3 Correlation analysis of quality traits and main agronomic traits in RIL population
蓝色表示负相关,红色表示正相关;椭圆越扁颜色越深表示相关系数越大
Blue indicates negative correlation, red indicates positive correlation;The flatter the ellipse and the darker the color, the greater the correlation coefficient
为验证上述结果,分别以黄色素含量(X)、直链淀粉含量(Y)为因变量,以株高(Z1)、叶面积(Z2)、茎粗(Z3)、穗长(Z4)、穗粗(Z5)、茎节数(Z6)、单穗重(Z7)、穗粒重(Z8)8个农艺性状为自变量进行多元逐步回归分析,去除回归参数不显著的农艺性状,根据回归分析输出结果(
自变量IV | 偏回归系数PRC | 标准误差SE | t | P | 方差膨胀系数VIF |
---|---|---|---|---|---|
常量CQ | 25.398 | 1.528 | 16.620 | 0.000 | |
株高PH | 0.042 | 0.012 | 3.426 | 0.001 | 1.015 |
叶面积LA | 0.058 | 0.021 | 2.804 | 0.005 | 1.687 |
穗长PL | -0.178 | 0.040 | -4.417 | 0.000 | 1.691 |
IV:Independent variable; CQ:Constant quantity; PRC:Partial regression coefficent; SE:Standard error; VIF:Variance inflation factor; The same as below
黄色素含量方程:X=25.398+0.042Z1+0.058Z2-0.178Z4。说明株高、叶面积每增加一单位,黄色素含量分别增加0.042 μg/g和0.058μg/g,穗长每增加一单位,黄色素含量减少0.178 μg/g。
根据
自变量IV | 偏回归系数PRC | 标准误差SE | t | P | 方差膨胀系数VIF |
---|---|---|---|---|---|
常量CQ | 9.699 | 0.563 | 17.243 | 0.000 | |
叶面积LA | -0.039 | 0.006 | -6.452 | 0.000 | 1.951 |
单穗重SPW | 0.023 | 0.007 | 3.384 | 0.001 | 1.749 |
穗长PL | -0.086 | 0.012 | -7.243 | 0.000 | 1.951 |
穗粗PD | 0.052 | 0.008 | 6.725 | 0.000 | 1.386 |
茎节数SPN | 0.097 | 0.045 | 2.141 | 0.033 | 1.004 |
直链淀粉含量方程:Y=9.699-0.039Z2+0.023Z7-0.086Z4+0.052Z5+0.097Z6。说明叶面积、穗长每增加一个单位,直链淀粉含量分别减少0.039、0.086 mg/g,单穗重、穗粗、茎节数每增加一个单位,直链淀粉含量分别增加0.023、0.052、0.097 mg/g。
遗传分离群体后代极易产生双向超亲现象,成为具有良好综合性状的个体,是育种过程中筛选优质和目标种质的有效资源。谷子的表型之间存在极其复杂的相关关系,所以在生产实践中,选择单一的性状作为目标育种性状十分困难,需要结合实际,对多个相关性状进行综合考虑,既对主要的目的性状选择严格把关,又要兼顾其他优良性状。
育种工作者为了满足生产需求而创造遗传变异,遗传参数的变异系数可以在一定程度上反映性状的多样性,一般来说,变异系数越大,多样性程度就越高。通常变异系数大于10%时,说明该性状遗传多样性丰
目前科研工作者对黄色素和直链淀粉含量的研究颇多,Wx基因是控制稻米直链淀粉含量合成的关键基
黄色素和直链淀粉含量作为评价小米品质的重要标准,与农艺性状之间的遗传关系极其复杂,不能单凭相关系数的大小来判断他们之间的影响。本研究中分析的主要农艺性状与品质性状的相关关系不能直接说明他们之间的相关关系,但农艺性状可以作为田间目标品质性状初步选择的参考,为后续检测试验节省大量的成本和时间。也为后续定位控制黄色素、直链淀粉含量和主要农艺性状的QTL位点奠定基础。
参考文献
刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学,2019, 52(22):3943-3949 [百度学术]
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Scientia Agricultura Sinica,2019,52(22):3943-3949 [百度学术]
Yang X Y,Wan Z W,Perry L,Lu H Y,Wang Q,Zhao C H,Li J, Xie F,Yu J C,Cui T X,Wang T,Li M Q,Ge Q S. Early millet use in northern China. Proceedings of the National Academy of Sciences of the United States of America,2012,109(10):3726-3730 [百度学术]
李会霞,田岗,王玉文,刘鑫,刘红. 谷子杂交种与亲本性状的遗传相关性. 中国农业科学,2020,53(2):239-246 [百度学术]
Li H X,Tian G,Wang Y W,Liu X,Liu H. Genetic correlation between millet hybrids and their parents. Scientia Agricultural Sinica,2020,53(2):239-246 [百度学术]
Nithiyanantham S,Kalaiselvi P,Mahomoodally M F,Zengin G,Abirami A,Srinivasan G. Nutritional and functional roles of millets-A review. Food Biochem,2019, 43:e12859 [百度学术]
刘建垒,常柳,段晓亮,王文娟,孙辉. 谷子的生产概况及其保健功能与机理研究进展. 食品工业科技,2022,43(5),389-395 [百度学术]
Liu J L,Chang L,Duan X L,Wang W J,Sun H. Foxtail millet:Production status,advances on health benefits and its mechanism. Science and Technology of Food Industry,2022,43(5):389-395 [百度学术]
Kaur P, Purewal S S, Sandhu K M, Salar R K. Millets: A cereal grain with potent antioxidants and health benefits. Food Measure, 2019, 13:793-806 [百度学术]
郑楠楠,綦文涛,王春玲,贠婷婷,幺杨,任贵兴. 不同品种谷子营养成分及功能活性成分差异化分析. 粮油食品科技,2018,26(2):34-39 [百度学术]
Zheng N N,Qi W T,Wang C L,Yu T T,Yao Y,Ren G X. Differential analysis of nutritional components and functional active components of different varieties of millet. grain, Oil and Food Science and Technology,2018,26(2):34-39 [百度学术]
王玉文,李会霞,田岗,孙美荣,史琴香,郭二虎. 小米外观品质及淀粉RVA谱特征与米饭适口性的关系 .山西农业科学,2008(7):34-39 [百度学术]
Wang Y W,Li H X,Tian G,Sun M R,Shi Q X,Guo E H. Relationship between appearance quality of millet and RVA spectrum characteristics of starch and palatability of rice. Shanxi Agricultural Science,2008(7): 34-39 [百度学术]
杨延兵,陈二影,王润丰,秦岭,尹秀波,张会迪,黎飞飞,管延安.不同生态条件对小米黄色素含量的影响.中国农业科学,2019,52(18):3232-3241 [百度学术]
Yang Y B,Chen R Y,Wang R F,Qin L,Yin X B,Zhang H D,Li F F,Guan Y A .Effects of different ecological conditions on yellow pigment content in millet. Scientia Agricultura Sinica,2019, 52(18): 3232-3241 [百度学术]
丁振,冯朵,曹盼盼,李恩鹏,李松南. 淀粉中直链淀粉含量检测技术的研究进展 .美食研究,2022,39(1):87-94 [百度学术]
Ding Z, Feng D,Cao P P,Li E P,Li S N. Research progress of amylose content detection technology in starch. Food Research,2022,39(1):87-94 [百度学术]
陈严双. 天然淀粉改性机制及应用概述. 化工设计通讯,2021,47(7):165-166 [百度学术]
Chen Y S. Overview of modification mechanism and application of natural starch. Chemical Engineering Design Communication,2021, 47(7):165-166 [百度学术]
龚波. 水稻淀粉精细结构决定其热力学性质和消化特性 .扬州:扬州大学,2020 [百度学术]
Gong B.The fine structure of rice starch determines its thermodynamic and digestive properties. Yangzhou:Yangzhou University, 2020 [百度学术]
易拓,黄娟,雷雅杰,宋勇. 木薯食品研究进展 .美食研究,2019,36(2):23-27 [百度学术]
Yi T,Huang J,Lei Y J,Song Y. Research progress of cassava food. Food Research,2019,36(2):23-27 [百度学术]
胡桂仙,王建军,王小骊,董秀金,朱加虹. 稻米食味品质检测评价技术的研究现状及展望. 中国农学通报,2010,26(19):62-65 [百度学术]
Hu G X,Wang J J,Wang X L,Dong X J,Zhu J H. Research status and prospect of rice taste quality detection and evaluation technology. Chinese Agronomy Bulletin,2010,26(19):62-65 [百度学术]
钱建亚,吴秋艳,张良. 脉冲电场对甘薯淀粉理化性质的影响. 美食研究,2017,34(4):55-59 [百度学术]
Qian J Y,Wu Q Y,Zhang L. Effect of pulsed electric field on physical and chemical properties of sweet potato starch. Food Research, 2017,34(4):55-59 [百度学术]
Li L,Liu Z,Zhang W,Xue B,Luo Z. Production and applications of Amylose-Lipid complexes as resistant starch:Recent approaches. Starch-Stärke,2021,73:2000249 [百度学术]
徐妙云,邢利娟,杨明雨,张凌萱,王磊,刘悦萍. 高直链淀粉禾谷类作物种质创新与利用研究进展. 生物技术通报,2022,38(4):20-28 [百度学术]
Xu M Y,Xing L J,Yang M Y,Zhang L X,Wang L,Liu Y P. Research progress on germplasm innovation and utilization of high amylose cereal crops. Biotechnology Bulletin,2022,38(4):20-28 [百度学术]
李部,潘立旭,杨勇,朱霁晖,陈飞,李钱峰,刘巧泉,张昌泉. 高直链淀粉含量水稻品种间淀粉消化特性的差异分析. 扬州大学学报:农业与生命科学版,2021,42(2):18-25 [百度学术]
Li B, Pan L X,Yang Y,Zhu J H,Chen F,Li Q F,Liu Q Q,Zhang C Q. Analysis of differences in starch digestion characteristics among rice varieties with high amylose content. Journal of Yangzhou University:Agricultural and Life Sciences Edition,2021,42(2):18-25 [百度学术]
梁雪,吴春红,宫晓平,郭营,李斯深,李絮花,孔凡美. 不同钾处理下小麦重组自交系群体主要农艺性状的表型变异及其相关分析 .中国生态农业学报,2012,20(5):520-528 [百度学术]
Liang X,Wu C H,Gong X P,Guo Y,Li S S,Li X H,Kong F M. Phenotypic variation and correlation analysis of main agronomic characters of wheat recombinant inbred lines under different potassium treatments. Chinese Journal of Ecological Agriculture,2012,20(5):520-528 [百度学术]
马金丰,李志江,李延东. 谷子嫩选15×大金苗F-2群体农艺性状评价. 黑龙江农业科学,2019(9):4-8 [百度学术]
Ma J F,Li Z J,Li Y D. MilletNenxuan 15 × Dajinmiao of agronomic characters of dajinmiao F-2 population. Heilongjiang Agricultural Science,2019(9):4-8 [百度学术]
陆平. 谷子种质资源描述规范和数据标准. 北京:中国农业出版社,2006 [百度学术]
Lu P. Description specification and data standard of millet germplasm resources. Beijing:China Agricultural Press,2006 [百度学术]
杨延兵,张涵,王润丰,邓立刚,秦岭,陈二影,管延安. 谷子籽粒小米黄色素含量的测定. 中国粮油学报,2019,34(3):121-125 [百度学术]
Yang Y B,Zhang H,Wang R F,Deng L G,Qin L,Chen E Y,Guan Y A. Determination of millet yellow pigment content in millet. Chinese Journal of Grain and Oil,2019,34(3):121-125 [百度学术]
高嘉安. 淀粉与淀粉制品工艺学. 北京:中国农业出版社,2001:339 [百度学术]
Gao J A. Starch and starch product technology. Beijing: China Agricultural Press,2001:339 [百度学术]
杜荣骞. 生物统计学. 4版. 北京:高等教育出版社,2014 [百度学术]
Du R Q. Biostatistics. 4th edition. Beijing:Higher Education Press,2014 [百度学术]
赵芳,魏玮,张晓磊,宋国亮,王晓明,赵治海,赵春慧. 224个谷子品种农艺性状聚类和相关性分析. 种子,2022,41(1):74-83 [百度学术]
Zhao F,Wei W,Zhang X L,Song G L,Wang X M,Zhao Z H,Zhao C H. Clustering and correlation analysis of 224 millet varieties' agronomic characters. Seed,2022,41(1):74-83 [百度学术]
任芹勇,樊巧利,李涛,郭世华. 65份谷子品种农艺性状聚类和相关性. 分子植物育种,2017,15(12):5178-5188 [百度学术]
Ren Q Y,Fan Q L,Li T,Guo S H. Clustering and correlation of agronomic traits of 65 millet varieties. Molecular Plant Breeding,2017,15(12):5178-5188 [百度学术]
刘晓辉. 谷子杂交育种研究Ⅱ,F2代遗传及选择效果的研究. 吉林农业科学,1991(3):12-16 [百度学术]
Liu X H. Studies on millet cross breeding Ⅱ. Studies on the inheritance and selection effect of F2 generation. Jilin Agricultural Science,1991(3):12-16 [百度学术]
刘思辰,曹晓宁,温琪汾,王海岗,田翔,王君杰,陈凌,秦慧彬,王纶,乔治军. 山西谷子地方品种农艺性状和品质性状的综合评价. 中国农业科学,2020,53(11):2137-2148 [百度学术]
Liu S C,Cao X N,Wen Q F,Wang H G,Tian X,Wang J J,Chen L,Qin H B,Wang L,Qiao Z J. Comprehensive evaluation of agronomic and quality characteristics of Shanxi millet local varieties. Scientia Agricultural Sinica,2020,53(11):2137-2148 [百度学术]
赵利蓉,马珂,张丽光,汤沙,原向阳,刁现民. 不同生态区谷子品种农艺性状和品质分析. 作物杂志,2022(2):44-53 [百度学术]
Zhao L R,Ma K,Zhang L G,Tang S,Yuan X Y,Diao X M. Analysis of agronomic characteristics and quality of millet varieties in different ecological areas. Crops,2022(2):44-53 [百度学术]
Wang Z Y,Zheng F Q,Shen G Z,Gao J P,Snustad D P,Li M G,Zhang J L,Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. The Plant Journal:For Cell and Molecular Biology,1995,7(4):613-622 [百度学术]
Zhang J S,Zhang H,Botella J R ,Zhu J K . Generation of new glutinous rice by CRISPR/Cas_9-targeted mutagenesis of the Waxy gene in elite rice varieties .Journal of Integrative Plant Biology,2018,60(5):369-375 [百度学术]
Huang L C,Li Q F,Zhang C C,Chu R,Gu Z W,Tan H Y,Zhao D S,Fan X L,Liu Q Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol Journal,2020,18(11):2164-2166 [百度学术]
Zeng D C,Liu T L,Ma X L,Wang B,Zheng Z Y,Zhang Y L,Xie X R,Yang B W,Zhao Z,Zhu Q L,Liu Y G. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnology Journal, 2020,18(12),2385-2387 [百度学术]
Catherine R,Mireille D, Fanny L,Jacques B,Jean L J,Marie R P,Florence E,Charles P,François B,Elisabeth C,Gilles C. Improving the yellow pigment content of bread wheat flour by selecting the three homoeologous copies of Psy1. Molecular Breeding,2013,31(1): 87-99 [百度学术]
He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene(Psy1) located on common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics, 2008, 116,213-221 [百度学术]
李猛,郭晓红,周健,胡月,姜红芳,吕艳东,姜凯铭,解宁宁. 寒地早粳稻农艺性状与品质性状的相关性分析. 中国稻米,2018,24(6):83-86 [百度学术]
Li M,Guo X H,Zhou J,Hu Y,Jiang H F,Lv Y D,Jiang K M,Xie N N. Correlation analysis between agronomic traits and quality traits of early japonica rice in cold regions. Chinese Rice,2018,24(6):83-86 [百度学术]
凡迪,薛文韬,严俊,赵钢,FAHIMA Tzion,程剑平. 四倍体小麦籽粒多组分营养物质含量的QTL定位及相关性分析 .麦类作物学报,2014,34(12):1611-1618 [百度学术]
Fan D, Xue W T,Yan J,Zhao G,Fahima T,Cheng J P. QTL mapping and correlation analysis of multicomponent nutrient content in grain of tetraploid wheat. Journal of Triticeae Crops,2014,34(12):1611-1618 [百度学术]