摘要
为了探究超氧化物歧化酶(SOD)基因家族在油茶自交不亲和反应中的作用,通过RT-PCR法克隆出油茶SOD基因家族成员,分别命名为CoCSD、CoFSD和CoMSD。其CDS序列长度分别为660、813和693 bp,编码219、270和230个氨基酸。CoCSD、CoFSD和CoMSD蛋白分子质量分别为22.49、31.18和25.51 kDa,结构分析发现3个蛋白均为亲水性蛋白,无跨膜结构域和信号肽,属于非分泌蛋白,且均包含21个磷酸化位点。CoCSD和CoMSD两者属于稳定蛋白,而CoFSD属于不稳定蛋白。CoCSD二级结构主要是无规则卷曲和延伸链,而CoFSD和CoMSD的二级结构主要由α螺旋和无规则卷曲构成。3个蛋白因结合不同的金属离子,系统进化树构建时被划分到3个大支,但均与茶树相应蛋白聚类在同一小枝上,且序列上具有高度的同源性。自交授粉雌蕊中的SOD酶活性整体高于异交授粉,但CoCSD、CoFSD和CoMSD在授粉前表达量最高,自交和异交授粉处理均对其表达量有抑制作用。该研究结果为后续深入探究油茶SOD基因的生物学功能提供依据,也为揭示油茶自交不亲和作用机制提供参考。
油茶(Camellia oleifera Abel)作为我国特有的木本食用油料植物之一,具有经济价值高、用途广等特
超氧化物歧化酶是一类抗氧化金属酶,是清除植物体内活性氧的一道防线,能够保护细胞免受超氧阴离子自由基损伤,广泛存在于各种动物、植物和微生物
以8年生油茶(Camellia oleifera Abel)华
参照文献[
SOD总活性(U/g·FW)=(对照OD值-样品OD值)×V总/(Vt×FW)
其中V总:提取液总体积;Vt:反应体系中的酶粗提液体积;FW:样品鲜重。
参照Omega公司的Plant RNA Kit试剂盒说明书提取油茶雌蕊总RNA。利用紫外/可见光分光光度计(Lambda35, Perkin Elmer, USA)检测RNA的纯度和浓度,并用1.2%琼脂糖凝胶电泳检测RNA的完整性。参照Vazyme公司HiScrip
植物SOD基因主要分为Cu/Zn-SOD、Fe-SOD和Mn-SOD 3种类型,试验中CoCSD、CoFSD和CoMSD基因的全长编码序列(CDS, coding sequence)来源于本课题组构建的油茶雌蕊转录组数据
正向引物 Forward primer | 引物序列(5′→3′) Primer sequences(5′→3′) | 反向引物 Reverse primer | 引物序列(5′→3′) Primer sequences(5′→3′) | |
---|---|---|---|---|
CoCSD-F | ATGCAAGCCCCATTCGCAACA | CoCSD-R | TTAAACTGGAGTCAAACCCACCAC | |
CoFSD-F | ATGGGTTGGTCATCCTCTTGTTG | CoFSD-R | TCAAGCAATAGGAATTTTGGGTTCG | |
CoMSD-F | ATGGCTCTTCGGACTCTGTTGA | CoMSD-R | TCAAGGGCATACCTTTTCATACAC | |
CoCSD-QF | CTCCGCTCTTCCTTCCA | CoCSD-QR | GGGTTACAACGCCTTCG | |
CoFSD-QF | ATGGGTCTTCTTCAGCA | CoFSD-QR | CTTCAAGTCGTTTCTCAC | |
CoMSD-QF | GAAGCATTGATACAGAAGA | CoMSD-QR | AAGCCAAGCAGAGGAAC |
使用在线网站(
网站 Web | 网址链接 Web link | 功能 Function |
---|---|---|
ORF Finder | http://www.bioinformatics.org/sms2/orf_find.html | 基因的开放阅读框 |
ExPASy-ProtParam Tool | http://web.expasy.org/protparam/ | 理化性质分析 |
ExPASy-ProtScale | https://web.expasy.org/protscale/ | 疏水性分析 |
SignalP4.1 | http://www.cbs.dtu.dk/services/ SignalP-4.1/ | 预测信号肽 |
TMHMM 2.0 | http://www.cbs.dtu.dk/services/ TMHMM/ | 预测跨膜结构域 |
NetPhos3.1 Server | http://www.cbs.dtu.dk/services/NetPhos/ | 磷酸化位点分析 |
EukmPLoc | http://www.csbio.sjtu.edu.cn/cgi-bin/EukmPLoc2.cgi | 亚细胞定位预测 |
PSIPRED | http://bioinf.cs.ucl.ac.uk/psipred/ | 预测蛋白二级结构 |
Phyre2 | http://www.PHYRE2 Protein Fold Recognition Server/ | 预测蛋白三级结构 |
MEME | https://meme-suite.org/meme/tools/meme | 预测蛋白motif结构 |
根据克隆得到的CoCSD、CoFSD和CoMSD全长序列设计qRT-PCR引物(
自交和异交授粉后雌蕊中的SOD酶活性变化由

图1 自异交授粉雌蕊内SOD酶活性的变化
Fig.1 Changes of SOD enzyme activity in self-pollination and cross-pollination pistil
图中小写字母表示不同时期的显著性差异(P<0.05)
Lowercase letters in the graph indicate significantdifferences between periods(P<0.05)
通过基因序列分别设计相应引物(

图2 油茶CoMSD、CoCSD和CoFSD基因的PCR扩增
Fig.2 PCR amplification product of CoMSD、CoCSDand CoFSD in C. oleifera Abel
M: DL5000, 1: CoMSD, 2: CoCSD, 3: CoFSD
利用在线网站ExPASy-ProtParam分析CoCSD、CoFSD和CoMSD蛋白的理化性质,结果表明:CoCSD、CoFSD和CoMSD蛋白的分子式分别为C983H1589N283O308S6、C1409H2159N385O390S14和C1160H1799N305O333S5;分子质量分别为22.49 kDa、31.18 kDa和25.51 kDa;理论等电点为6.39、8.83和7.06,其中CoCSD等电点(pI)小于7,呈酸性,其余均大于7,呈碱性。脂肪系数越高表明蛋白的热稳定性越高,CoCSD和CoMSD脂肪系数都在91以上,且不稳定系数均低于40,说明CoCSD和CoMSD属于稳定蛋白;CoFSD脂肪系数为79.44,不稳定系数为43.05,说明CoFSD编码的蛋白不稳定。这3个蛋白的平均亲疏水性为-0.004、-0.465和-0.283均为负值,表明都是亲水性蛋白。
利用SignalP4.1和TMHMM 2.0在线程序对CoCSD、CoFSD和CoMSD进行信号肽和跨膜结构域的预测,结果显示它们都不含信号肽和跨膜结构域,说明它们均属于非分泌蛋白,不参与物质的跨膜运输。
运用NetPhos 3.1 Server在线程序预测CoCSD、CoFSD和CoMSD的磷酸化位点,结果显示:CoCSD、CoFSD和CoMSD蛋白都具有21个磷酸化位点,其中CoCSD不具有酪氨酸(Tyr)磷酸化位点,CoFSD和CoMSD蛋白都具有丝氨酸(Ser)、苏氨酸(Thr)和酪氨酸(Tyr)3种磷酸化位点(
蛋白名称 Protein Name | 总位点数 Total no. | 丝氨酸 Ser | 苏氨酸 Thr | 酪氨酸 Tyr | |||
---|---|---|---|---|---|---|---|
数量 No. | 位点 Site | 数量 No. | 位点 Site | 数量 No. | 位点 Site | ||
CoCSD | 21 | 10 | 17、27、37、42、49、51、53、78、124、199 | 11 | 8、13、61、67、77、87、95、104、163、172、217 | 0 | — |
CoFSD | 21 | 11 | 4、25、37、74、140、163、191、201、205、216、245 | 4 | 47、50、107、177 | 6 | 56、64、116、225、228、235 |
CoMSD | 21 | 10 | 15、31、40、90、103、123、134、152、183、217 | 6 | 5、8、61、84、85、130 | 5 | 37、62、197、201、225 |
运用SPOMA在线工具对CoCSD、CoFSD和CoMSD蛋白二级结构进行预测,结果显示(

图3 CoCSD、CoFSD和CoMSD蛋白结构预测
Fig.3 The structure prediction of CoCSD、CoFSD and CoMSD
A:CoCSD蛋白结构;B:CoFSD蛋白结构;C:CoMSD蛋白结构;蛋白二级结构(左)和三级结构(右);蓝线表示α螺旋;红线表示延伸链;绿线表示β转角;紫线表示无规则卷曲
A: The structure of CoCSD protein; B: The structure of CoFSD protein; C: The structure of CoMSD protein; Protein secondary structure (left) and tertiary structure (right);The blue part indicated α-helix;The red part indicated extended strand;The green partindicated β-turn;The purple indicated random coil
运用BLASTp程序搜索油茶CoCSD、CoFSD和CoMSD氨基酸序列的同源序列,发现与茶树的CsCSD (Camellia sinensis(L.) Kuntze,XP_028064147.1)、CsFSD (Camellia sinensis(L.) Kuntze,AKN10569.1)和CsMSD (Camellia sinensis(L.) Kuntze,AKN10569.1)相似性最高,分别达到98.58%、99.26%和98.16%。将油茶CoCSD蛋白序列与茶树CsCSD、苹果MdCSD (Malus domestica(Suckow) Borkh.)和银白杨PaCSD(Populus alba L.)的同源蛋白氨基酸序列进行比对,发现相似度达到81.42%以上。CDD数据库分析CoCSD蛋白的保守结构发现含有铜、锌超氧化物歧化酶(SOD)结构域,位于第69~216位氨基酸,和两个保守的C

图4 SOD蛋白与其他植物的氨基酸序列比对
Fig.4 Comparison of amino acid sequences of C. oleifera Abel SOD with other plants
红色字指示目的蛋白;▼表示蛋白激酶C磷酸化位点;●表示酪蛋白激酶II磷酸化位点;★表示豆蔻酰化位点;■表示糖基化位点;黄色方框表示C
Red letters indicate target protein; ▼ indicates protein kinase C phosphorylation site; ● indicates casein kinase II phosphorylation site; ★ indicates N-myristoylation site; ■ indicates N-glycosylation site; Yellow boxes indicate C
为了分析油茶SOD基因家族与其他植物SOD基因之间的关系,利用本地软件MEGA 11.0中的邻接法构建了油茶CoCSD、CoFSD和CoMSD蛋白序列与其他植物SOD蛋白序列的系统进化树(

图5 不同物种CSD、FSD和MSD及同源蛋白系统进化分析
Fig.5 Phylogenetic tree of predicted CSD、FSD和MSD and other homologous proteins from various species
A:油茶CoCSD、CoFSD和CoMSD系统蛋白进化树;B:油茶CoCSD、CoFSD和CoMSD及同源蛋白保守基序分布;目标蛋白以红色字体显示;Am:海榄雌;Me:木薯;Bp:白桦;Pp:桃;Sl:番茄;Eg:桉树;Zj:枣;Rc:蓖麻;Tc:可可
A: Protein evolutionary tree of C. oleifera Abel CoCSD, CoFSD and CoMSD systems; B: Distribution of C. oleifera Abel CoCSD, CoFSD and CoMSD and conserved motifs of homologous proteins; Target proteins are shown in red font; Am:Avicennia marina(Forssk.) Vierh;Me:Manihot esculenta Crantz;Bp:Betula platyphylla Sukaczev;Pp:Prunus persica (L.) Batsch;Sl:Solanum lycopersicum L.;Eg:Eucalyptus grandisW. Mill ex Maiden;Zj:Ziziphus jujube Mill.;Rc:Ricinus communis L.;Tc:Theobroma cacao L.
利用qRT-PCR分析CoCSD、CoFSD和CoMSD基因在不同授粉处理(自交和异交)雌蕊中的表达情况(

图6 SOD基因在自异交雌蕊中的表达模式
Fig.6 The expression pattern of SOD genes in self-and cross-pistil
自交不亲和性是一个复杂的过程,是阻止植物自我受精以维持和增加遗传变异性的机制之一。授粉时存在花粉与雌蕊间的相互作用和细胞与细胞间的识别系统,该过程涉及到多种基因的参与,使得体内产生一定的物质促进花粉管的萌发和生长,有利于完成授
通过克隆得到油茶CoCSD、CoFSD和CoMSD基因的cDNA序列,经生物信息学分析、多重比对和系统发育进化树分析发现:油茶SOD蛋白因结合不同的金属离子而划分为不同的种类,24个蛋白被划分3个大支,分别为Cu/Zn-SOD、Fe-SOD和Mn-SOD,且CoCSD、CoFSD和CoMSD蛋白均与同为山茶科山茶属的SOD茶树蛋白汇聚在相同的小支上,与茶树的SOD蛋白序列亲缘关系最近,进一步证明克隆的CoCSD、CoFSD和CoMSD基因是Cu/Zn-SOD、Fe-SOD和Mn-SOD基因,属于SOD基因家族。MSDs和FSDs在植物中是不同的,MSDs与FSDs具有70%的同源性,表明两个祖先基因起源于不同的地
对油茶雌蕊中CoCSD、CoFSD和CoMSD表达分析发现,在自交和异交授粉后0 h表达量均达到最高值,后期表达量显著下调。有研究表明油茶自交不亲和反应主要发生于花柱基部接近子房处,即油茶自交与异交授粉40~48 h期间,自交雌蕊部分花粉管到达花柱基部,且生长缓慢异常,而异交雌蕊能够继续生长并进入子
参考文献
庄瑞林. 中国油茶.2版. 北京: 中国林业出版社, 2008:3 [百度学术]
Zhuang R L. China camellia. 2nd edn. Beijing: China Forestry Publishing House, 2008: 3 [百度学术]
高超,袁德义,杨亚,王碧芳,刘冬明,邹锋,谭晓风.油茶自交不亲和性的解剖特征.林业科学, 2015, 51 (2):60-68 [百度学术]
Gao C, Yuan D Y, Yang Y, Wang B F, Lui D M, Zhou F, Tan X F. Anatomical characteristics of self-incompatibility in Camellia oleifera. Scientia Silvae Sinicae, 2015, 51 (2):60-68 [百度学术]
廖婷. 油茶自交不亲和性初步研究. 长沙: 中南林业科技大学, 2013 [百度学术]
Liao T. Study on self-incompatibility of Camellia oleifera . Changsha: Central South University of Forestry Science and Technology , 2013 [百度学术]
刘素玲,赵国建,吴欣,张百行,高岭巍,丁美玲,陈威.植物自交不亲和机制研究进展.中国农业科技导报, 2016, 18 (4):31-37 [百度学术]
Liu S L, Zhao G J, Wu X, Zhang B X, Gao L W, Ding M L, Chen W. Research progress on plant self-incompatibility mechanism. Journal of Agricultural Science and Technology, 2016, 18 (4):31-37 [百度学术]
胡彬,蒋建雄,易自力. 植物配子体自交不亲和机制研究进展. 中国农学通报, 2012, 28 (18): 168-173 [百度学术]
Hu B,Jiang J X,Yi Z L. Advances in studies on the mechanism of plant gametophyte self-incompatibility. Chinese Agricultural Science Bulletin, 2012, 28 (18): 168-173 [百度学术]
Wang C L, Xu G H, Jiang X T, Chen G, Wu J, Wu H Q, Zhang S L. S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. The Plant Journal, 2009, 57 (2):220-229 [百度学术]
Chen J Q, Wang P, DeGraaf B H J, Zhang H, Jiao H J, Tang C, Zhang S L, Wu J Y. Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. The Plant Cell, 2018, 30 (5):1023-1039 [百度学术]
Wang C L, Zhang S L. A cascade signal pathway occurs in self-incompatibility of Pyrus pyrifolia. Plant Signaling & Behavior, 2011, 6 (3):420-421 [百度学术]
Del Duca S, Aloisi I, Parrotta L, Cai G. Cytoskeleton, transglutaminase and gametophytic self-incompatibility in the Malinae (Rosaceae). International Journal of Molecular Sciences, 2019, 20(1): 209 [百度学术]
Sewelam N, Kazan K, Schenk P M. Global plant stress signaling: Reactive oxygen species at the cross-road. Frontiers in Plant Science, 2016, 7:187 [百度学术]
Gupta S, Dong Y N, Dijkwel P P, Mueller-Roeber B, Gechev T S. Genome-wide analysis of ros antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation. International Journal of Molecular Sciences, 2019, 20 (12):3101 [百度学术]
Xu X, Yu Z, Kong J, Yi M J, Huan C, Jiang L. Molecular cloning and expression analysis of Cu/Zn SOD gene from Gynura bicolor DC. Journal of Chemistry, 2017, https://doi.org/10.1155/2017/5987096 [百度学术]
董亮,何永志,王远亮,董志扬.超氧化物歧化酶(SOD)的应用研究进展.中国农业科技导报, 2013, 15 (5):53-58 [百度学术]
Dong L, He Y Z, Wang Y L, Dong Z Y. Research progress in the application of superoxide dismutase (SOD). Journal of Agricultural Science and Technology, 2013, 15 (5):53-58 [百度学术]
马伟荣,童军茂,单春会.超氧化物歧化酶(SOD)的特征及在植物抗逆性方面的研究进展. 食品工业, 2013, 34 (9):154-158 [百度学术]
Ma W R, Tong J M, Shan C H. Characteristics of superoxide dismutase (SOD) and its research progress in plant stress resistance. The Food Industry, 2013, 34 (9):154-158 [百度学术]
Abreu I A, Cabelli D E. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochimica et Biophysics Acta-Proteins and Proteomics, 2010, 1804 (2):263-274 [百度学术]
Zelko I N, Mariani T J, Folz R J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1). Mn-SOD (SOD2)and EC-SOD (SOD3) gene structures, evolution, and expression.Free Radical Biology and Medicine, 2002, 33 (3):337-349 [百度学术]
冯新.香蕉SOD基因家族的全基因组鉴定及功能分析. 福州: 福建农林大学, 2016 [百度学术]
Feng X. Genome-wide identification and functional analysis of SOD gene family in Banana . Fuzhou: Fujian Agriculture and Forestry University, 2016 [百度学术]
Allen R D, Webb R P, Schake S A. Use of transgenic plants to study antioxidant defenses. Free Radical Biology and Medicine, 1997, 23 (3):473-479 [百度学术]
郭栋,张艳阳,杜媚,周宝元,高卓晗,赵明,袁卉馥.油菜超氧化物歧化酶基因家族生物信息学分析.分子植物育种, 2020, 18 (2):367-373 [百度学术]
Guo D, Zhang Y Y, Du M, Zhou B Y, Gao Z H, Zhao M, Yuan H F. Bioinformatics analysis of superoxide dismutase gene family in Brassica napus. Molecular Plant Breeding, 2020, 18 (2):367-373 [百度学术]
Rizhsky L, Liang H, Mittler R. The water-water cycle is essential for chloroplast protection in the absence of stress. Journal of Biological Chemistry, 2003, 278 (40):38921-38925 [百度学术]
王保成,孙万仓,范惠玲,孟亚雄,马静芳,叶剑,刘雅丽,邵登魁,燕妮,朱惠霞,武军艳,曾军,张亚宏.芸芥自交亲和系与自交不亲和系SOD、POD和CAT酶活性.中国油料作物学报, 2006 (2):162-165, 171 [百度学术]
Wang B C ,Sun W C ,Fan H L, Meng Y X, Ma J F, Ye J, Liu Y L, Shao D K, Yan N, Zhu H X, Wu J Y, Zeng J, Zhang Y H. Physiological and biochemical characteristics of self-compatible and self-incompatible lines in Brassica oleracea. Chinese Journal of Oil Crop Sciences, 2006 (2):162-165, 171 [百度学术]
张雪梅,李保国,赵志磊,郭素萍,齐国辉.苹果自花授粉花粉管生长和花柱保护酶活性与内源激素含量的关系.林业科学,2009, 45 (11):20-25 [百度学术]
Zhang X M, Li B G, Zhao Z L, Guo S P, Qi G H. Relationship between compatibility of self-pollination and changes in protecting enzyme and hormone in different apple cultivars. Scientia Silvae Sinicae, 2009, 45 (11):20-25 [百度学术]
齐国辉. 鸭梨自交不亲和与亲和变异的生理生化特性及分子机理研究. 保定: 河北农业大学, 2005 [百度学术]
Qi G H. Physiological and biochemical characteristics, molecular mechanism of Self incompatibility Yali Pear and its self-compatible mutations . Baoding: Agricultural University of Hebei, 2005 [百度学术]
吴能表,徐光德,唐于婷,朱利泉,王小佳.自交不亲和甘蓝的花粉萌发与花柱内保护酶活性变化.西南师范大学学报:自然科学版, 2004 (5):848-851 [百度学术]
Wu N B, Xu G D, Tang Y T, Zhu L Q, Wang X J. Pollen germination and change of protective enzyme activity in style of self-incompatible Brassica oleracea L. Journal of Southwest China Normal University:Natural Science Edition, 2004 (5):848-851 [百度学术]
谭晓风,袁德义,袁军,邹锋,谢鹏,苏勇,杨定桃,彭建桃.大果油茶良种‘华硕’.林业科学, 2011, 47 (12):184, 209 [百度学术]
Tan X F, Yuan D Y, Yuan J, Zhou F, Xie Y, Su yong, Yang D T, Peng J T. An elite variety: Camellia oleifera ‘Huashuo’. Scientia Silvae Sinicae, 2011, 47 (12):184, 209 [百度学术]
谭晓风,袁德义,邹锋,袁军,谢鹏,苏勇,王渊,杨定桃,彭建桃.油茶良种‘华鑫’.林业科学, 2012,48 (3):170-171 [百度学术]
Tan X F, Yuan D Y, Zou F, Yuan J, Xie Y, Su yong, Wang Y, Yang D T, Peng J T. An elite variety of oiltea: Camellia oleifera ‘Huaxin’. Scientia Silvae Sinicae, 2012,48 (3):170-171 [百度学术]
周俊琴,卢梦琪,余姝姝,刘懿瑶,杨进,谭晓风.油茶ETR基因鉴定及其在不同授粉处理下的表达分析.植物生理学报, 2020, 56 (4):721-733 [百度学术]
Zhou J Q, Lu M Q, Yu S S, Liu Y Y, Yang J, Tan X F. Identification and expression analysis of ETR genes under different pollination treatments in Camellia oleifera. Plant Physiology Journal, 2020, 56 (4):721-733 [百度学术]
Zhou J Q, Lu M Q, Yu S S, Yang J, Tan X F. In-depth understanding of Camellia oleifera self-incompatibility by comparative transcriptome, proteome and metabolome. International Journal of Molecular Sciences, 2020, 21(5):1600 [百度学术]
Zeng Y, Tan X, Zhang L, Long H., Wang B, Li Z, Yuan Z. A fructose-1, 6-biphosphate aldolase gene from Camellia oleifera: Molecular characterization and impact on salt stress tolerance. Molecular Breeding, 2015, 35 (1):1-12 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
McCubbin A G, Kao T H. Molecular recognition and response in pollen and pistil interactions. Annual Review of Cell and Developmental Biology, 2000, 16 (1):333-364 [百度学术]
McInnis S M, Desikan R, Hancock J T, Hiscock S J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: Potential signalling crosstalk?New Phytologist, 2006, 172 (2):221-228 [百度学术]
Zhang L L, Huang J B, Su S Q, Wei X C, Yang L, Zhao H H, Yu J Q, Wang J, Hui J Y, Hao S Y, Song S S, Cao Y Y, Wang M S, Zhang X W, Zhao Y Y, Wang Z Y, Zeng W Q, Wu M H, Yuan Y X, Zhang S X, Cheung A Y, Duan Q H. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Current Biology, 2021, 31 (14):3004-3016 [百度学术]
Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 2002, 53 (372):1331-1341 [百度学术]
Sharma B, Bhatla S C. Accumulation and scavenging of reactive oxygen species and nitric oxide correlate with stigma maturation and pollen-stigma interaction in sunflower. Acta Physiologiae Plantarum, 2013, 35 (9):2777-2787 [百度学术]
Miller A F. Superoxide dismutases: Ancient enzymes and new insights. FEBS Letters, 2012, 586 (5):585-595 [百度学术]
Zhang J, Chen T, Wang J, Chen Q, Luo Y, Zhang Y, Wang X R. Genetic diversity and population structure in cherry (Cerasus pseudocerasus (Lindl). G. Don) along Longmenshan Fault Zones in China with newly developed SSR markers. Scientia Horticulturae, 2016, 212:11-19 [百度学术]
王鹏,段文静,王玉昆,白建芳,苑国良,苑少华,权威,张立平,赵昌平.小麦光温敏雄性不育系BS366铜锌超氧化物歧化酶基因的克隆及表达分析. 植物遗传资源学报, 2017,18 (5):939-951 [百度学术]
Wang P, Duan W J, Wang Y K, Bai J F, Yuan G L, Yuan S H, Quan wei, Zhang L P, Zhao C P. Cloning and expression analysis of a cupro-zinc superoxide dismutase gene from wheat photo-thermosensitive genic male sterile line BS366. Journal of Plant Genetic Resources, 2017,18 (5):939-951 [百度学术]
殷恒霞,李霞,米琴,王文颖,张文胜,徐进.镉、锌、铜胁迫对向日葵早期幼苗生长的影响.植物遗传资源学报, 2009,10 (2):290-294, 299 [百度学术]
Yin H X, Li X, Mi Q, Wang W Y, Zhang W S, Xu J. Effects of Cadmium, Zinc and Copper -induced stresses on the early seedling growth of sunflower (Helianthus annuus L. ). Journal of Plant Genetic Resources, 2009,10 (2):290-294, 299 [百度学术]
李涛,高俊杰,于贤昌.高浓度M
Li T, Gao J J, Yu X C. Effects of high concentrations of C
Nasrallah J B. Recognition and rejection of self in plant self-incompatibility: Comparisons to animal histocompatibility. Trends in Immunology, 2005, 26 (8): 412-418 [百度学术]