摘要
高粱是全球重要的五大粮食作物之一,具有耐瘠薄、耐旱等特性。氮元素是保障作物稳产、高产的三大重要养分元素之一。氮信号途径相关基因研究在高粱中基本不清楚,挖掘缺氮诱导基因,有助于解析高粱氮素吸收、利用相关分子通路。本研究克隆了先前在高粱BTX623苗期缺氮、缺磷及缺钾表达谱中筛选出的1个地上部分特异受缺氮诱导的MYB-related转录因子家族成员SbMYB-like基因Sb03g030330,该基因编码蛋白预测定位于细胞核。高粱中组织表达qRT-PCR分析表明SbMYB-like基因在根、茎、花中表达较低,主要在叶片中表达。进化树分析表明该基因与玉米、二穗短柄草中同源基因亲缘关系相对较近。通过qRT-PCR在二穗短柄草中验证了该基因同源基因地上部分受缺氮诱导的特性。在高粱BTX623品种中分离并克隆了SbMYB-like基因,构建超表达载体,转化拟南芥获得了超表达株系。通过缺氮和缺磷处理,测定野生型和超表达纯系植株主根长度和开花时间,结果表明该基因在促进根系伸长和开花方面有重要的作用,但此促进作用并不依赖于外源氮素水平。本研究为高粱缺氮响应分子途径解析提供了基础数据。
氮是构成生物体的必需元素之一,植物通过根系吸收和同化无机氮源,将无机氮转化成氨基酸,继而合成各种蛋白质,参与植物的生长和发育。氮肥是大多数非豆科作物主要的投入之一,约占世界肥料消耗量的60
通常土壤中的氮素分布不均匀,植物在应对这种易变的养分环境时已经进化出一系列的氮缺乏响应措
MYB转录因子是植物中非常庞大的1个转录因子家族,作用广泛,参与抗旱、次生代谢等调控过
高粱是全球五大谷物类作物之一,具有耐瘠薄、耐旱等特性,一般种植在一些半干旱、瘠薄的边际土地
试验材料:高粱参考基因组测序品种BTX623,拟南芥Columbia(Col-0)野生型,以及二穗短柄草参考基因组测序品种Bd21。
高粱种植步骤如下:挑选大小一致、饱满、无霉点、色泽好的高粱种子于5%次氯酸钠溶液中,摇床上震荡消毒10 min,然后用自来水冲洗数遍后,转入培养皿内并加入少量水(刚好没过),放置于37 ℃培养箱内,过夜,待种子露白后,播于漂浮在营养液中的纱网板上,营养液改良自木村氏培养液配方(
元素 Element | 母液浓度(mol/L) Concentration of stock solution | 终浓度(mmol/L) Final use concentration | 母液组合 Group of stock solution |
---|---|---|---|
MgSO4·7H2O | 0.547 | 0.5470 | I |
(NH4)2SO4 | 0.365 | 0.3650 | |
KH2PO4 | 0.182 | 0.1820 | II |
KNO3 | 0.183 | 0.1830 | III |
Ca(NO3)2·4H2O | 0.366 | 0.3660 | |
MnCl2·4H2O | 0.005 | 0.0005 | IV |
H3BO3 | 0.03 | 0.0030 | |
(NH4)6Mo7O24·4H2O | 0.001 | 0.0001 | |
ZnSO4·7H2O | 0.004 | 0.0004 | |
CuSO4·5H2O | 0.002 | 0.0002 | |
NaFe-EDTA·3H2O | 0.100 | 0.0400 | V |
MES | 0.500 | 2.0000 | VI |
拟南芥Col野生型种子置于2.0 mL灭菌的离心管中,5%次氯酸钠溶液中消毒10 min,然后用灭菌的蒸馏水清洗5~6遍,吸干水分后放置在超净台上晾干,然后播种于1/2MS培养基中。先4 ℃冰箱放置48 h,然后放置于25 ℃恒温光照培养箱(日本松下/三洋MLR-352H-PC植物培养箱)培养。表型生长试验置于室内恒温23 ℃,16 h光照/8 h黑暗的温室中。拟南芥低氮、低磷实验:对照处理的培养基配方如
二穗短柄草种子消毒同上,然后放置灭菌水中置于4 ℃冰箱放置36~48 h,然后置于25 ℃培养箱催芽,种植于底部开孔的96孔PCR板中,正常种植7 d(营养液见
高粱及二穗短柄草缺氮处理的样品到指定时间后进行取样,高粱缺氮样品用于SbMYB-like基因克隆,而二穗短柄草缺氮样品用来进行SbMYB-like同源基因表达特性分析。取完样品后,快速浸入液氮,于-80 ℃超低温冰箱存放。待用时将样品取出,放入液氮充分预冷的植物样品研磨仪25 mL钢罐中研磨(Tissuelyser-64,上海净信实业发展有限公司),然后用Trizol试剂(上海英俊生物有限公司)提取总RNA。微分光光度计Nanodrop2000c(赛默飞世尔科技(中国)有限公司)测定浓度和质量,要求280 nm/260 nm,260 nm/230 nm在1.8~2.0之间,同时进行1.2%琼脂糖电泳检测RNA条带,要求条带清晰、无拖尾,28S条带亮度大概是18S条带2倍最优。采用基因组DNA去除试剂盒TURBO DNA-free™ 试剂盒(赛默飞世尔科技(中国)有限公司)按照说明进行总RNA的基因组污染去除。取2.5 µg总RNA,利用SweScript RT I First Strand cDNA Synthesis Kit(With gDNA Remover)(武汉赛维尔生物科技有限公司)先进行基因组污染处理,然后按照说明进行逆转录得到cDNA,置于-80 ℃待用。由于该基因预测无内含子,所以总RNA进行了严格的基因组污染去除。
引物利用Oligo7.0软件(www.oligo.net)设计,由南京金斯瑞生物科技有限公司合成ePAGE级别引物,本研究所用引物详见
引物名称 Name of primers | 正向序列(5'-3') Forward sequence(5'-3') | 反向序列(5'-3') Reverse sequence(5'-3') | 用途 Purpose |
---|---|---|---|
SbMYB | ATGTCTGGGTCCAGGAACTCTT | TTAGTTCCAAGCTCCCTGTGTG | 基因克隆引物 |
Bradi2g45770-qRT | TTTGCACTGAATGTAACCTCC | TCCGATCCTAAATTGTTGTCGAA | 定量PCR引物 |
Bradi2g45780-qRT | AAGCATACCGATATATTGTGA | AAGGCGGATTTAATTTAGCAA | 定量PCR引物 |
BdUBC18 qRT-PCR | GTCACCCGCAATGACTGTAAGTTC | TTGTCTTGCGGACGTTGCTTTG | 二穗短柄草中看家基因定量PCR引物 |
UBC.qPCR | CTGCGACTCAGGGAATCTTCTAA | TTGTGCCATTGAATTGAACCC | 拟南芥中看家基因定量PCR引物 |
SbActin | ATGGCTGACGCCGAGGATATCCA | GAGCCACACGGAGCTCGTTGTAG | 高粱中看家基因定量PCR引物 |
Sb03g030330KpnI/BamHI | AAGGTACCATGTCTGGGTCCAGGAACTCTTC | AAGGATCCTTAGTTCCAAGCTCCCTGTGTGT | 基因载体构建引物 |
Sb03g030330 94qRT | CGCCGCCATTATGAGATCCT | AGTTCCAAGCTCCCTGTGTG | 定量PCR引物 |
保守结构域采用在线程序CDD(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)预测。基因亚细胞定位使用Euk-mPLoc 2.0(http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2)。拟南芥(https://www.arabidopsis.org/)、水稻(https://rice.plantbiology.msu.edu/)、玉米(https://www.maizegdb.org/)、高粱、谷子以及二穗短柄草中(https://phytozome-next.jgi.doe.gov/pz/portal.html)同源基因采用BLASTP搜索。所有的入选基因编码的氨基酸序列用ClustalX1.83软件(www.clustal.org)进行序列联配,通过MEGA7.0软件(https://www.megasoftware.net)采用邻结法(NJ)进行进化树构建,设置bootstrap为1000次。
以BTX623品种在苗期缺氮条件下,地上部分总RNA合成的第一链cDNA为模板,按照网上预测的转录本参考序列(https://phytozome-next.jgi.doe.gov/pz/portal.html)设计引物进行PCR扩增(

图1 SbMYB-like基因编码蛋白保守结构域分析
Fig.1 Conserved domain analysis of SbMYB-like
高粱组织表达实时荧光定量PCR分析表明,该SbMYB-like转录因子主要在叶片中表达,而在根中、茎秆几乎无表达,仅在穗中略有表达,与表达谱中主要在地上部分表

图2 SbMYB-like基因组织表达qRT-PCR分析
Fig.2 qRT-PCR analysis of SbMYB-like tissue expression
将SbMYB-like编码蛋白序列在各物种包括高粱、水稻、拟南芥、玉米、二穗短柄草等参考基因组数据库中进行BLASTP检索,找出其蛋白序列相似度最高的基因共计11个,进行序列联配和进化树的构建。蛋白序列联配的结果显示,各序列在SANT/Myb-like domain上保守性总体比较高,在其他区域差别相对较大,特别是靠近N端区域(

图3 SbMYB-like与同源基因编码蛋白序列联配及进化树分析
Fig.3 Protein sequence alignment of SbMYB-like and other homologs, and phylogenetic tree analysis
A:SbMYB-like(Sb03g030330)与其他10个同源基因编码蛋白序列联配,分别是来自于高粱的Sb09g028790,玉米的GRMZM2G049378和GRMZM2G121753,二穗短柄草的Bradi2g45770和Bradi2g45780,谷子的Seita.5G260200和Seita.5G259700,水稻的LOC_Os07g26150和LOC_Os01g47370,拟南芥的AT1G75250;红线标注的是SANT/Myb-like DNA-binding结构域;B:SbMYB-like与其他10个同源基因编码蛋白进化树构建
A: Protein sequence of SbMYB-like (Sb03g030330) aligns with other 10 homologs, namely Sb09g028790 from sorghum, GRMZM2G049378 and GRMZM2G121753 from maize, Bradi2g45770 and Bradi2g45780 from Brachypodium P. Beauv., Seita.5G260200 and Seita.5G259700 from foxtail millet, LOC_Os07g26150 and LOC_Os01g47370 from rice, AT1G75250 from Arabidopsis Heynh.; red line indicates SANT/Myb-like DNA-binding domain; B: Phylogenetic tree construct of proteins encoded by SbMYB-like and other 10 homologs
为了验证该基因功能保守性,在二穗短柄草中进行SbMYB-like同源基因受缺氮诱导情况分析。野生型二穗短柄草缺氮处理7 d,缺氮下的植株已表现出叶片失绿、发黄,特别是较老的叶片,表明二穗短柄草已出现缺氮症状(

图4 SbMYB-like在二穗短柄草中同源基因受缺氮诱导情况分析
Fig.4 Expression of SbMYB-like homologs in Brachypodium P. Beauv. under nitrogen deficiency conditions
A:二穗短柄草缺氮处理7 d地上部表型。CK:对照;-N:缺氮处理;B:二穗短柄草中两个同源基因受缺氮诱导情况qRT-PCR分析
A: Shoots phenotype of Brachypodium P. Beauv. under nitrogen deficiency conditions for seven days. CK: Control; -N: Nitrogen deficiency;B: qRT-PCR analysis of two homologs under nitrogen deficiency conditions in Brachypodium P. Beauv.
SbMYB-like拟南芥转基因植株T2代利用抗性筛选鉴定,保留符合单基因遗传规律的株系,最终在T3抗性基因筛选鉴定得到8个纯系,对这8个株系进行了SbMYB-like基因表达实时荧光定量分析。结果表明相较于空载体转基因对照,这8个株系的SbMYB-like基因表达水平范围为200~6000倍(

图5 SbMYB-like拟南芥超表达株系基因表达分析
Fig.5 Expression of SbMYB-like in overexpression Arabidopsis Heynh. plants
WT(EV)代表空载体转基因对照,OEs代表不同超表达株系
WT(EV) represents empty vector transgenic control, OEs represents different overexpression lines
因该基因受缺氮和缺磷诱导,特别是缺氮,不论是植株地上部分还是根系都受缺氮诱导。根系是植物吸收养分的重要器官,氮素对根系构型有重要的调控作用。为探索该基因是否参与氮素对根系调控,挑选了5个代表不同表达量的单基因超表达株系(OE6-2、OE30-3、OE19-2、OE28-2以及OE23-14)进行低氮、低磷处理,观察根系低氮、低磷的反应。结果显示株系OE6-2和OE30-3主根不论是在正常条件下或是低氮诱导情况下,或是在低磷主根生长抑制条件下,都显示出主根长度显著长于野生型植株,而其他株系主根较野生型根系长度并无显著差异(

图6 SbMYB-like拟南芥超表达株系根系低氮、低磷条件下表型分析
Fig.6 Performance analysis of the roots of SbMYB-like Arabidopsis Heynh. overexpression lines under low nitrogen and low phosphate conditions
A~C:Col野生型及5个SbMYB-like拟南芥超表达株系在正常条件下(A)、低氮条件下(B)和低磷条件下(C)根系表型;D:Col野生型及5个SbMYB-like拟南芥超表达株系在不同处理条件下主根长度统计;+N+P:氮磷充足,1/10N:氮素浓度为充足水平下的1/10,1/10P:磷素浓度为充足水平下的1/10; E:Col野生型及5个SbMYB-like拟南芥超表达株系主根在缺氮或缺磷条件下诱导或抑制的比例统计。Bar=2 cm
A-C: Root phenotypes of Col and five SbMYB-like Arabidopsis Heynh. overexpressing lines under normal (A), low nitrogen (B) and low phosphate conditions (C); D: Primary root lengths of Col and five SbMYB-like Arabidopsis Heynh. overexpression lines under different treatment conditions; +N+P: The sources of N and P were sufficient, 1/10N: Concentration of sources of N is 1/10 of that of sufficient condition, 1/10P: Concentration of sources of P is 1/10 of that of sufficient condition; E: Ratio of primary roots induced or inhibited under nitrogen or phosphorus deficiency conditions of Col and five SbMYB-like Arabidopsis Heynh. overexpression lines. Bar=2 cm
氮素对植物开花有重要影响,通常情况下,在拟南芥及水稻中缺氮促进开花,而氮过于丰富则延迟开

图7 SbMYB-like拟南芥超表达株系在不同氮水平下开花时间分析
Fig.7 Analysis of flowering time of SbMYB-like Arabidopsis Heynh. overexpression lines under different nitrogen levels
A:野生型及两个SbMYB-like拟南芥超表达株系在氮充足和低氮条件下开花时表型;+N:氮充足条件,1/10N:氮素浓度为充足水平下的1/10;B:野生型及两个SbMYB-like拟南芥超表达株系在氮充足和低氮水平下开花时莲座叶数目统计;T检测,*在P<0.05水平上差异显著,**在P<0.01水平上差异显著
A: Growth performance of WT and two SbMYB-like Arabidopsis Heynh. overexpressing lines at flowering period under nitrogen sufficient and low nitrogen conditions; +N: nitrogen sufficient conditions, 1/10N: Concentration of sources of N is 1/10 of that of sufficient condition; B: Number of rosette leaves of WT and two SbMYB-like Arabidopsis Heynh. overexpressing lines at flowering stage under different treatments. Student's t-test,* significant difference at the P<0.05 level, ** significant difference at the P<0.01 level
氮肥是保障农作物高产稳产的重要因素之一,挖掘氮缺乏诱导基因有助于解析氮高效的分子机理。本研究克隆了高粱受缺氮特异诱导的SbMYB-like基因,并进行了其他物种中同源基因缺氮诱导特性分析,在拟南芥中进行超表达转化,对转基因纯系进行了根系表型和开花时间的观察。
从前期高粱苗期氮缺乏(-N)、磷缺乏(-P)以及钾缺乏(-K)表达谱研究中,本课题组筛选出一些NPK缺乏特异诱导基因。其中1个SbMYB-like转录因子,该基因不论是在地上部分还是根系中都受缺氮特异诱导,特别是地上部分强烈受缺氮诱导,缺磷地上部分略有诱导,而缺钾几乎不受影
高粱SbMYB-like基因在拟南芥中进行超表达转化,转基因纯系根系表型分析表明该基因能够促进根系伸长,但是该基因对根系的促进作用并不依赖外界氮素或是磷素水平(
本研究克隆了前期在高粱苗期缺氮、缺磷以及缺钾表达谱中鉴定到的1个受缺氮特异诱导的转录因子SbMYB-like基因,该基因在玉米和二穗短柄草中的同源基因也同样受缺氮强烈诱导,在拟南芥中超表达SbMYB-like基因,显著促进了拟南芥主根伸长以及植株开花,该促进作用并不依赖外界氮素水平,表明该基因是植株根系伸长及开花的重要调控基因,但有关该基因参与高粱缺氮响应分子机制有待进一步深入研究。
参考文献
Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology, 2018, 69(1): 85-122 [百度学术]
Wang S T, Zhang X M, Wang C, Zhang X Y, Reis S, Xu J M, Gu B J. A high-resolution map of reactive nitrogen inputs to China. Scientific Data, 2020, 7(1): 379 [百度学术]
吴远帆,钟建中,高雅洁,廖育林,聂军,鲁艳红.湖南省3种粮油作物当季化肥利用率现状研究.湖南农业科学,2022(3):33-37 [百度学术]
Wu Y F, Zhong J Z, Gao Y J, Liao Y L, Nie J, Lu Y H. Fertilizer use efficiency of three grain and oil-bearing crops in hunan province. Hunan Agricultural Sciences, 2022(3): 33-37 [百度学术]
Xu G H, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63(1): 153-182 [百度学术]
Garnett T, Conn V, Kaiser B N. Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell & Environment, 2009, 32(9): 1272-1283 [百度学术]
Zhang S N, Liu Y, Du M K, Shou G Z, Wang Z Y, Xu G H. Nitrogen as a regulator for flowering time in plant. Plant and Soil, 2022, https://doi.org/10.1007/s11104-022-05608-w [百度学术]
Vidal E A, Moyano T C, Canales J, Gutierrez R A. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65(19): 5611-5618 [百度学术]
谈天斌,卢晓玲,张凯旋,丁梦琦,廖志勇,周美亮. TrMYB308基因的克隆及在苦荞毛状根中的功能分析.植物遗传资源学报,2019,20(6):1542-1553 [百度学术]
Tan T B,Lu X L,Zhang K X,Ding M Q,Liao Z Y,Zhou M L. Cloning of TrMYB308 gene and analysis of its function in Fagopyrum tataricum hairy root. Journal of Plant Genetic Resources, 2019, 20(6): 1542-1553 [百度学术]
康珍,杨迪,郝彦蓉,卢翔,周美亮,方正武.苦荞转录因子FtMYB41的克隆及功能分析.植物遗传资源学报,2022,23(3):895-905 [百度学术]
Kang Z, Yang D, Hao Y R, Lu X, Zhou M L, Fang Z W. Molecular cloning and functional analysis of transcription factor FTMYB41 in tartary buckwheat(Fagopyrum Tataricum). Journal of Plant Genetic Resources, 2022, 23(3): 895-905 [百度学术]
Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses: An overview. Physiology and Molecular Biology of Plants, 2013, 19(3): 307-321 [百度学术]
Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal, 2008, 55(6): 954-967 [百度学术]
Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research, 2017, 45(D1): D1040-D1045 [百度学术]
Nguyen N H, Lee H. MYB-related transcription factors function as regulators of the circadian clock and anthocyanin biosynthesis in Arabidopsis. Plant Signaling & Behavior, 2016, 11(3): e1139278 [百度学术]
Todd C D, Zeng P, Huete A M R, Hoyos M E, Polacco J C. Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis. Planta, 2004, 219(6): 1003-1009 [百度学术]
Zhang L C, Liu G X, Jia J Z, Zhao G Y, Xia C, Zhang L N, Li F, Zhang Q, Dong C H, Gao S C, Han L Z, Guo X P, Zhang X, Wu J X, Liu X, Kong X Y. The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. Journal of Integrative Plant Biology, 2016, 58(8): 701-704 [百度学术]
Abe M, Kaya H, Watanabe-Taneda A, Shibuta M, Yamaguchi A, Sakamoto T, Kurata T, Ausín I, Araki T, Alonso-Blanco C. FE, a phloem-specific Myb-related protein, promotes flowering through transcriptional activation of flowering locus T and flowering locus T interacting protein 1. The Plant Journal, 2015, 83(6): 1059-1068 [百度学术]
Nilsson L, Muller R, Nielsen T H. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell and Environment, 2007, 30(12): 1499-1512 [百度学术]
Dial H. Plant guide for sorghum (Sorghum bicolor L.). (2013-02) [2022-10]. https://docslib.org/doc/7227421/plant-guide-sorghum-sorghum-bicolor [百度学术]
Zhu Z X, Li D, Wang P, Li J H, Lu X C. Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theoretical and Experimental Plant Physiology, 2020, 32(4): 271-285 [百度学术]
Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Plant Physiology, 2012, 160(3): 1384-1406 [百度学术]
Liu B H, Wu J Y, Yang S Q, Schiefelbein J, Gan Y B. Nitrate regulation of lateral root and root hair development in plants. Journal of Experimental Botany, 2020,71(15): 4405-4414 [百度学术]
Saini S, Sharma I, Kaur N, Pati P K. Auxin: A master regulator in plant root development. Plant Cell and Reports, 2013, 32(6): 754-757 [百度学术]