摘要
荧光原位杂交技术(FISH, fluorescence in situ hybridization)是分子细胞遗传学中最为重要的手段之一,可以实现DNA或RNA序列在染色体上精确的可视化的直观定位。随着基因组测序技术的发展和测序成本的降低,大量物种的基因组信息被不断公布,基于高通量测序和参考基因组衍生的寡聚核苷酸序列(Oligo, oligonucleotide)探针在FISH中表现出独特的优势。和传统FISH探针相比,Oligo-FISH能更加精确、深入地揭示植物在进化过程中染色体的进化、遗传与变异。本研究对荧光标记的靶标DNA与荧光探针的种类与应用,寡聚核苷酸探针的种类及制备技术进行了综述, 重点聚焦于Oligo-FISH的起源发展及其在鉴定植物染色体、识别植物同源染色体方面所发挥的重要作用。Oligo-FISH技术可用于构建物种属内的染色体核型,利用Oligo-FISH结果可为该属没有全基因组的作物的基因组组装提供指导, Oligo涂染还可以很好地解决异源多倍体物种中非同源染色体间的融合与交换问题,能够准确地检测染色体间是否存在易位等行为及异源重组。因此,Oligo-FISH技术的发展为基因组染色体水平的组装提供了强有力的支撑。未来Oligo-FISH技术与信号放大技术结合能够克服重复序列高度富集区域Oligo探针密度低的困难,可对非常短的基因区域进行可视化,如对启动子、增强子的检测,在转基因中对基因片段定位等,这些研究将有助于更加深入地了解物种遗传和进化,进一步推动作物遗传育种的改良与发展。
荧光原位杂交(FISH,fluorescence in situ hybridization)是分子细胞遗传学中最重要的技术,1982年该技术的出现标志着研究模式由表型遗传学向分子遗传学的转变。30多年来FISH在植物研究中的发展与应用,揭示了物种间亲缘关系、血缘构成、基因渗入、染色体重排与结构变异等遗传问题,成果显著。然而可用探针的贫乏是FISH发展过程中面临的极大挑战。早期的基因组探针、BAC(Bacterial Actificial Chromosome)文库克隆、以卫星序列或串联重复为代表的高拷贝重复序列探针并未给具有复杂遗传背景的染色体提供可靠的识别手段,尤其是在非模式作物与多倍体植物的研究中仍存在较大的困难。而寡核苷酸荧光原位杂交技术(Oligo-FISH, Oligo-fluorescence in situ hybridization)作为现代分子细胞遗传学新兴起的技术之一,能够更有效地揭示非模式作物或多倍体植物染色体的核型、遗传与演化及近源物种间的亲缘关系。Oligo-FISH的出现拓宽了荧光原位杂交技术的应用范围并促进了分子生物遗传学的发展。
原位杂交是指通过标记的已知特定核苷酸作为探针,与测定目标或组织中的靶核苷酸杂交,从而对该核苷酸进行物理定量与定

图1 FISH杂交的模式图
Fig.1 The model of fluorescence in situ hybridization
:探针的引物部分;
:探针所携带的Cy3荧光修饰;
:探针所携带的FAM荧光修饰
:Primer;
:Cy3 fluorescent modification;
:FAM fluorescent modification
FISH技术发展至今已40多年,一直是细胞学研究的重要手段。FISH技术的关键优势在于靶标的多样性及其探针设计的多样性。FISH靶标分为多种,如中期染色体、减数分裂粗线期染色体、间期细胞核和DNA纤维
对于多种靶细胞染色体片段的鉴定,分别设计不同的目的探针与不同的荧光信号进行配对结合,便可方便快捷地检测出染色体在进化过程中发生的遗传、重组和变
寡核苷酸序列探针(Oligo, oligo nucleotide)是利用已知基因组人工合成的DNA探针,借助生物信息学手段,利用k-mer(k-monomeric unit)方法将基因组序列打断,得到的k-mer序列通过比对方式筛选出备选Oligo文库,再利用近源物种的二代数据库进行打分,从而剔除潜在的重复序列,最终筛选出富集特异寡核苷酸序列的Oligo文
植物在进化与衍化过程中,均经历过不同程度的染色体融合事件或全基因组加倍事件,为深入了解植物在这一进程中的衍化过程,对染色体倍性与染色体基数进行鉴定是必不可少的。寡核苷酸的大规模合成首先在哺乳动物及果蝇中得到实现,到2015年,Han
同源染色体间的差异及其在减数分裂时期的分离配对与重组行为是植物在遗传稳定与变异中的重要因
染色体遗传图谱作为经典的遗传学研究方法之一,依据染色体的交换和重组,对不同标记之间的排列顺序进行线性连
细胞学可以辅助基因组组装并为组装结果提供可视化验
在过去的几十年间,尽管基于荧光原位杂交的成像技术能够观察到基因组的精细结构,然而光学显微镜的分辨成像效果以及物种所携带的遗传特征限制了荧光信号的观察以及对于目标区域的检测。重复序列作为基因的冗余,在植物的遗传信息中,其含量平均占比在63.3%。寡核苷酸探针密度理论上不少于0.4(100条/M),但重复序列在物种中的高度富集为部分物种Oligo探针的开发带来了挑
参考文献
王宏晋. 小麦-多年生簇毛麦染色体重组系准确鉴定与重要农艺性状基因的区段定位. 成都: 电子科技大学, 2022 [百度学术]
Wang H J. Characterization of wheat-Dasypyrum breviaristatum introgression lines and physical localization of the genes encoding important agronomic traits. Chengdu: University of Electronic Science and Technology of China, 2022 [百度学术]
董玉玮. 荧光原位杂交技术研究现状. 科技资讯, 2008(32): 6-8 [百度学术]
Dong Y W. Research status of fluorescence in situ hybridization. Science & Technology Informntion, 2008(32): 6-8 [百度学术]
Gall J G, Pardue M L. Formation and detecyion of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences,1969, 63(2):378-383 [百度学术]
Bauman J G, Wiegant J, Borst P, van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Experimental Cell Research, 1980, 128(2):485-490 [百度学术]
Singh R S, Jiang J, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49(9):1057-1068 [百度学术]
De Jong J H, Fransz P, Zabel P. High resolution FISH in plants-techniques and applications. Trends in Plant Science, 1999, 4(7):258-263 [百度学术]
汪慧, 郭长虹, 郭东林. 小麦、黑麦FISH技术特异序列探针的研究进展.生物技术通报, 2011, 27(8): 75-81 [百度学术]
Wang H, Guo C H, Guo D L. Development of FISH specific sequence probe in wheat and rye.Biotechnology Bulletin, 2011, 27(8): 75-81 [百度学术]
Jiang J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Research, 2019, 27(3):153-165 [百度学术]
Albini S, Schwarzacher T. In situ localization of two repetitive DNA sequences to surface-spread pachytene chromosomes of rye. Genome, 2011, 35:551-559 [百度学术]
王坤波, 王文奎, 王春英, 宋国立, 崔荣霞, 黎绍惠, 张香娣. 海岛棉原位杂交及核型比较.遗传学报, 2001, 28(1): 69-98 [百度学术]
Wang K B, Wang W K, Wang C Y, Song G L, Cui R X, Li S H, Zhang X D. In situ hybridization and karyotype comparison of sea island cotton.Acta Cenetica Sinica, 2001, 28(1): 69-98 [百度学术]
Metcalfe C J, Li J, Giorgi D, Doležel J, Piperidis N, Aitken K S. Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Scientific Reports, 2019, 9(1):1-12 [百度学术]
郭东伟, 胡甘, 佘茂云, 李连城, 陈明, 徐兆师, 马有志. 小麦流式分选染色体的鉴定.作物学报, 2008, 59(1): 89-94 [百度学术]
Guo D W, Hu G, She M Y, Li L C, Chen M, Xu Z S, Ma Y Z. Identification of wheat chromosomes sorted by flow cytometry. Acta Agronomica Sinica, 2008, 59(1): 89-94 [百度学术]
Yang S, Cápal P, Doležel J, Li X, Qian W, Wang Z, Zeng K, Li P, Zhou H, Xia R, Zhang M, Deng Z. Sequence analysis of Erianthus arundinaceus chromosome 1 isolated by flow sorting after genomic in situ hybridization in suspension. The Crop Journal, 2022,10(5): 1221-1516 [百度学术]
Hou L, Xu M, Zhang T, Xu Z, Wang W, Zhang J, Yu M, Ji W, Zhu C, Gong Z, Gu M, Jiang J, Yu H. Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biology, 2018, 18(1):110 [百度学术]
Waminal N E, Pellerin R J, Kim N S, Jayakodi M, Park J Y, Yang T J, Kim H H. Rapid and efficient FISH using Pre-Labeled oligomer probes. Scientific Reports, 2018, 8(1):8224 [百度学术]
Yu F, Chai J, Li X, Yu Z, Yang R, Ding X, Wang Q, Wu J, Yang X, Deng Z. Chromosomal characterization of Tripidium arundinaceum revealed by Oligo-FISH. International Journal of Molecular Sciences, 2021, 22(16):8539 [百度学术]
毕云飞. 基于寡核苷酸探针的染色体涂染技术及其在甜瓜属染色体研究中的应用. 南京: 南京农业大学, 2019 [百度学术]
Bi Y F. Oligonucleotide probe-based chromosome gainting technique and its application in chromosome research of Cucumis. Nanjing: Nanjing Agricultural University, 2019 [百度学术]
杜培. 小麦、百萨偃麦草和花生染色体荧光原位杂交寡核苷酸探针(套)开发与应用. 南京: 南京农业大学, 2017 [百度学术]
Du P. Development and application of wheat,Thinopyrum Bessarabicum and peanut oligonucleotide and multiplex probes for fluorescence in situ hybridization. Nanjing: Nanjing Agricultural University, 2017 [百度学术]
Bi Y, Zhao Q, Yan W, Li M, Liu Y, Cheng C, Zhang L, Yu X, Li J, Qian C, Wu Y, Chen J, Lou Q. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. The Plant Journal, 2020, 102(1):178-186 [百度学术]
Han Y H, Zhang T, Thammapichai P, Weng Y, Jiang J. Chromosome-Specific painting in Cucumis species using bulked Oligonucleotides. Genetics, 2015, 200(3):771-779 [百度学术]
刘洪坤, 唐宗祥. 利用SLAF-seq技术开发新寡核苷酸探针鉴定小麦背景中的黑麦染色体.四川农业大学学报, 2016, 34(4): 402-405 [百度学术]
Liu H K, Tang Z X. Development of novel Oligonucleotide probes for identifying rye chromosomes in wheat background.Journal of Sichuan Agricultural University, 2016, 34(4): 402-405 [百度学术]
刘玉玲. 棉花基于FISH的单染色体图谱及亚基因组和Oligo序列鉴定. 武汉: 华中农业大学, 2016 [百度学术]
Liu Y L. Individual chromosome cytogenetic maps and identification of the subgenomes and Oligo sequences in cotton based on FISH. Wuhan: Huazhong Agricultural University,2016 [百度学术]
Figueroa D M, Bass H W. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation. Chromosome Research, 2012, 20(4):363-380 [百度学术]
De Oliveira Bustamante F, Do Nascimento T H, Montenegro C, Dias S, do Vale Martins L, Braz G T, Benko-Iseppon A M, Jiang J, Pedrosa-Harand A, Brasileiro-Vidal A C. Oligo-FISH barcode in beans: A new chromosome identification system. Theoretical and Applied Genetics, 2021, 134(11):3675-3686 [百度学术]
刘玉玲, 刘震, 李兆国, 王玉红, 周忠丽, 蔡小彦, 王星星, 王小艳, 张树林, 赵海燕, 张振梅, 王坤波, 刘方, 彭仁海. 棉花Oligo-FISH技术建立及其初步应用. 棉花学报, 2017, 29(3): 213-221 [百度学术]
Liu Y L, Liu Z, Li Z G, Wang Y H, Zhou Z L, Cai X Y, Wang X X, Wang X Y, Zhang S L, Zhao H Y, Zhang Z M, Wang K B, Liu F, Peng R H. Construction and primary application of Oligos Fluorescence in situ hybridization technology in cotton.Cotton Science, 2017, 29(3): 213-221 [百度学术]
Lou Q F, Zhang Y X, He Y H, Li J, Jia L, Cheng C, Guan W, Yang S, Chen J. Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. The Plant Journal, 2014, 78(1):169-179 [百度学术]
Braz G T, Yu F, Zhao H, Deng Z, Birchler J A, Jiang J. Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. New Phytologist, 2021, 229(6):3294-3302 [百度学术]
Chai J, Luo L, Yu Z, Lei J, Zhang M, Deng Z. Repetitive sequence barcode probe for karyotype analysis in Tripidium arundinaceum. International Journal of Molecular Sciences, 2022, 23(12):6726 [百度学术]
Zhang G, Ge C, Xu P, Wang S, Cheng S, Han Y, Wang Y, Zhuang Y, Hou X, Yu T, Xu X, Deng S, Li Q, Yang Y, Yin X, Wang W, Liu W, Zheng C, Sun X, Wang Z, Ming R, Dong S, Ma J, Zhang X, Chen C. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nature Plants, 2021, 7(5):608-618 [百度学术]
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L-Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M-A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.. Nature Genetics, 2018, 50(11):1565-1573 [百度学术]
Lou Q F, He Y H, Cheng C Y, Zhang Z, Li J, Huang S, Chen J. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.The Public Library of Science, 2013, 8(5):e62676 [百度学术]
Koo D H, Jo S H, Bang J W, Park H M, Lee S, Choi D. Integration of cytogenetic and genetic linkage maps unveils the physical architecture of tomato chromosome 2. Genetics, 2008, 179(3):1211-1220 [百度学术]
钱文丹, 陈波利. 荧光原位杂交技术及其应用.乡村科技, 2018(25): 51-52 [百度学术]
Qian W D, Chen B L. Fluorescence in situ hybridization and its application.Xiang Cun Ke Ji, 2018 (25): 51-52 [百度学术]
王丹蕊, 杜培, 裴自友, 庄丽芳, 亓增军. 基于寡核苷酸探针套painting的小麦“中国春”非整倍体高清核型及应用.作物学报, 2017, 43(11): 1575-1587 [百度学术]
Wang D R, Du P, Pei Z Y, Zhuang L F, Qi Z J. Development and application of high resolution karyotypes of wheat “Chinese Spring” aneuploids. Acta Agronomica Sinica, 2017, 43(11): 1575-1587 [百度学术]
Gelali E, Girelli G, Matsumoto M, Wernersson E, Custodio J, Mota A, Schweitzer M, Ferenc K, Li X, Mirzazadeh R, Agostini F, Schell J P, Lanner F, Crosetto N, Bienko M. iFISH is a publically available resource enabling versatile DNA FISH to study genome architecture. Nature Communications, 2019, 10(1):1-15 [百度学术]
Xin H, Zhang T, Wu Y, Zhang W, Zhang P, Xi M, Jiang J. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. The Plant Journal, 2020, 101(2):253-264 [百度学术]
Xuan Y, Ma B, Li D, Tian Y, Zeng Q, He N. Chromosome restructuring and number change during the evolution of Morus notabilis and Morus alba. Horticulture Research, 2022, 9: 401-412 [百度学术]
郝兆东. 鹅掌楸属基因组演化及其花色变异遗传基础研究. 南京: 南京林业大学, 2020 [百度学术]
Hao Z D. Liriodendron genome evolution and the genetic basis of flower color variation. Nanjing: Nanjing Forestry University, 2020 [百度学术]
Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Van Sluys M A, Swaminathan K, Town C, Berges H, Simmons B, Glaszmann J C, van der Vossen E, Henry R, Schmutz J, D'Hont A. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nature Communications, 2018, 9(1):1-10 [百度学术]
孙思龙. 玉米 Mo17 基因组组装及与其它玉米基因组的比较. 北京: 中国农业大学, 2018 [百度学术]
Sun S L. De Novo assembly of maize Mo17 genome and its comparison with other maize genomes. Beijing: China Agricultural University, 2018 [百度学术]
郎涛. 小麦及其近缘物种串联重复序列的全基因组发掘与染色体区段鉴定. 成都: 电子科技大学, 2019 [百度学术]
Lang T. Distribution of tandem repeats in genomes of wheat and related species and its application for chromosome identification. Chengdu: University of Electronic Science and Technology of China, 2019 [百度学术]
Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: The bacterial pan-genome. Current Opinion in Microbiology, 2008, 11(5):472-477 [百度学术]
Cheng M, Li X, Cui H, Sun H, Deng T, Song X, Song R, Wang T, Wang Z, Wang H. FISH-based “pan” and “core” karyotypes reveal genetic diversification of Roegneria ciliaris. Journal of Genetics and Genomics, 2022, 49(9):833-912 [百度学术]
Yu Z, Huang Y, Wu J, Zhang M, Deng Z. Diversity chromosome evolution of Ty1-copia retrotransposons in Pennisetum purpureum revealed by FISH. Agronomy Journal, 2022, 12(6):1312 [百度学术]
Ren R, Ray R, Li P, Xu J, Zhang M, Liu G, Yao X, Kilian A, Yang X. Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Molecular Genetics and Genomics, 2015, 290(4):1457-1470 [百度学术]
罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性.作物学报, 2021, 47(8): 1427-1436 [百度学术]
Luo J T, Zheng J M, Pu Z J, Fan C L, Liu D C, Hao M. Chromosome transmission in hybrids between tetraploid and hexaploid wheat.Acta Agronomica Sinica, 2021, 47(8): 1427-1436 [百度学术]
Beliveau B J, Boettiger A N, Avendano M S, Jungmann R, McCole R B, Joyce E F, Kim-Kiselak C, Bantignies F, Fonseka C Y, Erceg J, Hannan M A, Hoang H G, Colognori D, Lee J T, Shih W M, Yin P, Zhuang X, Wu C T. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nature Communications, 2015, 6(1):1-13 [百度学术]
Kishi J Y, Lapan S W, Beliveau B J, West E R, Zhu A, Sasaki H M, Saka S K, Wang Y, Cepko C L, Yin P. SABER amplifies FISH: Enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nature Methods, 2019, 16(6):533-544 [百度学术]
Levesque M J, Raj A. Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nature Methods, 2013, 10(3):246-248 [百度学术]