摘要
Hort16A黄肉猕猴桃是中华猕猴桃(Actinidia chinensis Planch.)的一个品种,其营养价值高,受到了广大消费者们的青睐,但该品种抗冻性不强,抗溃疡病、枝腐病能力差等原因严重影响了其推广种植。此外黄肉猕猴桃低温胁迫响应机制目前尚不清楚。本研究通过对低温胁迫的黄肉猕猴桃进行转录组分析,为了解其相关机制以及后续进行抗寒研究提供理论参考。以前期筛选出的抗寒四倍体植株作为材料,将低温(0 ℃)处理5 h的作为试验组和常温处理的作为对照组,取样利用Illumina NovaSeq 6000平台进行转录组测序。比较试验组和对照组的转录组数据共发现1630个基因表达差异达到显著水平,其中619个上调表达,1011个下调表达。GO富集分析表明1013个差异表达基因被富集到分子功能、细胞组分和生物过程三大功能中;KEGG富集分析表明410个差异基因被富集到植物激素信号转导、MAPK植物信号通路、淀粉和蔗糖代谢等89个代谢通路中。初步推定PYL、PSR、TPS、GH3、SAUR、PP2C等9个基因与黄肉猕猴桃抗寒响应有关。本研究结果可为进一步研究四倍体黄肉猕猴桃低温胁迫响应机制提供理论参考。
关键词
猕猴桃遗传资源非常丰富,全世界约有54个种,21个变种,75个分类单元,其中我国有52个种,73个分类
多倍体植株通常具有适应能力强、抗逆性强,营养丰富等诸多优
转录组测序是通过高通量测序技术快速全面地获得某一物种特定细胞或组织在某一状态下的几乎所有的转录本及基因序列,可以用于研究基因表达量、基因功能、结构、可变剪接和新转录本预测
本研究拟对低温胁迫下的四倍体黄肉中华猕猴桃进行转录组分析,研究其对低温胁迫响应机理,为选育抗寒黄肉猕猴桃品种提供一定的理论基础。以前期筛选的抗寒四倍体植株作为材料,将低温(0 ℃)处理5 h四倍体Hort16A黄肉中华猕猴桃品系作为试验组和常温处理的对照组进行转录组测序分析,寻找与黄肉猕猴桃低温胁迫相关的基因和通路,为进一步研究四倍体黄肉猕猴桃低温胁迫响应机制提供理论参考,为选育抗寒猕猴桃品种打下坚实的基础。
前期经过L-羟基脯氨酸(L-Hyp)不同浓度处理后筛选出的抗寒四倍体黄肉中华猕猴
将测序获得的RNA-Seq数据比对到猕猴桃基因组数据库(https://kiwifruitgenome.org/)中华猕猴桃红阳的参考基因组上,基于比对结果,进行基因表达定量,筛选差异表达基因,并对差异基因进行Cluster差异基因聚类、GO富集和KEGG富集分析、蛋白互作分析。
首先提取样品总RNA,构建cDNA文库,接着使用Illumina Nova Seq 6000平台进行测序,测序策略为PE150。对测序得到的原始数据(Raw Reads)进行质控,剔除低质量的Reads。
先采用Bowtie2(https://zhuanlan.zhihu.com/p/91317299)将质控后的Clean reads比对到参考基因组上,再利用RSEM(https://cloud.tencent.com/developer/article/1677000)对比对结果进行统计,得到的每个样品比对到每个参考基因组上的Reads数目,并计算每个基因的FPKM(Fragments Per Kilobase per Million bases),来自同一个Fragment的Paired-end Reads计数为一个Fragment,进而得到基因和转录本的表达水平。此外本研究还采用皮尔森相关系数来衡量样品之间的相关性。使用R包EdgeR进行差异表达分析。将FDR (False discovery rate)<0.05,log2FC (Fold change) >1或log2FC<-1的基因定义为差异基因。
GO富集分析是基因功能国际标准分类体
使用KEGG Pathway数据库对差异表达基因进行功能注
String蛋白质互作数据库中记录了大量物种的蛋白互作关系,本研究使用在线蛋白互作分析工具String(http://string-db.org/)进行蛋白互作网络的构建。
为了提高转录组数据分析结果的准确性,在数据分析之前对四倍体Hort16A黄肉中华猕猴桃品系6个样品经过Illumina NovaSeq 6000平台测序得到原始数据进行过滤。高质量碱基与rRNA含量是评判数据是否准确的重要指标,6个样品在Clean data中的质量值大于30的碱基在raw data中的占比均高于90%;6个样品的rRNA含量比例均低于10%(
样本名称 Sample name | 过滤得到的总reads数目(Mb) Clean reads number | 过滤得到的总碱基数目(Gb) Clean reads base | 质量值大于20的碱基在过滤数据中的占比(%) Q20 | 质量值大于30的碱基在过滤数据中的占比(%) Q30 | rRNA含量(%) rRNA ratio |
---|---|---|---|---|---|
C_1 | 59.86 | 9.13 | 96.85 | 91.58 | 0.06 |
C_2 | 58.98 | 8.99 | 96.94 | 91.76 | 0.03 |
C_3 | 74.14 | 11.29 | 96.91 | 91.57 | 0.03 |
T_1 | 58.22 | 8.87 | 96.6 | 91.04 | 0.03 |
T_2 | 73.76 | 11.25 | 97.17 | 92.07 | 0.03 |
T_3 | 77.45 | 11.79 | 96.98 | 91.74 | 0.06 |
C_1, C_2, C_3为对照组的3个重复;T_1, T_2, T_3为处理组的3个重复 ;下同
C_1, C_2, C_3 are the three replicates of the control group; T_1, T_2, T_3 are the three replicates of the treatment group; The same as below
与参考基因组比对结果显示,常温处理的四倍体Hort16A黄肉中华猕猴桃品系对照组(C_1、C_2、C_3)过滤后的Reads比对到参考基因组的总数分别为31383274、30923792和38872286;唯一比对的Reads的比例均大于80%;低温处理的四倍体Hort16A黄肉中华猕猴桃品系(T_1、T_2、T_3)过滤后的Read总数分别为30523275、38673701和40607956; 唯一比对的Reads的比例均大于80%(
样本 Sample | 过滤数据总数目 Total reads | 唯一比对的reads数目 Uniq-Mapped | 比对到多处的reads数目 Multi-Mapped | 不能比对的reads数目 UnMapped |
---|---|---|---|---|
C_1 | 31383274 | 25405716(80.95%) | 1132872(3.61%) | 4844686(15.44%) |
C_2 | 30923792 | 25285763(81.77%) | 1172135(3.79%) | 4465894(14.44%) |
C_3 | 38872286 | 31968422(82.24%) | 1491299(3.84%) | 5412565(13.92%) |
T_1 | 30523275 | 24700937(80.92%) | 1280460(4.20%) | 4541878(14.88%) |
T_2 | 38673701 | 32738604(84.65%) | 1484031(3.84%) | 4451066(11.51%) |
T_3 | 40607956 | 33527116(82.56%) | 1421886(3.50%) | 5658954(13.94%) |
括号内的数据为比对数量占总数目的百分比
The data in parentheses are the percentage of number of mapped reads of total reads
根据比对结果对每个样本的所有基因进行表达定量,结果表明(
FPKM区间 FPKM intervals | C_1 | C_2 | C_3 | T_1 | T_2 | T_3 |
---|---|---|---|---|---|---|
FPKM≤1 | 19.15 | 17.88 | 17.17 | 20.86 | 21.10 | 20.98 |
1<FPKM≤15 | 51.67 | 52.22 | 52.80 | 50.89 | 50.56 | 50.08 |
15<FPKM≤60 | 22.80 | 23.20 | 23.04 | 21.88 | 21.52 | 21.94 |
FPKM>60 | 6.38 | 6.71 | 6.99 | 6.37 | 6.81 | 7.00 |
FPKM≤1时该基因未表达;1<FPKM≤15时基因低丰度表达;15<FPKM≤60时基因中丰度表达;FPKM>60时基因高丰度表达
The gene was not expressed when FPKM≤1; The gene was expressed in low abundance when 1<FPKM≤15; The gene was expressed in medium abundance when 15<FPKM≤60; The gene was expressed in high abundance when FPKM>60
样品间基因表达水平相关性是检验实验可靠性和样本选择是否合理的重要指标,相关系数越接近1,表明样品之间表达模式的相似度越高。检测结果显示(

图1 样本间基因差异表达水平相关性
Fig.1 Schematic diagram of correlation of differential gene expression levels between samples
差异表达分析结果表明四倍体Hort16A黄肉中华猕猴桃品系常温对照与低温处理共有1630条基因表达差异达到显著水平,其中619条表现为上调,1011条下调,下调表达的差异基因条数显著多于上调表达的差异基因条数(
组别 Group | 总差异表达的基因数 Total | 上调的差异表达的基因数 Up | 下调的差异表达的基因数 Down |
---|---|---|---|
C-T | 1630 | 619 | 1011 |
C_1-T_1 | 169 | 81 | 88 |
C_2-T_2 | 281 | 133 | 148 |
C_3-T_3 | 836 | 274 | 562 |
C:对照组;T:处理组;C-T、C_1-T_1、C_2-T_2、C_3-T_3指处理组相对于对照组差异表达比较组别信息;下同
C-: Control group ; T: Treatment group;C-T, C_1-T_1, C_2-T_2, C_3-T_3 refer to the differential expression of the treatment group relative to the control group comparative group information; The same as below

图2 差异基因表达火山图
Fig.2 Volcano plot of differential gene expression
图中横坐标为差异倍数的对数值,纵坐标为FDR的负对数值。黑点指差异表达不显著的基因,红点指差异表达显著的基因,正值为上调表达,负值为下调表达
The horizontal coordinates of the graph are the logarithmic values of the differential ploidy and the vertical coordinates are the negative logarithmic values of the FDR. Black dots refer to genes with insignificant differential expression, red dots refer to genes with significant differential expression, positive values are up-regulated expression, negative values are down-regulated expression

图3 差异表达基因韦恩图
Fig.3 Venn diagram of differentially expressed genes
左图为上调基因韦恩图,右图为下调基因韦恩图,图中数字代表差异表达基因的数量
The left graph is the up-regulated gene Venn diagram, the right graph is the down-regulated gene Venn diagram, the numbers in the graph represent the number of differentially expressed genes
聚类结果表明,差异基因聚类热图分为3个主要类群。根据图中信息可知试验组相对于对照组在聚类Ⅲ中部分差异基因下调表达,包括Acc13882、Acc32762、Acc07281等;部分上调表达,包括Acc28866、Acc25258、Acc11316等。在聚类Ⅰ中试验组相对于对照组有部分差异基因下调表达。在聚类Ⅱ中,试验组与对照组无明显表达差异。聚类Ⅲ相对于聚类Ⅰ、聚类Ⅱ占比较大(

图4 基因表达量聚类图
Fig.4 Gene expression pattern clustering map
GO富集分析共将1013个差异表达基因富集到分子功能(Molecular function)、细胞组分(Cellular component)和生物过程(Biological process)3个大类的44个功能类别中,其中分子功能中包含10个功能类别,细胞组分包含13个功能类别,生物过程包含21个功能类别(

图5 差异表达基因GO分类条形图
Fig.5 Differentially expressed gene GO classification bar graph
KEGG Pathway功能分类及富集分析结果表明,差异表达基因主要被富集到:细胞过程(Cellular Processes)、环境信息处理(Environmental Information Processing)、遗传信息处理(Genetic Information Processing)、代谢(Metabolism)和有机系统(Organismal Systems)KEGG代谢通路(

图6 差异表达基因KEGG分类条形图
Fig.6 Bar chart of KEGG classification of differentially expressed genes
在四倍体黄肉中华猕猴桃对照组和试验组中,共有410个差异基因被显著富集到89个代谢通路上,其中植物激素信号转导(Plant hormone signal transduction)通路上富集到的差异基因最多(25个),其次为苯丙烷类生物合成(Phenylpropanoid biosynthesis)通路(24个),碳代谢(Carbon metabolism)通路(14个),植物MAPK信号通路(MAPK signaling pathway-plant)(12个),淀粉和蔗糖代谢通路(Starch and sucrose metabolism)(8个)。前人的研究中表明植物激素信号转导通
本研究中富集到植物激素信号转导通路(KO04075)上的差异表达基因最多,共25个,其中Acc10294(GH3.3, indole-3-acetic acid-amido synthetase GH3.3)、Acc03316(PYL, pyr1-Like)、Acc07445(PR1, pathogenesis-related protein 1)等6个基因上调表达;其余Acc28473(IAA, auxin-responsive protein)、Acc03517(PP2C, protein phosphatase 2C)、Acc32114(VITISV, hypothetical protein VITISV)等19个表现为下调。植物MAPK信号通路上共富集到了12个差异表达基因,其中Acc03316(PYL)、Acc25019(RBOH, respiratory burst oxidase homologue)、Acc24536(Ca
低温是多年生植物生命周期中最易受到的非生物胁迫之一,植物抵御低温胁迫的过程是一个涉及复杂生理及多基因共同作用协同调控的过程。在本研究中,为了分析基因间是否存在相互协作关系来提高植物抵御低温的能力,从富集到植物激素信号转导通路、植物MAPK信号通路、淀粉和蔗糖代谢3个通路上的基因中,筛选出|log2(FC)|>2的差异表达基因来构建蛋白互作网络图(
基因ID GeneID | 蛋白ID proteinID | 基因长度 Gene length | 差异倍数 |log2(FC)| | 错误发现率 FDR | 表达方式 Expression | 基因名 Gene name |
---|---|---|---|---|---|---|
Acc02338 | A0A2R6RYT7 | 643 | 2.99165 | 0.031014 | Up | CALM |
Acc03316 | A0A2R6RFJ6 | 978 | 2.41040 | 5.87E-05 | Up | PYL |
Acc03517 | A0A2R6RSX9 | 1315 | 3.74278 | 0.014071 | Down | PP2C |
Acc04508 | A0A2R6RMH6 | 1435 | 2.92270 | 3.20E-08 | Down | PSS |
Acc04566 | A0A2R6RML8 | 1001 | 2.75594 | 2.10E-05 | Down | SAUR |
Acc07283 | A0A2R6RBQ4 | 736 | 4.08074 | 1.19E-08 | Down | SAUR |
Acc07445 | A0A2R6RC56 | 648 | 5.28216 | 5.36E-27 | Up | PR1 |
Acc23775 | A0A2R6Q080 | 1718 | 2.82747 | 1.01E-08 | Down | CYCD3 |
Acc25019 | A0A2R6PXZ5 | 3118 | 8.08480 | 4.53E-13 | Up | RBOH |
Acc26372 | A0A2R6PTM6 | 2067 | 2.50992 | 0.039422 | Down | GH3 |
Acc26744 | A0A2R6PUB6 | 2652 | 3.12213 | 0.004341 | Up | TPS |
Acc28473 | A0A2R6PGW9 | 851 | 2.79533 | 5.75E-05 | Down | IAA |
Acc28966 | A0A2R6PIH0 | 1926 | 2.16098 | 9.05E-06 | Up | PSR |
Acc32114 | A0A2R6P764 | 1035 | 2.16270 | 0.000318 | Down | ABF |
结果表明当植物受到低温胁迫时部分基因通过直接相互作用来帮助猕猴桃提高抗寒能力,如:Acc03316(PYL)、Acc03517(PP2C)和Acc32114(ABF)3个基因联系在一起共同作用;而Acc26744(TPS)、Acc28473(IAA)、Acc07283(SAUR)等,它们之间没有互作关系,可能单独作用来提高猕猴桃的抗寒能力,也可能需要其他基因才能将其联系起来共同抵御寒害来提高植物的抗寒性(

图7 差异显著表达基因蛋白网络互作图
Fig.7 Interaction diagram of protein network of differentially significantly expressed genes
图中圆圈不同的颜色代表不同的蛋白,不同颜色的线条则代表两个蛋白之间的关联不同
The different colors of the circles in the diagram represent different proteins, and the different colored lines represent the different associations between two proteins
目前在猕猴桃果肉色泽变化、果实色素变化、果实发育、细菌性溃疡病、洪涝胁迫等多方面已经通过转录组得到了比较全面的研
前人的大量研究表明GH3基因家
越来越多的研究表明,糖在植物抗寒性中起着至关重要的作
当受到低温胁迫时,植物通常会进化出各种生理生化变化,并调节基因表达以实现冷适应,例如增加抗氧化酶、抗氧化剂和渗透溶
脱落酸(ABA)作为一种植物激素,在植物逆境方面具有重要意
本研究首次对低温胁迫处理后的四倍体Hort16A黄肉中华猕猴桃进行转录组分析,测序结果中和抗寒相关的差异基因主要富集在植物激素信号转导(Plant hormone signal transduction)、植物MAPK信号(MAPK signaling pathway-plant)通路、淀粉和蔗糖代谢(Starch and sucrose metabolism)等通路中。通过前人在植物抗寒性方面的研究和3个通路的差异表达显著的基因进行分析,最后筛选得到Acc26372(GH3)、Acc07283(SAUR)、Acc04566(SAUR)、Acc28473(IAA)、Acc03316(PYL)、Acc03517(PP2C)、Acc25019(RBOH)、Acc26744(TPS)和Acc28966(PSR)9个基因,这些基因可能参与黄肉猕猴桃抗寒响应。本研究丰富了猕猴桃抗寒相关研究,为之后抗寒基因的验证和选育抗寒猕猴桃品种打下了一定的基础。
参考文献
廖慧苹,梅兵,鲍荣粉,罗中魏,叶青. 中国猕猴桃资源的利用与品种开发研究. 落叶果树,2018,50(3):33-35 [百度学术]
Liao H P, Mei B, Bao R F, Luo Z W, Ye Q. Utilization and variety development of Actinidia chinensis resources in China. Deciduous Fruits, 2018,50(3):33-35 [百度学术]
孙雷明,方金豹. 我国猕猴桃种质资源的保存与研究利用. 植物遗传资源学报, 2020, 21(6): 1483-1493 [百度学术]
Sun L M, Fang J B. Conservation, research and utilization of kiwifruit germplasm resources in China. Journal of Plant Genetic Resources, 2020, 21(6): 1483-1493 [百度学术]
刘殊. 猕猴桃的冻害及其预防. 中国农资, 1999(4): 25 [百度学术]
Liu S. Frost damage in kiwifruit and its prevention.China Agri-Production News, 1999(4): 25 [百度学术]
王利虎,卢彦琦,苏行,张琼,赵志军,陈敬谊,丁保朋. 果树多倍化育种研究进展. 山西农业大学学报:自然科学版, 2022, 42(3): 14-24 [百度学术]
Wang L H, Lu Y Q, Su H, Zhang Q, Zhao Z J, Chen J Y, Ding B P. Research progress on polyploidy breeding of fruit trees. Journal of Shanxi Agricultural University: Natural Sciences Edition, 2022, 42(3): 14-24 [百度学术]
张宏宇,朱心慰,侯鹏奇,胡锐峰,黄玺,侯义龙. 果树单倍体和多倍体研究进展. 分子植物育种, 2019, 17(2): 606-611 [百度学术]
Zhang H Y, Zhu X W, Hou P Q, Hu R F, Huang X, Hou Y L. Research progress and prospect of fruit tree haploid and polyploid. Molecular Plant Breeding, 2019, 17(2): 606-611 [百度学术]
李智奕,宁维,陈利平,李瑜,韩亚伟,史媛媛. 新一代测序技术及其在植物转录组研究中的应用. 河南农业科学, 2013 (12): 1-5 [百度学术]
Li Z Y, Ning W, Chen L P, Li Y, Han Y W, Shi Y Y. The next-generation sequencing technology and its application in plant transcriptome. Journal of Henan Agricultural Sciences, 2013(12): 1-5 [百度学术]
王莹. 云雾贡茶低温胁迫下的转录组分析及CsPPO基因的功能鉴定. 贵阳:贵州大学, 2021 [百度学术]
Wang Y. Transcriptome analysis and functional identification of CsPPO gene under low temperature stress in Yunwu tribute tea. Guiyang: Guizhou University, 2021 [百度学术]
梁雨晨,蔺海娇,侯一航,李玲,王芊乔,付畅,苑泽宁. 狭叶薰衣草叶片转录组耐寒相关差异表达基因分析. 分子植物育种, 2021, URL: http://kns.cnki.net/kcms/detail/46.1068.S.20210604.1045.010.html [百度学术]
Liang Y C, Lin H J, Hou Y H, Li L, Wang Q Q, Fu C, Yuan Z N. Analysis of differentially expressed genes related to cold tolerance in the leaf transcriptome of Lavandula angustifolia Mill. Molecular Plant Breeding, 2021, URL: http://kns.cnki.net/kcms/detail/46.1068.S.20210604.1045.010.html [百度学术]
刘奕清. 低温胁迫下两种桉树的生理响应特征及转录表达差异研究. 北京:中国农业大学, 2015 [百度学术]
Liu Y Q. Physiological response characteristics and transcriptomic comparsion of two Eucalyptu trees under low temperature stress. Beijing: China Agricultural University, 2015 [百度学术]
Li S, Liu X, Liu H, Zhang X, Ye Q, Zhang H. Induction, identification and genetics analysis of tetraploid Actinidia chinensis. Royal Society Open Science, 2019, 6: 191052 [百度学术]
刘粉香,杨文国,孙勤红. 基于转录组测序数据分析及高通量GO注释理论的研究. 安徽农业科学, 2018, 46(31): 88-91 [百度学术]
Liu F X, Yang W G, Sun Q H. Transcriptome sequencing data analysis and high-throughput GO annotation. Journal of Anhui Agricultural Sciences, 2018, 46(31): 88-91 [百度学术]
周贺,李浩男,蔡斌华,乔玉山. 砂梨果皮转录组SNP位点发掘及其功能注释分析. 青岛农业大学学报:自然科学版, 2014, 31(2): 105-111 [百度学术]
Zhou H, Li H N, Cai B H, Qiao Y S. SNP mining and functional annotation in transcriptome of sand pear. Journal of Qingdao Agricultural University: Natural Science, 2014, 31(2): 105-111 [百度学术]
田玉珍,党兆霞,吕前前,毛娟,褚明宇,马宗桓,左存武,陈佰鸿. 树体休眠期前苹果花芽对低温早期响应的转录组分析. 果树学报, 2020, 37(5): 615-624 [百度学术]
Tian Y Z, Dang Z X, Lü Q Q, Mao J, Chu M Y, Ma Z H, Zuo C W, Chen B H. Transcriptomic analysis of early responses of apple flower buds to low temperature before tree dormancy. Journal of Fruit Science, 2020, 37(5): 615-624 [百度学术]
林俐,吴健. 植物MAPK级联在逆境胁迫响应中的作用研究进展. 分子植物育种, 2018, 16(1): 280-288 [百度学术]
Lin L, Wu J. Progress in plant MAPK cascades in response to environmental stresses. Molecular Plant Breeding, 2018, 16(1), 280-288 [百度学术]
Fan M L, Zhang Y, Li X L, Wu S, Yang M Y, Yin H F, Liu W X, Fan Z Q, Li J Y. Multi-approach analysis reveals pathways of cold tolerance divergence in Camellia japonica. Frontiers in Plant Science, 2022, 13:811791 [百度学术]
高洁. 黄肉猕猴桃果实发育过程中色素变化及转录组与转色期DGE分析. 南昌:江西农业大学, 2013 [百度学术]
Gao J. Studies on variation of the flesh pigments and analysis of transcriptome and DGE in color turning phases of yellow kiwifruit. Nanchang: Jiangxi Agricultural University, 2013 [百度学术]
涂美艳,李明章,孙淑霞,李靖,陈栋,宋海岩,江国良,廖明安. 黄肉猕猴桃中果皮和内果皮不同时期比较转录组分析. 分子植物育种, 2019, 17(5): 1479-1486 [百度学术]
Tu M Y, Li M Z, Sun S X, Li J, Chen D, Song H Y, Jiang G L, Liao M A. Comparative transcriptome analysis of different development stages of yellow-fleshed kiwifruit sarcocarp and endocarp. Molecular Plant Breeding, 2019, 17(5): 1479-1486 [百度学术]
Ding X H, Cao Y L, Huang L L, Zhao J, Xu C G, Li X H, Wang S P. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell, 2008 ,20(1):228-240 [百度学术]
张计育,渠慎春,郭忠仁,杜小丽,都贝贝,章镇. 植物bZIP转录因子的生物学功能. 西北植物学报, 2011, 31(5): 1066-1075 [百度学术]
Zhang J Y, Qu S C, Guo Z R, Du X L, Du B B, Zhang Z. Biology function of bZIP transcription factors in plants . Acta Botanica Boreali-Occidentalia Sinica , 2011, 31(5): 1066-1075 [百度学术]
Cai W, Yang Y, Wang W, Guo G, Liu W, Bi C. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiol Biochem. 2018,124:100-111 [百度学术]
李傲,崔梦杰,陈珂,许瀛之,贾海峰,房经贵. 葡萄SAUR基因家族鉴定与生物信息学分析. 植物遗传资源学报, 2018, 19(2): 326-337 [百度学术]
Li A, Cui M J, Chen K, Xu Y Z, Jia H F, Fang J G. Identification and bioinformatics analysis of the SAUR gene family in grape. Journal of Plant Genetic Resources, 2018, 19(2): 326-337 [百度学术]
潘巧文,武军艳,马学才,王亚林,马骊,徐新宇,李鹏,姚彦林,徐芳,崔小茹,孙万仓. 白菜型油菜BraSAUR基因家族鉴定及其表达分析. 干旱地区农业研究, 2022, 40(5): 1-12,23 [百度学术]
Pan Q W, Wu J Y, Ma X C, Wang Y L, Ma L, Xu X Y, Li P, Yao Y L, Xu F, Cui X R, Sun W C. Identification and expression analysis of BraSAUR gene family in rapeseed (Brassica rapa L.). Agricultural Research in the Arid Areas, 2022, 40(5): 1-12,23 [百度学术]
Du H, Wu N, Fu J, Wang S P, Li X H, Xiao J H, Xiong L Z. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany, 2012, 63(18): 6467-6480 [百度学术]
夏全超,张玉霞,孙明雪,张庆昕,杜晓艳,王显国,王东儒. 施磷深度对低温胁迫苜蓿根颈糖类物质含量及抗寒性的影响. 西北农林科技大学学报:自然科学版, 2022(11): 2-9 [百度学术]
Xia Q C, Zhang Y X, Sun M X, Zhang Q X, Du X Y, Wang X G, Wang D R. Effects of phosphate fertilizer application depth on carbohydrate content and cold resistance of alfalfa root crown under low temperature stress. Journal of Northwest A&F University: Natural Science Edition, 2022(11): 2-9 [百度学术]
Peng T, Zhu X F, Duan N, Liu J H. PtrBAM1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell and Environment, 2014, 37(12), 2754-2767 [百度学术]
Knaupp M , Mishra K B, Nedbal L, Heyer A G. Evidence for a role of raf‑finose in stabilizing photosystem II during freeze‒thaw cycles. Planta, 2011, 234: 477-486 [百度学术]
王彩丽. 棉花海藻糖6-磷酸合酶11和3个LEA基因的功能鉴定. 泰安:山东农业大学, 2014 [百度学术]
Wang C L. The functional identification of the trehalose-6-phosphate synthase 11 and three late embryogenesis abundant genes. Taian: Shandong Agricultural University, 2014 [百度学术]
Li S, Yang Y, Zhang Q, Liu N, Xu Q, Hu L. Differential physiological and metabolic response to low tem-perature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE, 2018, 13(6): e0198885 [百度学术]
Caverzan A, Passaia G, Rosa S B, Ribeiro C W, Lazzarotto F, Margis-Pinheiro M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 2012, 35(4): 1011-1019 [百度学术]
Song L X, Xu X C, Wang F N, Wang Y, Xia X J, Shi K, Zhou Y H, Zhou J, Yu J Q. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving respiratory burst oxidase homolog-dependent activation of MAPKs in tomato. Plant Cell and Environment, 2018 ,41(5):1113-1125 [百度学术]
Liu A, Hu Z, Bi A, Fan J, Gitau M M, Amombo E, Chen L, Fu J. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology, 2016, 25 (8): 1445-1457 [百度学术]
丁海东,朱晓红,刘慧, 张冬平,陈一,梁建生. ABA 信号转导途径中的MAPKS. 植物生理学报, 2011, 47(12): 1137-1144 [百度学术]
Ding H D, Zhu X H, Liu H, Zhang D P, Chen Y, Liang J S. Mitogen-activated protein kinases in abscisic acid signal transduction. Plant Physiology Journal, 2011, 47 (12): 1137-1144 [百度学术]
张庆怡,李悦,董佳伟,徐洪伟,周晓馥. 外源ABA对低温胁迫下牛皮杜鹃气孔性状及光合性能的影响. 北方园艺, 2022(1): 72-79 [百度学术]
Zhang Q Y, Li Y, Dong J W, Xu H W, Zhou X F. Effects of exogenous ABA on stomatal characters and photosynthetic characteristics of Rhododendron chrysanthemum Pall under low temperature stress. Northern Horticulture, 2022(1): 72-79 [百度学术]
Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D. Rapid degrada‑tion of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA‑induced freezing tolerance in the moss Physcomitrella patens. Joumal of Plant Physiology, 2005, 162: 169-180 [百度学术]
Hubbard K E, Nishimura N, Hitomi K, Getzoff E D, Schroeder J I. Early abscis-is acid signal transduction mechanisms: newly discov-ered components and newly emerging questions. Genes Development, 2010, 24: 1695-1708 [百度学术]
Boneh U, Biton I, Schwartz A, Ben-Ari G. Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Science, 2012, 187: 89-96 [百度学术]