摘要
水稻是世界上最重要的粮食作物之一,低温会影响水稻的生长发育,严重时会导致粮食减产甚至绝收,已经成为水稻产量和品质下降的主要环境胁迫之一。采取农业防御技术来降低冷害不仅费时费力且效果不佳,因此在生产上种植耐冷水稻品种是解决这一问题的主要途径,而耐冷品种的选育依赖于科学、准确的耐冷鉴定评价体系以及重要耐冷基因的挖掘与利用。近年来,通过图位克隆、GWAS以及QTL等方法克隆了多个重要耐冷基因,并对其分子机理进行了解析。本文从水稻耐冷研究的鉴定方法和时期、评价体系、分子研究基础等方面进行了综述,提出在水稻生长的不同时期,应以不同的评价指标对水稻不同生长时期的耐冷性进行评价,同时提出在优异的水稻种质资源中对重要耐冷基因/QTL进行聚合,进一步通过创新利用,为探索水稻耐冷机制以及水稻耐冷新品种的选育提供参考。
水稻(Oryza sativa L.)是世界上最重要的粮食作物之一,全球种植面积约1.4亿h
为了减少低温冷害对水稻产生的影响,目前在生产上采取的主要预防措施如下:一是改变育秧方式,大力推广旱育
低温胁迫分为0 ℃以上的冷害(Chilling)和0 ℃以下的冻害(Freezing),冷害会使水稻植株体内各种酶活降低,生长发育延滞;冻害则使细胞内形成冰晶,对植株造成物理性伤害。水稻在整个生长发育期间包括从营养生长阶段到生殖生长阶段都会遭受低温胁迫,由于水稻对低温胁迫的响应是一个十分复杂的过程,导致相关研究对水稻耐冷性的鉴定和评价指标也不尽相同。目前对耐冷性鉴定主要分为芽期、苗期、孕穗期、开花期以及灌浆期等5个时期。
(1)芽期:水稻芽期生长临界温度为粳稻≥10 ℃,籼稻≥13 ℃。在种子萌发后,5 ℃处理5 d,随后在常温恢复生长7 d统计其成苗率,以成苗率作为其耐冷性评价指
(2)苗期:苗期耐冷性鉴定一般选择三叶一心期的水稻植株,其评价指标包括活苗率、叶片枯萎程度以及叶片卷枯程度

图1 水稻苗期冷胁迫处理之后(10 ℃处理7 d)的表型
Fig.1 The phenotype of rice seedings after chilling treatment (10 ℃, 7 d)
左: 特青;右:日本晴
Left:Teqing; Right: Nipponbare
(3)孕穗期:水稻孕穗期生长临界温度为粳稻≥20 ℃,籼稻≥22 ℃。孕穗期耐冷性鉴定方法和评价指标主要包括低温条件下的水稻结实率
(4)开花期:水稻开花期的生长临界温度为粳稻≥20 ℃,籼稻≥22 ℃。开花期是对冷胁迫最敏感的时期之一,其鉴定方法和评价指标主要包括低温条件下的水稻结实率等。熊建华
(5)灌浆期:水稻灌浆期生长临界温度为粳稻≥15 ℃,籼稻≥17 ℃。灌浆期一般以低温条件下的结实率和相对结实率(低温处理结实率/对照结实率×100%)作为灌浆期耐冷性的主要评价指标。
水稻的耐冷性状是一个十分复杂的数量性状,涉及到许多基因/QTL的调控和激素、游离化合物以及代谢物含量的变化。近20年来,前人利用DH群体、回交群体以及F2群体等通过图位克隆以及全基因组关联分析(GAWS)等方法在水稻12条染色体上定位到多个与水稻芽期、苗期、抽穗开花期耐冷相关QT

图2 图位克隆以及GWAS定位到的水稻耐冷QT
Fig.2 The cold tolerance QTLs by map-based cloning and GWAS
绿色代表苗期耐冷QTL,红色代表孕穗期耐冷QTL,蓝色代表芽期耐冷QTL
The colour of green, red and blue represent the QTLs for cold tolerance at seedling stage, booting stage and germination stage, respectively
近20年来,利用图位克隆技术已经定位克隆了许多重要农艺性状相关基因,如控制水稻匍匐生长基因PROG
Fujino
基因 Genes | 是否功能验证 Function identification | 正向/负向调控 Positive/negative regulation | 时期 Stages | 表型鉴定方式 The methods of phenotypic identification | 参考文献 References |
---|---|---|---|---|---|
qLTG3-1 | 是 | 正向 | 芽期 | 发芽率 |
[ |
LTT7 | 是 | 正向 | 芽期 | 成苗率 |
[ |
COLD1 | 是 | 正向 | 苗期 | 活苗率 |
[ |
qCTS-9 | 是 | 正向 | 苗期 | 活苗率 |
[ |
HAN1 | 是 | 负向 | 苗期 | 活苗率 |
[ |
GSTZ2 | 是 | 正向 | 苗期 | 活苗率 |
[ |
LTG1 | 是 | 正向 | 苗期 | 株高、分蘖数、产量 |
[ |
Ctb1 | 是 | 正向 | 孕穗期 | 结实率 |
[ |
CTB4a | 是 | 正向 | 孕穗期 | 结实率 |
[ |
qPSR10 | 是 | 正向 | 苗期、孕穗期 | 活苗率、结实率 |
[ |
bZIP73 | 是 | 正向 | 苗期、孕穗期 | 活苗率、结实率 |
[ |
CTB2 | 是 | 正向 | 孕穗期 | 结实率 |
[ |
对重要耐冷基因如CTB4a、CTB2及其同源基因的利用将大大加速水稻耐冷育种的进程。Zhang
水稻整个生育期内任何一个时期遭遇低温冷害,都会对水稻生产带来不利影响,导致水稻产量降低,尤其是在粳稻种植区域以及高海拔种植水稻的区域。通过采取农业措施来降低冷害对农业生产带来的危害比较困难,因此在生产上培育和种植耐冷品种成为水稻育种的重要方向。可以根据水稻生长时期最易遭受冷害的特定时期来选择对应耐冷的水稻品种,如苗期耐冷、孕穗期耐冷品种等。目前水稻耐冷性鉴定的方法和指标较多,但不够精准、系统,导致鉴评的可靠性和重复性较差,难以有效开展相关理论研究以及后续育种工作。此外,目前已有研究大多是在室内盆栽或者人工气候箱内进行的表型鉴定,因此有必要对水稻植株在尽量接近大田的环境下进行冷胁迫鉴定,如地下水(冷水)灌溉等,让研究更加“接地气”。因此建立系统的水稻耐冷评价体系,筛选优异耐冷种质资源以及从分子角度来挖掘重要耐冷新基因或关键SNP位点成为当下水稻研究工作的热点之一。
在育种过程中,对携带耐冷QTL或耐冷基因的水稻品种进行杂交选育,进一步利用分子标记辅助选择技术,经过多代回交获得综合农艺性状较好、耐冷性较强的水稻新品种。同时可利用基因工程技术对已克隆的耐冷基因进行利用。如对一些重要的耐冷基因LTG
参考文献
Sasaki T, Burr B. International rice genome sequencing project: The effort to completely sequence the rice genome. Current Opinion in Plant Biology, 2000, 3(2): 138-142 [百度学术]
Khush K K, Waters D. Lessons from the prove-it trial, higher dose of potent statin better for high-risk patients. Cleveland Clinic Journal of Medicine, 2004, 71(8): 609-616 [百度学术]
胡培松, 翟虎渠, 万建民. 中国水稻生产新特点与稻米品质改良. 中国农业科技导报,2002(4): 33-39 [百度学术]
Hu P S, Zhai H Q, Wan J M. New characteristics of rice production and rice quality improvement in China. Journal of Agricultural Science and Technology, 2002(4): 33-39 [百度学术]
熊振民, 蔡洪法. 中国水稻. 北京:中国农业科技出版社,1992:777-793 [百度学术]
Xiong Z M, Cai H F. China rice. Beijing: China Agricultural Science and Technology Press, 1992:777-793 [百度学术]
Satake T. Male sterility caused by cooling treatment at the young microspore stage in rice plants: V. Estimations of pollen developmental stage and the most sensitive stage to coolness. Japanese Journal of Crop Science, 1970, 39: 468-473 [百度学术]
Mackill D J, Lei X M. Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Science, 1997, 37(4):1340-1346 [百度学术]
Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theoretical and Applied Genetics, 2007, 115(5): 593-600 [百度学术]
Saito K, Miura K, Nagano K, Hayano-Saito Y, Araki H, Kato A. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theoretical and Applied Genetics, 2001, 103(6-7): 862-868 [百度学术]
Cruz R P, Sperotto R A, Cargnelutti D, Adamski J M, Terra T F, Fett J P. Avoiding damage and achieving cold tolerance in rice plants. Food Energy Security, 2013, 2(2): 96-119 [百度学术]
Sthapit B R, Witcombe J R. Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Science, 1998, 38(3):660-665 [百度学术]
Zhu Y J, Chen K, Mi X F, Chen T X, Ali J, Ye G Y, Xu J L, Li Z K. Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS ONE, 2015, 10(12): e145704 [百度学术]
石志勇. 低温冷害对水稻的危害及防御措施. 农技服务,2014,31(5):111 [百度学术]
Shi Z Y. Damage of cold damage to rice and its defense measures. Agricultural Technology Service, 2014,31(5):111 [百度学术]
张明玉,王春贵,赵亮,冯玉涛,王成全. 通辽地区水稻冷害原因及防御措施浅析. 现代农业,2016(2):45-46 [百度学术]
Zhang M Y, Wang C G, Zhao L, Feng Y T, Wang C Q. Analysis on the causes and defense measures of rice chilling injury in Tongliao region. Modern Agriculture, 2016(2):45-46 [百度学术]
李太贵, 郭望模. 中国栽培稻种质资源对主要逆境的抗性鉴定研究. 北京:中国农业科技出版社, 1993:71-75 [百度学术]
Li T G, Guo W M. Identification of resistance of cultivated rice germplasm resources to major stresses in China. Beijing: China Agricultural Science and Technology Press, 1993:71-75 [百度学术]
丁杰荣,孙炳蕊,于航,江立群,张静,吕树伟,陈文丰,范芝兰,潘大建,李晨,刘清. 广东水稻核心种质耐冷萌发全基因组关联分析. 植物遗传资源学报,2022, 23(5):1425-1437 [百度学术]
Ding J R, Sun B R, Yu H, Jiang L Q, Zhang J, Lyu S W, Chen W F, Fan Z L, Pan D J, Li C, Liu Q. Genome-wide association study of cold tolerance at the germination stage in rice core germplasm from Guangdong province. Journal of Plant Genetic Resources, 2022, 23(5):1425-1437 [百度学术]
徐云碧,申宗坦. 籼粳稻苗期耐冷性的遗传研究. 中国农业科学,1989, 22(5):14-18 [百度学术]
Xu Y B, Shen Z T. Genetic study on cold tolerance of indica and japonica rice at seedling stage. Scientia Agricultura Sinica, 1989, 22(5):14-18 [百度学术]
Andaya V C, Mackill D J. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. Journal of Experimental Botany, 2003, 54(392): 2579-2585 [百度学术]
戴陆园, 林兴华, 叶昌荣, 加藤明, 齐藤浩二, 余滕琼, 徐福荣, 张端品. 水稻耐冷性研究ⅲ. 特定颖花结实率作为耐冷性指标的分子依据. 作物学报, 2003, 29(5): 708-714 [百度学术]
Dai L Y, Lin X H, Ye C R, Jia T M, Qi T H E, Yu T Q, Xu F R, Zhang D P. Studies on cold tolerance of rice, Oryza sativa L. ⅲ. Molecular basis for special fertility percentage as evaluation increterior of cold tolerance. Acta Agronomica Sinica, 2003, 29(5): 708-714 [百度学术]
Tanno H, Kiuchi H, Hirayama H, Kikuchi H. Development of a simpletesting method for cool weather tolerance at the flowering stage of rice using an air-conditioned room. Japanese Journal of Crop Science, 2000, 69(1):43-48 [百度学术]
熊建华, 王怀义, 戴陆园, 世荣, 松永和久, 藤村泰树. 云南水稻耐寒标准品种的选定. 作物品种资源, 1995(3): 34-36 [百度学术]
Xiong J H, Wang H Y, Dai L Y, Shi R, Song Y H J, Teng C T S. Selection of cold tolerance standard varieties of rice in Yunnan. Crop Variety Resources, 1995(3): 34-36 [百度学术]
Fujino K, Sekiguchi H, Soto T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin S Y, Yano M. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2004, 108(5): 794-799 [百度学术]
Li H B, Wang J, Liu A M, Liu K D, Zhang Q F, Zou J S. Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis. Theoretical and Applied Genetics, 1997, 95(7):1092-1097 [百度学术]
Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M. Mapping quantitative trait loci controlling cool-temperature tolerance at the booting stage in temperature japonica rice. Breeding Science, 2001, 51(3): 191-197 [百度学术]
Andaya V C, Mackill D J. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica ×indica cross. Theoretical and Applied Genetics, 2003, 106(6): 1084-1090 [百度学术]
Liu F X, Sun C Q, Tan L B, Fu Y C, Li D J, Wang X K. Identification and mapping of quantitative trait loci controllingcold-tolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages. Chinese Science Bulletin, 2003, 48(19):2068-2071 [百度学术]
Liu C T, Wang W, Mao B J, Chu C C. Cold stress tolerance in rice: Physiological changes, molecular mechanism, and future prospects. Hereditas, 2018, 40(3): 171-185 [百度学术]
Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008, 40 (11): 1360-1364 [百度学术]
Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication. Nature Genetics, 2008, 40(11):1365-1369 [百度学术]
Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science, 2006, 311(5769):1936-1939 [百度学术]
Lin Z W, Griffith M E, Li X R, Zhu Z F, Tan L B, Fu Y C, Zhang W X, Wang X K, Xie D X, Sun C Q. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226(1):11-20 [百度学术]
Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Wing R A, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3(6): 17064 [百度学术]
Lv S W, Wu W G, Wang M H, Meyer R S, Ndjiondjop M N, Tan L B, Zhou H Y, Zhang J W, Fu Y C, Cai H W, Sun C Q, Wing R A, Zhu Z F. Genetic control of seed shattering during African rice domestication. Nature Plants, 2018, 4(6): 331-337 [百度学术]
Zhu Z F, Tan L B, Fu Y C, Liu F X, Cai H W, Xie D X, Wu F, Wu J Z, Matsumoto T, Sun C Q. Genetic control of inflorescence architecture during rice domestication. Nature Communications, 2013, 4: 2200 [百度学术]
Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh P T, Htun T M, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M. OsLG1 regulates a closed panicle trait in domesticated rice. Nature Genetics, 2013, 45(4):462-465 [百度学术]
Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C. NOG1 increases grain production in rice. Nature Communications, 2017, 8(1): 1497 [百度学术]
Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171 [百度学术]
Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146 [百度学术]
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasakia T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12(12):2473-2483 [百度学术]
Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proceedings of the National Academy of Science of the United States of America, 2008, 105(34): 12623-12628 [百度学术]
Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D L, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 160(6): 1209-1221 [百度学术]
Zhao J L, Zhang S H, Dong J F, Yang T F, Mao X X, Liu Q, Wang X F, Liu B. A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnology Journal, 2017, 15(9): 1141-1148 [百度学术]
Zhang S H, Zheng J S, Liu B, Peng S B, Leung H, Zhao J L, Wang X F, Yang T F, Huang Z H. Identification of QTLs for cold tolerance at seedling stage in rice (Oryza sativa L.) using two distinct methods of cold treatment. Euphytica, 2014, 195(1):95-104 [百度学术]
Lu G W, Wu F Q, Wu W X, Wang H J, Zheng X M, Zhang Y H, Chen X L, Zhou K N, Jin M N, Cheng Z J, Li X Y, Jiang L, Wang H Y, Wan J M. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. Plant Journal, 2014, 78(3): 468-480 [百度学术]
Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Science, 2010, 179(1-2): 97-102 [百度学术]
Zhang Z Y, Li J J, Pan Y H, Li J L, Zhou L, Shi H L, Zeng Y W, Guo H F, Yang S M, Zheng W W, Yu J P, Sun X M, Li G L, Ding Y L, Ma L, Shen S Q, Dai L Y, Zhang H L, Yang S H, Guo Y, Li Z C. Natural variation in CTB4a enhances riceadaptation to cold habitats. Nature Communications, 2017, 8:14788 [百度学术]
Liu C T, Ou S J, Mao B G, Tang J Y, Wang W, Wang H R, Cao S Y, Schläppi M R, Zhao B R, Xiao G Y, Wang X P, Chu C C. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nature Communications, 2018, 9(1): 3302 [百度学术]
Mao D H, Xin Y Y, Tan Y J, Hu X J, Bai J J, Liu Z Y, Yu Y L, Li L Y, Peng C, Fan T, Zhu Y X, Guo Y L, Wang S H, Lu D P, Xing Y Z, Yuan L P, Chen C Y. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proceedings of the National Academy of Science of the United States of America, 2019, 116 (9): 3494-3501 [百度学术]
Liu F X, Xu W Y, Song Q, Tan L B, Liu J Y, Zhu Z F, Fu Y C, Su Z, Sun C Q. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice. Molecular Plant, 2013, 6(3): 757-767 [百度学术]
Hirabayashi S, Matsushita Y, Sato M, OH-I R, Kasahara M, Abe H, Nyunoya H. Two proton pump interactors identified from a direct phosphorylation screening of a rice cDNA library by using a recombinant BRI1 receptor kinase. Plant Biotechnology, 2004, 21(1):35-45 [百度学术]
Kim S I, Andaya V C, Tai T H. Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with anaturally occurring I99V mutation in the multifunctional glutathionetransferase isoenzyme GSTZ2. Biochemical Journal, 2011, 435(2):373-380 [百度学术]
Xiao N, Gao Y, Qian H J, Gao Q, Wu Y Y, Zhang D P, Zhang X X, Yu L, Li Y H, Pan C H, Liu G Q, Zhou C H, Jiang M, Huang N S, Dai Z Y, Liang C Z, Chen Z, Chen J M, Li A H. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiology, 2018, 177(3):1108-1123 [百度学术]
Li J L, Zeng Y W, Pan Y H, Zhou L, Zhang Z Y, Guo H F, Lou Q J, Shui G H, Huang H G, Tian H, Guo Y M, Yuan P R, Yang H, Pan G J, Wang R Y, Zhang H L, Yang S H, Guo Y, Ge S, Li J J, Li Z C. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. New Phytologist, 2021, 231(3): 1056-1072 [百度学术]
Liu F X, Xu W Y, Song Q, Tan L B, Liu J Y, Zhu Z F, Fu Y C, Su Z, Sun C Q. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice. Molecular Plant, 2013, 6(3): 757-767 [百度学术]
Zhao J, Wang S S, Qin J J, Sun C Q, Liu F X. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. Plant Biotechnology Journal, 2020, 18(3): 756-769 [百度学术]