摘要
黄秋葵果实发育过程质地易木质化变硬,严重影响商品价值。为探究黄秋葵果实质地变硬的机制,选择易老化变硬的Z06和不易老化的苏优葵3号两个品种在其果实3个发育时期进行生化指标的测定及转录组测序。结果发现,品种间或不同发育时期果实质地的差异主要是由于木质素积累导致的木质化,纤维素和原果胶同时也起到积极的作用。转录组学分析表明,相同品种在不同果实发育时期的差异表达基因(DEGs,differentially expressed genes)主要在苯丙烷生物合成和次级代谢产物的生物合成途径显著富集;而相同时期两品种间的差异表达基因除了与苯丙烷生物合成途径有关,光合作用和光合作用天线蛋白途径也起重要作用。在果实成熟质地变硬阶段,苯丙氨酸酶(PAL,phenylalanineammonialyase)基因是影响木质素积累的关键基因;蔗糖合成酶3(SUS3,sucrose synthase)基因对纤维素的积累贡献最大,而β-葡萄糖苷酶(BGLU,β-D-glucosidase)基因的下调表达也是促进纤维积累的重要因素;半乳糖醛酸转移酶6(GAUT6,galacturonosyltransferase)基因和SUS6基因对原果胶的积累贡献较大,但大部分果胶酯酶(PME,pectinesterase)基因和聚半乳糖醛酸酶(PG,polygalacturonase)基因对原果胶的积累均呈负贡献。木质素合成相关基因PAL6、PAL5、PAL1及肉桂酰辅酶A还原酶2(CCR2,cinnamoyl-CoA reductase)基因、细胞色素P450亚酶84A1(CYP84A1,cytochrome P450)基因、CYP73A12,以及光合途径相关基因放氧增强蛋白2(PSBP2,oxygen-evolving-complex)基因和叶绿素a/b结合蛋白2(CAB1R,chlorophyll a/b binding protein)基因是影响品种质地差异的重要基因。
黄秋葵(Abelmoschus esculentus (L.) Moench)起源于非洲,在热带及亚热带地区广泛种植。据FAO(https://www.fao.org/faostat)统计,2010年以来,黄秋葵在世界的栽培面积增长迅速,截止到2020年,世界总栽培面积提升了131.5%。因其美味的口感、丰富的营养、较高的医药价值使其深受人们喜
植物组织的质地受细胞形态、膨压以及细胞壁结构影
本研究以果实成熟阶段质地变化进程显著不同的两个黄秋葵品种苏优葵3号和Z06为试验材料,通过测定果实质地变化过程细胞壁组分的变化,联合转录组测序,明确黄秋葵果实质地变硬的主要原因,分析黄秋葵果实质地变化的生理与分子机制,探明影响黄秋葵果实质地的关键基因,进而为黄秋葵栽培模式创新提供理论依据,同时为其育种提供理论支撑。
选择果实相同发育阶段质地显著不同的两个黄秋葵品种苏优葵3号和Z06为试验材料,2020年4月10日播种于苏州市农业科学院蔬菜所基地,其中苏优葵3号为质地脆嫩品种,Z06为质地易老化变硬品种(

图1 老化进程不同的2个黄秋葵品种(花后5 d)
Fig.1 Two okra varieties with different aging processes (5 days after flowering)
果实硬度使用GY-4硬度计(莱恩德,中国)测定;纤维素采用硫酸蒽酮比色法测
准确称取100 mg黄秋葵果实使用液氮研磨,并置于1.5 mL离心管中,使用Plant RNA Kit(Omega,美国)提取RNA。对核酸样本进行琼脂糖凝胶电泳,目的是检验核酸样本的完整性;使用NanoDrop One(Thermo Fisher,美国)检测核酸的OD值,以测定核酸的纯度。
提取后,使用寡核苷酸磁珠富集真核mRNA,使用Ribo-zerotm Magnetic Kit(Epicentre,美国)去除原核核糖体RNA(rRNA)。然后使用裂解缓冲液将富集的mRNA片段化,并使用随机引物将其转录成互补DNA(cDNA)。使用QiaQuick PCR Purification Kit(QIAGEN,德国)纯化DNA片段,进行末端修复、聚腺苷酸化并连接到Illumina测序接头。通过琼脂糖凝胶电泳分离连接产物,使用PCR进行扩增,在广州基迪奥生物公司使用Illumina HiSeqTM 4000进行测序。
通过删除包含接头、未知“N”碱基和低质量的Reads,获得高质量的Clean data。随后,进行气相色谱分析并计算读数的Q20和Q30。使用Trinity软
选择10个显著差异表达的基因验证转录组数据的可靠性。使用Primer 5.0软件设计特异性引物。每个反应体系为20 μL,包含10 μL SYBR green Master Mix、0.4 μL正向和反向引物以及2 μL cDNA。扩增条件如下:95 ℃下初始变性30 s,95 ℃下变性10 s,60 ℃下退火30 s,循环35个周期。以ACT4作为内参基因,使用
引物名称 Primer name | 正向引物 Forward primer | 反向引物 Reverse primer | 退火温度(℃)Tm | 扩增长度(bp) Amplification length |
---|---|---|---|---|
ACT4 | GCATCTCTTAGCACCTTCCAGCAG | AGAAGCACTTCCTGTGGACAATGG | 59.1 | 88 |
ASK8 | CCGAAGCAGGTCAGATAA | GCCACTCTCTAAGCACTT | 60.2 | 140 |
RVE5- | GTCACAGTGGCAGTAGT | CCAGGGTCAAAGACATTAC | 59.8 | 142 |
RPP25L | GTGAAGCCATTGACTGAG | CATAACCTCTCCCACCAT | 59.5 | 100 |
At1g16860 | GTGCCAAGATGCGTATATG | CAGGAGAAGTAGCGATGT | 60.3 | 92 |
FRL4B | GCCTTGAGCAGTTAGAGA | GCATAGGACCGCCATTA | 59.4 | 96 |
CESA4 | CGGTTACACCAAGTTCTG | AAGCCTCTCAAGCCATT | 59.7 | 111 |
PAL | GCTAAGTGGTGAAGAAGTG | GTTCCATTCCTCCAGACA | 60.0 | 112 |
CCR1 | TGAAGGAGCGAATGAGAG | CAGGTGAAGCAGTATGGA | 59.7 | 110 |
SUS1 | AATGACCTGTGGACTACC | CTAAATCGCCGTTGTAAGG | 60.0 | 107 |
BGLU41 | CGCCGATACTTCAAGGA | CGAGGAACAGATACTACCA | 60.0 | 148 |
随着黄秋葵果实发育,果实硬度逐渐升高,且Z06的硬度显著高于苏优葵3号(P<0.05)(

图2 黄秋葵果实老化过程相关品质指标变化
Fig.2 Changes of quality indexes related to okra fruit aging process
*表示两品种在P<0.05水平上存在显著差异
*Indicates a significant difference between the two varieties at the P<0.05 level
在获得原始测序读数后,评估了测序数据的质量。在删除低质量的Reads后,获得了4000万到5500万Clean data。各样品中Q20碱基百分比均不小于97%,样品的GC含量在43.46%至44.37%之间。测序错误率在0.03%左右,满足后续分析要求(
样品序号 Sample | 原始数据 Raw data | 有效数据 Clean data | 错误率(%) Error rate | Q20(%) | Q30(%) | GC(%) |
---|---|---|---|---|---|---|
AT1-1 | 47007958 | 46819292 | 0.03 | 97.53 | 93.20 | 43.99 |
AT1-2 | 45172246 | 44978518 | 0.03 | 97.63 | 93.41 | 43.46 |
AT1-3 | 49023184 | 48793698 | 0.03 | 97.44 | 93.04 | 43.97 |
AT2-1 | 49867614 | 49715450 | 0.03 | 97.59 | 93.29 | 43.91 |
AT2-2 | 49072880 | 48912576 | 0.03 | 97.62 | 93.35 | 43.96 |
AT2-3 | 49296486 | 49155128 | 0.03 | 97.73 | 93.58 | 43.90 |
AT3-1 | 40713026 | 40588450 | 0.03 | 97.71 | 93.55 | 43.71 |
AT3-2 | 49066968 | 48887278 | 0.03 | 97.58 | 93.27 | 43.78 |
AT3-3 | 44540166 | 44390560 | 0.03 | 97.58 | 93.29 | 43.78 |
BT1-1 | 53597436 | 53403072 | 0.03 | 97.70 | 93.49 | 43.98 |
BT1-2 | 45836548 | 45695616 | 0.03 | 97.66 | 93.34 | 44.22 |
BT1-3 | 45542282 | 45397510 | 0.03 | 97.69 | 93.47 | 44.37 |
BT2-1 | 44478354 | 44286514 | 0.03 | 97.56 | 93.25 | 43.67 |
BT2-2 | 44557716 | 44426318 | 0.03 | 97.65 | 93.41 | 43.82 |
BT2-3 | 48467076 | 48302570 | 0.03 | 97.61 | 93.31 | 43.88 |
BT3-1 | 45458472 | 45272078 | 0.03 | 97.35 | 92.76 | 43.74 |
BT3-2 | 47433318 | 47270036 | 0.03 | 97.57 | 93.22 | 43.78 |
BT3-3 | 52676596 | 52468026 | 0.03 | 97.55 | 93.24 | 43.57 |
AT: 苏优葵3号;BT: Z06;AT1、AT2、AT3分别表示AT在开花后3 d、5 d、7 d;BT1、BT2、BT3分别表示BT在开花后3 d、5 d、7 d;-1、-2、-3表示3个重复;下同
AT: Suyoukui 3; BT: Z06; AT1, AT2 and AT3 represent AT at 3 d, 5 d and 7 d after flowering, respectively; BT1, BT2 and BT3 represent BT at 3d, 5d and 7d after flowering, respectively; -1, -2 and -3 represent three duplicates; The same as below

图3 不同转录组样本PCA分析及DEGs统计
Fig.3 PCA analysis of different transcriptome samples and DEGs statistics
A: PCA分布图,红色虚线表示AT3,紫色虚线表示BT3,蓝色虚线表示AT2和BT2,绿色虚线表示AT1和BT1; B: DEGs统计分析,vs:比较组中均为后者相较于前者而言,下同
A: PCA distribution map, red dotted lines represent AT3, purple dotted lines represent BT3, blue dotted lines represent AT2 and BT2, and green dotted lines represent AT1 and BT1; B: Statistical analysis of DEGs; vs: In the comparison group, the latter was compared with the former, the same blow
对鉴定的DEGs进行分类,不同发育时期相较而言,苏优葵3号中3个比较组共有15569个DEGs,Z06中共有18691个DEGs;在苏优葵3号中,开花后5 d较开花后3 d、开花后7 d较开花后5 d、开花后7 d较开花后3 d,有978个共同表达的差异表达基因;在Z06中,开花后5 d较开花后3 d、开花后7 d较开花后5 d、开花后7 d较开花后3 d,有1286个共同表达的差异表达基因。两品种相较而言,3个时期共有6288个DEGs;在3个发育时期,Z06相较于苏优葵3号,有219个共同表达的差异表达基因(

图4 韦恩图及DEGs表达模式
Fig.4 Venn diagram and Expression pattern of DEGs
A: 不同品种和发育时期DEGs表达韦恩图,数字表示差异表达基因数量; B: 差异表达基因表达模式
A: Venn diagram of DEGs among different combinations of samples and stages, the number represents the number of DEGs; B: Expression pattern of DEGs
Gene onotology(GO)可分为生物过程(Biological process)、细胞成分(Cellular component)以及分子功能(Molecular function)三大类功能。对同一品种不同发育时期和相同时期不同品种的DEGs进行GO富集分析,结果发现,差异表达基因在两种富集方式的结果相似,在生物过程(Biological process)中,代谢过程(Metabolic process)、细胞过程(Cellular process)和单生物过程(Single-organism process)显著富集;在细胞成分(Cellular Component)中细胞(Cell)、细胞组分(Cell part)和细胞器(Organelle)的DEGs数量最多;在分子功能(Molecular Function)中主要在催化活性(Catalytic activity)和物质结合(Binding)中富集显著(


图5 不同品种和果实发育时期DEGs的GO富集
Fig.5 GO enrichment of DEGs among different combinations of samples and stages
A:同一品种不同发育时期的DEGs;B:相同时期不同品种的DEGs
A: DEGs of the same variety at different developmental stages; B: DEGs of different varieties in the same period
利用KEGG对DEGs进行代谢通路富集,自上而下按-log10(Qvalue)大小排列聚类结果,发现相同时期不同品种的DEGs主要在代谢途径(Metabolic pathways)、光合(Photosynthesis)和光合作用天线蛋白(Photosynthesis-antenna protein)显著富集(

图6 不同品种和果实发育时期DEGs的KEGG富集
Fig.6 KEGG enrichment of DEGs among different combinations of samples and stages
A:相同时期不同品种的DEGs;B:相同品种在不同发育时期的DEGs
A: DEGs of different varieties in the same period; B: DEGs of the same variety in different developmental stages
对果实发育过程与木质素合成相关的DEGs进行筛选,在苏优葵3号中共筛选到30个DEGs,在Z06中共筛选到32个DEGs。对这些DEGs进行聚类分析,结果发现,在苏优葵3号中,开花后7 d较开花后5 d,PAL6、CAD1、CYP84A、CCR1、3个COMT、3个CYP73A、2个4CL显著上调表达;其中,4个PER基因显著上调表达,6个PER基因显著下调表达。开花后5 d相较于开花后3 d,7个过氧化物酶(PER,peroxidase)基因显著上调表达,4个PER基因显著下调表达。在Z06中,开花后7 d相较于开花后5 d,共有21个基因显著上调表达(包括PAL、CAD、CCR、COMT、CYP73A、CYP84A和部分4CL、PER基因);其中,3个4CL基因显著上调表达,4 CL2显著下调表达;5个PER基因显著上调表达,8个PER基因显著下调表达。开花后5 d相较于开花后3 d,7个PER基因显著上调表达,2个PER基因显著下调表达(

图7 与木质素合成相关的差异表达基因在不同品种和发育时期的表达分析
Fig.7 Analysis of differential genes related to lignin synthesis among different combinations of samples and stages
红色为显著上调,蓝色为显著下调,白色没有显著差异
Red is significant up-regulated expression, blue is significantly down-regulated expression, and white is not significantly different
相同时期不同品种相比较而言,木质素合成相关DEGs在不同时期差异较大,开花后3 d,两品种间共有4个差异表达的基因,Z06较苏优葵3号显著上调表达的基因有CYP84A1、PAL6和PAL1,仅PER25显著下调表达;开花后5 d,共有6个差异表达的基因,Z06较苏优葵3号显著上调表达的基因有4个(PER30、PER19、PER72、CYP73A12),显著下调表达的基因有2个(PER52、PER25);开花后7 d,两品种间的DEGs数最多,共有13个,Z06较苏优葵3号显著下调的基因包括6个PER基因(PER64、PER30、PER52、PER53、PER25、PER72)和1个CYP73A16,显著上调表达的6个基因分别为CYP84A1、CCR2、PAL6、PAL5、PAL1、CYP73A12。
由于开花后3 d,未筛选到纤维素和果胶合成代谢相关的DEGs,所以对开花后5 d和7 d重点分析。结果发现,开花后7 d较开花后5 d,两品种各有6个纤维素合成酶基因(CesA,cellulose synthase)显著上调表达;开花后5 d,Z06相较于苏优葵3号,CesA4基因显著下调表达,但在开花后7 d上调表达。BGLU作为纤维素酶家族,开花后7 d较开花后5 d,两品种各有2个基因显著下调表达,同时分别各有2个基因显著上调表达;两品种相较而言,开花后5 d有1个BGLU显著下调表达。SUS在纤维素合成过程起重要作用,开花后7 d较开花后5 d,两品种各有3个SUS基因显著上调表达;而在开花后5 d,Z06相较于苏优葵3号,仅SUS1显著上调表达,SUS5、SUS6、SUS7均显著下调表达;在开花后7 d,仅SUS1显著下调表达(

图8 与纤维素和果胶合成代谢相关的DEGs在不同品种和发育时期的表达分析
Fig.8 Expression analysis of DEGs associated with cellulose and pectin anabolism among different combinations of samples and stages
基因表达自左往右的4列分别代表AT2 vs AT3、BT2 vs BT3、AT2 vs BT2和AT3 vsBT3。彩色圆形符号表示该基因在此比较组显著差异表达,白色表示没有显著差异。GALE的3个比较组分别为BT2 vs BT3、AT2 vs BT2和AT3 vsBT3
The four columns of gene expression represent AT2 vs AT3, BT2 vs BT3, AT2 vs BT2 and AT3 vsBT3. Colored circle symbol indicates that the gene is significantly different expressed in this comparison group,and white is not significantly different.The three comparison groups of GALE are BT2 vs BT3, AT2 vs BT2 and AT3 vs BT3
开花后7 d较开花后5 d,参与果胶合成的GAUT1、GAUT12、GAUT14在苏优葵3号中表达量显著升高,GAUT1、GAUT6、GAUT9、GAUT12在Z06中表达量显著升高,而GAUT8基因在苏优葵3号中下调表达,GAUT5和GAUT8在Z06中下调表达;在开花后5 d和开花后7 d,Z06相对于苏优葵3号各有1个显著上调表达的GAUT基因,而开花后5 d,Z06相较于苏优葵3号有2个下调GAUT基因,在开花后7 d有3个下调GAUT基因。开花后7 d较开花后5 d,2个UDP阿拉伯糖4-差异构酶(GALE,UDP-glc 4-epimerase)基因在Z06中显著上调表达;两品种相较而言,差异表达的GALE基因均下调表达。在果胶代谢过程,开花后7 d较开花后5 d,PME15在苏优葵3号和Z06中均显著上调表达,但4个PME基因在苏优葵3号中显著下调表达,6个PME基因在Z06中显著下调表达;在开花后5 d,Z06相较于苏优葵3号,PME51显著下调表达,而在开花后7 d,除PME19显著上调表达外,5个PME基因显著下调表达。两品种在开花后7 d有3个PG均显著下调表达;而在开花后5 d,Z06相较于苏优葵3号,PG1上调表达,在开花后7 d,PG2、PG3下调表达(
对相同时期两品种与光合作用相关的DEGs表达情况进行分析,在开花后3 d,两品种间有22个与光合作用途径相关的DEGs,有9个与光合天线蛋白途径相关的DEGs,且这些基因在Z06中均上调表达(
代谢途径 Metabolic pathway | 基因名称 Gene name | log2FC (AT1 vs BT1) | log2FC (AT2 vs BT2) | log2FC (AT3 vs BT3) | 基因描述 Description |
---|---|---|---|---|---|
光合作用 Photosynthesis | atpF | — | 1.03 | — | ATP合成酶CF0亚基 |
atpB | 1.06 | -2.20 | — | ATP合成酶CF1β亚基 | |
ATPC | 1.76 | — | — | ATP合酶γ链 | |
petC | 1.02 | — | — | 细胞色素b6-f复合铁硫亚基 | |
AP1 | 1.63 | — | — | 铁氧化还原蛋白 | |
PSBO | 1.61 | — | — | 放氧增强蛋白1 | |
PSBP2 | 2.00 | 1.29 | — | 放氧增强蛋白2 | |
psaA | — | -2.75 | — | 光系统I P700载脂蛋白A1 | |
psaD | 1.54 | — | — | 光系统I反应中心亚基II | |
PSAF | 1.63 | 1.01 | — | 光系统I反应中心亚基III | |
PSAK | 1.42 | — | — | 光系统I反应中心亚基psaK | |
PSAG | 1.55 | 1.05 | — | 光系统I反应中心亚基V | |
PSAH | 1.35 | — | — | 光系统I反应中心亚基VI | |
PSAL | 1.33 | — | — | 光系统I反应中心亚基XI | |
PSAO | 1.64 | — | — | 光系统I亚基O | |
PSBY | 1.41 | — | — | 光系统II核心复合蛋白 | |
psbK | 1.08 | -1.86 | — | 光系统II蛋白I | |
psbZ | 1.22 | -2.19 | — | 光系统II蛋白z | |
PSBW | 1.36 | — | — | 光系统II反应中心W蛋白 | |
PSB27 | 1.32 | 1.24 | — | 光系统II修复蛋白 | |
psbB | — | -1.90 | 1.19 | 光系统II反应中心蛋白CP47 | |
PSBQ | 1.43 | — | — | 放氧增强蛋白3 | |
PSAEA | 1.39 | 1.79 | — | 光系统I反应中心亚基IV | |
PSBS | 1.08 | — | — | 光系统II22kDa蛋白 | |
PSBR | 1.38 | — | — | 丙酮酸脱羧酶1样 | |
光合天线蛋白 Photosynthesis antenna proteins | CAB-151 | 1.36 | 1.04 | — | CAB151蛋白 |
CAB1R | 1.82 | 1.47 | — | 叶绿素a-b结合蛋白2 | |
LHCA3 | 1.35 | — | — | 叶绿素a-b结合蛋白3 | |
CAB6A | 1.45 | — | — | 叶绿素a-b结合蛋白6A | |
LHCA6 | 1.50 | — | — | 叶绿素a-b结合蛋白7 | |
CAP10A | 1.74 | 1.35 | — | 叶绿素a-b结合蛋白CP24 10A | |
LHCB5 | 1.43 | — | — | 叶绿素a-b结合蛋白CP26 | |
LHCB4.1 | 1.52 | — | — | 叶绿素a-b结合蛋白CP29.2 | |
LHCA4 | 1.67 | 1.03 | — | 叶绿素a-b结合蛋白4 |
表中正值为比较组后者较前者上调表达,负值为下调表达,—表示没有显著差异
The positive value is up-regulated expression of the latter in the comparison group, the negative value is down-regulated expression of the latter in the comparison group, and — indicates no significant difference
为了测试转录组数据的可靠性,分别选择果实发育过程中显著上调和下调的基因各5个进行qRT-PCR(

图9 差异表达基因的qRT-PCR验证
Fig.9 qRT-PCR validation of differentially expressed genes
冗余分析(RDA,redundancy analysis)可揭示多种因素对目标的影响。为了明确细胞壁组分对质地硬化的贡献度,通过RDA分析了5种细胞壁组分与硬度的关系,结果表明,木质素对果实硬度的贡献最大,其次为原果胶和纤维素,半纤维素对果实硬度的贡献较小,可溶性果胶对果实硬度的贡献最低(

图10 RDA分析影响质地的关键因素
Fig.10 RDA analysis of key factors affecting texture
A: 果实硬度与细胞壁组分相关性;B: 纤维素与纤维素合成代谢相关基因相关性;C: 木质素与木质素合成代谢相关基因相关性;D: 原果胶与果胶合成代谢相关基因相关性;E:硬度与光合相关基因相关性;横纵坐标分别表示在整体解释量中的重要性
The correlation between A: Fruit Hardness and cell wall components; B: Cellulose and cellulose synthetic metabolic related genes; C: Lignin and lignin synthetic metabolism related genes; D: Protopectin and pectin synthesis metabolism related genes; E: Hardness and photosynthesis related genes. The horizontal and vertical coordinates represent the importance in the overall interpretation volume
RNA-seq是探究植物发育分子机制的重要技术手段,广泛应用于产品器官质地变化的机理研
细胞壁结构是影响果实质地的重要因
本研究中,纤维素对果实硬度也呈正贡献。李永平
果胶可在局部水平上控制水的性质,从而影响分子相互作用,赋予细胞壁机械性
综上所述,与黄秋葵果实发育和质地变硬有关的差异表达基因主要富集于苯丙烷生物合成途径;而两个品种质地的差异除了与苯丙烷生物合成途径有关,光合作用及光合天线蛋白途径的差异表达基因也起到关键作用。PSBP2和CAB1R是光合途径中影响两品种质地差异的关键基因。木质素的积累对黄秋葵果实质地变硬起主要作用,PAL是调控木质素积累的主要基因,显著影响不同发育时期两个品种木质素的合成,而PAL、CCR2、CYP84A1、CYP73A12是影响品种质地差异的重要基因。纤维素和原果胶对黄秋葵果实变硬也具有积极的贡献。SUS3对黄秋葵果实纤维素积累贡献最大,且SUS和CesA显著影响了果实发育过程纤维素的积累。GAUT6是调控黄秋葵果实原果胶积累的重要基因,且PG和PME的下调表达是果实发育过程果胶积累的重要原因;此外SUS6和SUS2对原果胶的积累也具有较大贡献,但其对果胶合成的调控机制有待进一步研究。
参考文献
Singh P, Chauhan V, Tiwari B K, Chauhan S S, Simon S, Bilal S, Abidi A. An overview on okra (Abelmoschus esculentus) and it's importance as a nutritive vegetable in the world. International Journal of Pharmacy and Biological Sciences, 2014, 4:227-233 [百度学术]
黄伟男. 枇杷果实采后细胞木质素积累与细胞壁果胶动力学机制研究. 杭州: 浙江大学, 2021 [百度学术]
Huang W N. Mechanism study on the lignin accumulation in lignified cells and cell-wall dynamic of pectin in postharvest loquat fruit. Hangzhou: Zhejiang University, 2021 [百度学术]
Goulao L F, Oliveira C M. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science & Technology, 2008, 19:4-25 [百度学术]
Ren Y Y, Huang D D, Liu S W, Zhao F Y, Yu K, Zhu S H. Sodium hydrosulfide delays the softening of fig fruit during cold storage. Scientia Horticulturae, 2022, 299: 111037 [百度学术]
Wang D D, Yeats T H, Uluisik S, Rose J K C, Seymour G B. Fruit softening: Revisiting the role of pectin. Trends in Plant Science, 2018, 23:302-310 [百度学术]
刘剑锋, 程云清, 彭抒昂. 梨采后细胞壁成分及果胶酶活性与果肉质地的关系. 园艺学报, 2004, 31 (5):579-583 [百度学术]
Liu J F, Cheng Y Q, Peng S A. The relationship between changes of cell wall components, ectin-degradingenzyme activity and texture of postharvest pear fruit. Acta Horticulturae Sinica, 2004, 31 (5): 579-583 [百度学术]
Yu W, Li S, Zheng B, Wang Y, Yu Y, Wang Y, Zheng X, Liu J, Zhang Z, Xue Z. Transcriptome analysis reveals the potential mechanism of polyethylene packing delaying lignification of Pleurotus eryngii. Food Chemistry, 2022, 5:100117 [百度学术]
Liu W L, Zhang J, Jiao C, Yin X R, Fei Z J, Wu Q B, Chen K S. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research, 2019, 6: 49 [百度学术]
刘恋, 唐志鹏, 李菲菲, 熊江, 吕壁纹, 马小川, 唐超兰, 李泽航, 周铁, 盛玲, 卢晓鹏. ‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’贮藏期品质、贮藏特性及果皮转录组分析. 中国农业科学, 2021, 54 (20):4421-4433 [百度学术]
Liu L, Tang Z P, Li F F, Xiong J, Lv B W, Ma X C, Tang C L, Li Z H, Zhou T, Sheng L, Lu X P. Fruit quality in storage, storability and peel transcriptome analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat. Scientia Agricultura Sinica,2021, 54 (20): 4421-4433 [百度学术]
Ren J, Wang J R, Gao M Y, Qin L, Wang Y. Decreased cellulose-degrading enzyme activity causes pod hardening of okra (Abelmoschus esculentus L. Moench). Plant Physiology and Biochemistry, 2021, 162:624-633 [百度学术]
Liu X, Li S, Feng X, Li L. Study on cell wall composition, fruit quality and tissue structure of hardened ‘Suli’Pears (Pyrus bretschneideri Rehd). Journal of Plant Growth Regulation, 2021, 40: 2007-2016 [百度学术]
Wang Y, Zhang X F, Yang S L, Yuan Y B. Lignin involvement in programmed changes in peach-fruit texture indicated by metabolite and transcriptome analyses. Journal of Agricultural and Food Chemistry, 2018, 66:12627-12640 [百度学术]
Defilippi B G, Ejsmentewicz T, Covarrubias M P, Gudenschwager O, Campos-Vargas R. Changes in cell wall pectins and their relation to postharvest mesocarp softening of “Hass” avocados (Persea americana Mill.). Plant Physiology and Biochemistry, 2018, 128:142-151 [百度学术]
王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006 [百度学术]
Wang X K. Plant physiological and biochemical experiment principle and technology. Beijing: Higher Education Press,2006 [百度学术]
熊素敏, 左秀凤, 朱永义. 稻壳中纤维素, 半纤维素和木质素的测定. 粮食与饲料工业, 2005(8): 40-41 [百度学术]
Xiong S M, Zuo X F, Zhu Y Y. Determination of cellulose, hemicellulose and lignin in rice hull. Cereal Feed Industry, 2005(8): 40-41 [百度学术]
曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导.北京: 中国轻工业出版社, 2007 [百度学术]
Cao J K, Jiang W B, Zhao Y M. Guidance for postharvest physiological and biochemical experiments of fruits and vegetables. Beijing: China Light Industry Press,2007 [百度学术]
Li F W, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Szövényi P. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants,2020, 6(3): 259-272 [百度学术]
Gao Y, Guo Y, Su Z Y, Yu Y, Zhu Z C, Gao P, Wang X Z. Transcriptome analysis of genes related to fruit texture in watermelon. Scientia Horticulturae, 2020, 262: 109075 [百度学术]
赵亚梅, 陈生煜, 游乐, 韩茹, 翟俊文, 任惠, 吴沙沙. 阳桃木质素生物合成相关基因的筛选与分析. 植物遗传资源学报, 2022, 23 (2):527-540 [百度学术]
Zhao Y M, Chen S Y, You L, Han R, Zhai J W, Ren H, Wu S S. Identification and analysis lignin biosynthesis genes of Averrhoa carambola. Journal of Plant Genetic Resources, 2022, 23 (2): 527-540 [百度学术]
Chen B L, Yang H K, Ma Y N, Liu J R, Lv F J, Chen J, Meng Y L, Wang Y H, Zhou Z G. Effect of shading on yield, fiber quality and physiological characteristics of cotton subtending leaves on different fruiting positions. Photosynthetica, 2017, 55:240-250 [百度学术]
Ifuku K, Yamamoto Y, Ono T, Ishihara S, Sato F. PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology, 2005, 139:1175-1184 [百度学术]
Wang Y, Zhang X F, Yang S L, Yuan Y B. Lignin involvement in programmed changes in peach-fruit texture indicated by metabolite and transcriptome analyses. Journal of Agricultural and Food Chemistry, 2018, 66:12627-12640 [百度学术]
Cybulska J, Zdunek A, Psonka-Antonczyk K M, Stokke B T. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydrate Polymers, 2013, 92:128-137 [百度学术]
Wang B, Li Z C, Han Z H, Xue S L, Bi Y, Prusky D. Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons. Food Chemistry, 2021, 362: 130193 [百度学术]
Begovic L, Abicic I, Lalic A, Lepedus H, Cesar V, Leljak-Levanic D. Lignin synthesis and accumulation in barley cultivars differing in their resistance to lodging. Plant Physiology and Biochemistry, 2018, 133:142-148 [百度学术]
Lu J N, Shi Y Z, Li W J, Chen S, Wang Y F, He X L, Yin X G. RcPAL, a key gene in lignin biosynthesis in Ricinus communis L. BMC Plant Biology, 2019, 19: 1-11 [百度学术]
Park H L, Bhoo S H, Kwon M, Lee S W, Cho M H. Biochemical and expression analyses of the rice Cinnamoyl-CoA reductase gene family. Frontiers in Plant Science, 2017, 8: 2099 [百度学术]
Chanoca A, de Vries L, Boerjan W. Lignin engineering in forest trees. Frontiers in Plant Science, 2019, 10: 912 [百度学术]
De Meester B, Calderon B M, de Vries L, Pollier J, Goeminne G, Van Doorsselaere J, Chen M J, Ralph J, Vanholme R, Boerjan W. Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele. Nature Communications, 2020, 11: 1-13 [百度学术]
Gui J S, Luo F, Zhong Y, Sun J Y, Umezawa T, Li L G. Phosphorylation of LTF1, an MYB transcription factor in populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Molecular Plant, 2019, 12:1325-1337 [百度学术]
Ma D M, Xu C, Alejos-Gonzalez F, Wang H, Yang J F, Judd R, Xie D Y. Overexpression of artemisia annua cinnamyl alcohol dehydrogenase increases lignin and coumarin and reduces artemisinin and other sesquiterpenes. Frontiers in Plant Science, 2018, 9: 828 [百度学术]
Marjamaa K, Kukkola E M, Fagerstedt K V. The role of xylem class III peroxidases in lignification. Journal of Experimental Botany, 2009, 60:367-376 [百度学术]
李永平, 陈敏氡, 刘建汀, 曾美娟, 朱海生, 温庆放. 黄秋葵纤维素合酶基因家族鉴定及表达分析. 园艺学报, 2022, 49 (1):73-85 [百度学术]
Li Y P, Chen M D, Liu J D, Zeng M J, Zhu H S, Wen Q F. Identification and expression analysis of CESA gene family in Hibiscus esculentus. Acta Horticulturae Sinica,2022, 49 (1): 73-85 [百度学术]
Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant and Cell Physiology, 2010, 51:294-301 [百度学术]
Coleman H D, Yan J, Mansfield S D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:13118-13123 [百度学术]
Nawaz M A, Lin X, Chan T F, Imtiaz M, Rehman H M, Ali M A, Baloch F S, Atif R M, Yang S H, Chung G. Characterization of cellulose synthase A (CESA) gene family in eudicots. Biochemical Genetics, 2019, 57:248-272 [百度学术]
Xiao Y, Yi F, Ling J J, Wang Z, Zhao K, Lu N, Qu G Z, Kong L S, Ma W J, Wang J H. Transcriptomics and proteomics reveal the cellulose and pectin metabolic processes in the tension wood (Non-G-Layer) of Catalpa bungei. International Journal of Molecular Sciences, 2020, 21: 1686 [百度学术]
Lopez-Sanchez P, Martinez-Sanz M, Bonilla M R, Sonni F, Gilbert E P, Gidley M J. Nanostructure and poroviscoelasticity in cell wall materials from onion, carrot and apple: Roles of pectin. Food Hydrocolloids, 2020, 98: 105253 [百度学术]
Koziol A, Cybulska J, Pieczywek P M, Zdunek A. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase. Carbohydrate Polymers, 2017, 161:197-207 [百度学术]
Biswal A K, Hao Z Y, Pattathil S, Yang X H, Winkeler K, Collins C, Mohanty S S, Richardson E A, Gelineo-Albersheim I, Hunt K, Ryno D, Sykes R W, Turner G B, Ziebell A, Gjersing E, Lukowitz W G, Davis M F, Decker S R, Hahn M G, Mohnen D. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnology for Biofuels, 2015, 8: 1-26 [百度学术]
Gwanpua S G, Mellidou I, Boeckx J, Kyomugasho C, Bessemans N, Verlinden B E, Hertog M, Hendrickx M, Nicolai B M, Geeraerd A H. Expression analysis of candidate cell wall-related genes associated with changes in pectin biochemistry during postharvest apple softening. Postharvest Biology and Technology, 2016, 112:176-185 [百度学术]