摘要
为探索低温胁迫下幼苗期水稻全基因组DNA甲基化调控机制,通过对3个耐冷性不同的水稻品种进行3~4 ℃低温处理试验,利用全基因组DNA甲基化测序(WGBS,whole genome bisulfite sequencing)技术分析低温处理后全基因组DNA甲基化水平及模式变化。结果显示:低温处理后,日本晴和9311的胞嘧啶甲基化(mC)都表现下降,而P427的mC值上升。针对启动子区和转录区发生甲基化的基因进行锚定,发现启动子区锚定的基因数远高于转录区,材料P427锚定的基因最多,9311锚定的基因最少。GO、KEGG富集分析发现,低温处理后P427差异甲基化基因主要富集在二萜生物合成、淀粉和蔗糖代谢、苯丙烷类生物合成等代谢通路。结果表明:基因启动子区甲基化对低温胁迫响应基因的调控作用更为重要,甲基化调控基因表达不仅与甲基化程度有关,与甲基化类型也可能存在一定的关系。P427可能通过二萜生物合成、淀粉和蔗糖代谢等代谢通路及激素信号转导通路上的基因影响苗期水稻的耐冷性。本研究进一步加深了对水稻耐冷性响应机制的理解。
植物在整个生长发育过程都处于固着状态,不像动物可以通过移动来躲避不良环境,因此植物生长很容易受到外界环境变化的影响。植物在长期的演化过程中为了抵御生物或非生物胁迫,进化出多种有效自我保护机制,其中表观遗传在植物精细调控中起着非常重要的作
近年来研究表明,植物DNA甲基化状态改变与其响应非生物胁迫紧密相关,许多与DNA甲基化相关的基因被证明参与了应答非生物胁迫调
本研究对3份不同耐冷性的水稻品种P427、日本晴和9311,在苗期(三叶期)进行低温处理。采用全基因组DNA甲基化测序(WGBS,whole genome bisulfite sequencing)技术,研究不同耐冷性水稻品种低温处理前后全基因组DNA甲基化水平和模式变化,以期探究水稻苗期低温胁迫的表观遗传调控机制。
选取P427、日本晴和9311各100粒饱满种子进行催芽,从中筛选50粒发芽一致的芽谷播于塑料钵内,置于28 ℃/14 h(光照)、25 ℃/10 h(黑暗)的光照培养箱中光暗交替培养21 d,生长至三叶期。分别选取5株生长一致的健壮秧苗,剪取3 g,用液氮速冻后置于-80 ℃冰箱保存备用。剩余秧苗转移到3~4 ℃低温(14 h光照/10 h黑暗)光照培养室内处理3 d后,然后采用上述方法取样保存备用。
水稻基因组中DNA甲基化修饰方式有3种类型,即CG、CHG和CHH(H代表A、C或T)。测序结果显示,水稻全基因组甲基化类型以CG位点发生甲基化水平最高,平均为69.8%~76.15%。因此,在水稻基因组中CG位点甲基化可能是最主要的甲基化类型。其次是CHG位点甲基化,平均为34.74%~40.13%。最少的是CHH位点甲基化,平均仅5.51%~7.5%(
样本Sample | C_covgmean | C(Mb) | CG (Mb) | CHG (Mb) | CHH (Mb) | Mean C (%) | Mean CG(%) | Mean CHG(%) | Mean CHH(%) | |
---|---|---|---|---|---|---|---|---|---|---|
处理前BT | P427(MCP) | 8.00 | 1303.9 | 250.8 | 202.4 | 850.7 | 25.69 | 76.15 | 39.57 | 7.50 |
Nip(MCR) | 11.30 | 1845.0 | 322.0 | 287.1 | 1235.9 | 21.83 | 70.23 | 34.91 | 6.17 | |
9311(MCJ) | 7.40 | 1213.9 | 219.7 | 189.9 | 804.4 | 23.22 | 72.17 | 36.69 | 6.67 | |
处理后 AT | P427(MTEP) | 10.70 | 1752.3 | 332.8 | 275.1 | 1144.3 | 24.08 | 73.75 | 36.84 | 6.56 |
Nip(MTER) | 10.70 | 1747.7 | 332.6 | 272.3 | 1142.7 | 25.33 | 75.76 | 40.13 | 7.12 | |
9311(MTEJ) | 7.90 | 1284.6 | 222.0 | 200.4 | 862.2 | 21.19 | 69.80 | 34.74 | 5.51 |
MCP、MCR和MCJ分别表示低温处理前的P427、日本晴和9311(对照);MTEP、MTER和 MTEJ分别表示低温处理后的P427、日本晴和9311,下同。C_covg mean: 基因组所有C位点的平均覆盖深度;C:比对到基因组C位点上的碱基数;CG:比对到基因组CG位点胞嘧啶上的碱基个数;CHG:比对到基因组CHG位点胞嘧啶上的碱基个数;CHH:比对到基因组CHH位点胞嘧啶上的碱基个数;Mean C:基因组所有C位点的平均甲基化水平;Mean CG:CG位点的平均甲基化水平;Mean CHG:CHG位点的平均甲基化水平;Mean CHH:CHH位点的平均甲基化水平
MCP, MCR and MCJ represent P427, Nipponbare and 9311 (control) before low temperature treatment; MTEP, MTER and MTEJ represent P427, Nipponbare and 9311 after low temperature treatment, the same as below. C_covg mean: The average coverage depth of all C sites in the genome; C: The number of bases aligned to the genome C position; CG: The number of bases aligned to the cytosine in the CG region of the genome; CHG: The number of bases aligned to the cytosine in the CHG region of the genome; CHH: The number of bases aligned to the cytosine in the CHH region of the genome; Mean C: The average methylation level of all C sites in the genome; Mean CG: The average methylation level of the CG region; Mean CHG: The average methylation level of the CHG region; Mean CHH: Mean methylation level in the CHH region.BT: Before treament; AT:After treament
通常以mCG、mCHG、mCHH分别表示甲基化CG、甲基化CHG、甲基化CHH这3种类型的甲基化模式,因不同物种甚至同一物种不同部位或因时间、空间和不同处理方式而存在很大的差异。本研究统计了供试材料胞嘧啶位点上发生DNA甲基化的比例,结果发现P427冷胁迫的胞嘧啶DNA甲基化率(mC=17.06%)高于常温下的比例(15.57%),日本晴和9311冷胁迫后胞嘧啶DNA甲基化率总体下降(
品种 Variety | 样本Sample | mC比例 Ratio of mC | mCG比例 Ratio of mCG | mCHG比例 Ratio of mCHG | mCHH比例 Ratio of mCHH |
---|---|---|---|---|---|
P427 | MCP | 15.57 | 33.29 | 24.34 | 8.03 |
MTEP | 17.06 | 37.67 | 27.43 | 8.24 | |
Nip | MCR | 19.30 | 41.70 | 30.82 | 9.66 |
MTER | 17.66 | 38.45 | 28.71 | 8.62 | |
9311 | MCJ | 11.48 | 24.74 | 18.06 | 5.83 |
MTEJ | 11.31 | 25.02 | 18.27 | 5.44 |
mC 比例:全基因组甲基化C位点占全部C位点个数的百分比;mCG比例:CG位点区域甲基化C位点占该区域C位点总数百分比;mCHG比例:CHG 位点区域甲基化C位点占该区域C位点总数百分比;mCHH比例:CHH位点区域甲基化C位点占该区域C位点总数百分比
Ratio of mC: The percentage of methylated C sites in the whole genome to the total number of C sites; Ratio of mCG: The percentage of methylated C sites in the CG background region to the total number of C sites in the region; Ratio of mCHG: The percentage of methylated C sites in the CHG background region to the total number of C sites in this region; Ratio of mCHH: The percentage of methylated C sites in the CHH background region to the total number of C sites in the region
不同样本(个体、组织、细胞等)间的DNA甲基化状态一般不相同,涉及的差异甲基化区域(DMR,differentially methylated region)可能在低温胁迫过程中发挥作用。经低温处理后,3个不同耐冷性水稻品种的12条染色体甲基化水平都发生了一定的差异变化,结果见

图1 染色体甲基化水平circos图
Fig.1 Circos diagram of chromosome methylation level
A、B:低温处理前后P427染色体甲基化水平circos图; C、D:低温处理前后日本晴染色体甲基化水平circos图;E、F:低温处理前后9311染色体甲基化水平circos图
A, B: The methylation level of P427 on chromosomes before and after low temperature treatment; C, D: The methylation levels of Nipponbare on chromosomes before and after low temperature treatment; E, F: The methylation levels of 9311 on chromosomes before and after low temperature treatment

图2 低温处理前后不同基因组元件甲基化水平分布趋势
Fig.2 Methylation levels of different genomic elements before and after low temperature treatment
A~C:P427、日本晴、9311低温处理前后不同基因元件甲基化水平示意图。MCP-vs-MTEP、MCR-vs-MTER和MCJ-vs-MTEJ,分别表示P427、日本晴和9311低温处理前后甲基化水平。mCG/CG、mCHG/CHG、mCHH/CHH表示在不同基因功能区甲基化CG、CHG、CHH所占比例
A-C: Schematic diagrams of methylation levels of different gene elements before and after low temperature treatment of P427, Nipponbare, and 9311, respectively. MCP-vs-MTEP, MCR-vs-MTER and MCJ-vs-MTEJ represent the comparison of test materials P427, Nipponseol and 9311 before and after low temperature treatment, respectively. The methylation level of mCG/CG, mCHG/CHG and mCHH/CHH represent the proportion of CG, CHG and CHH methylated in different gene functional regions
在DNA甲基化水平的基础上,对6个(处理前3个,处理后3个)样本进行聚类分析,结果显示每个品种的2个样本聚在了一起,而不同品种的甲基化水平出现了分离且距离较远(

图 3 水稻基因不同结构区的甲基化水平和6个样品的聚类
Fig.3 Levels of methylation in different structural regions of the gene and clustering of 6 samples
A:P427、日本晴和9311低温处理前后mCG/CG类型甲基化分布图;B:P427、日本晴和9311低温处理前后mCHG/CHG类型甲基化分布图;C:P427、日本晴和9311低温处理前后mCHH/CHH类型甲基化分布图;D:P427、日本晴和9311低温处理前后基于CG序列类型聚类图;E:P427、日本晴和9311低温处理前后基于CHG序列类型聚类图;F:P427、日本晴和9311低温处理前后基于CHH序列类型聚类图
A: The methylation distribution of mCG/CG types before and after low temperature treatment of P427, Nipponbare and 9311;B:Methylation distribution of mCHG/CHG types before and after low temperature treatment of P427, Nipponbare and 9311;C: P427, Nipponbare and 9311 before and after low temperature treatment of mCHH/CHH type methylation distribution map;D:Cluster map of CG sequence type before and after low temperature treatment of P427, Nipponbare and 9311;E:Cluster map of CHG sequence type before and after low temperature treatment of P427, Nipponbare and 9311;F:Cluster map of CHH sequence type before and after low temperature treatment of P427, Nipponbare and 9311
所有6个样本在Repeat区域都表现为高甲基化,推测这一区域的甲基化变化对低温诱导基因的表达调控贡献较小。其次mCG类型的甲基化主要集中在启动子区和内含子区,mCHG类型甲基化集中在启动子区,mCHH类型甲基化集中在启动子区和外显子区,且不同耐冷性品种在启动子区域甲基化表现出明显差异(

图 4 不同样本依据DMR的聚类分析图
Fig.4 Cluster analysis diagram of different samples according to DMR
A~I:P427、日本晴和9311低温处理前后不同序列类型CG、CHG、CHH下的甲基化分布变化。不同颜色代表不同甲基化水平
A-I: The methylation distributions of P427, Nipponbare and 9311, CG, CHG, CHH sequences types after low temperature treatment. Different colors indicate different methylation levels
根据3个品种基因启动子区和转录区甲基化变化的基因分布结果,显示3种甲基化序列下(CG/CHG/CHH)差异基因主要分布在启动子区(

图5 甲基化水平变化基因分布
Fig.5 Methylation-related genes distribution
A~C:P427、日本晴和9311启动子区和转录区差异甲基化基因分布图。图中数字表示启动子区和转录区CG_DMR基因、CHG_DMR基因和CHH_DMR基因数目
A-C : The distribution of differentially methylated genes in the promoter and transcription regions of P427, Nipponbare and 9311. The figure shows the number of promoter region and transcription region CG_DMR gene, CHG_DMR gene and CHH_DMR gene
样本 Sample | 锚定区域Anchor area | CG_DMR基因CG_DMRgene | CG_DMR基因比例(%) CG_DMRgene ratio | CHG_DMR基因CHG_DMRgene | CHG_DMR基因比例(%)CHG_DMRgene ratio | CHH_DMR基因CHH_DMRgene | CHH_DMR基因比例(%)CHH_DMRgene ratio |
---|---|---|---|---|---|---|---|
P427 | 启动子 | 4080 | 44.24 | 2540 | 27.54 | 3545 | 38.44 |
转录区 | 992 | 34.14 | 909 | 31.28 | 1257 | 43.26 | |
Nip | 启动子 | 2921 | 38.08 | 2793 | 36.42 | 2473 | 32.24 |
转录区 | 660 | 28.40 | 936 | 40.28 | 900 | 38.73 | |
9311 | 启动子 | 1706 | 32.17 | 1096 | 20.67 | 2750 | 51.86 |
转录区 | 429 | 24.54 | 451 | 25.80 | 964 | 55.15 |
CG_DMR基因、CHG_DMR基因和CHH_DMR基因比例,分别为启动子和转录区CG_DMR基因、CHG_DMR基因和CHH_DMR基因数目,占总甲基化基因数目的百分比。由于部分基因同时存在两种或3种类型的甲基化模式,所以CG、CHG、CHH 3种类型甲基化基因总和大于实际总甲基化基因数
CG_DMR gene, CHG_DMR gene and CHH_DMR gene ratio were determined by the number of CG_DMR gene, CHG_DMR gene and CHH_DMR gene in promoter and transcription region, respectively, as percentage of the number of total methylated genes. Since some genes have two or three types of methylation patterns at the same time, the sum of the three types of methylated genes of CG, CHG and CHH is greater than the actual total number of methylated genes
DMR相关基因GO富集柱状图(分序列类型CG、CHG、CHH展示),可以直观地反映出在生物过程、分子功能和细胞组分富集的DMR相关基因的分布情况。
通过对P427、日本晴、9311这3份不同耐冷性水稻材料的所有DMR相关基因的GO富集分析,结果显示不论是强耐冷性材料P427,还是较耐冷性材料日本晴和冷敏感性材料9311,在CG、CHG、CHH 3种不同甲基化序列类型下,分别富集到的GO条目差异不大,暗示低温诱导的DMR相关基因的GO富集条目相对保守性较高。然而在3个供试品种中达到显著富集的GO条目差异很大,其中在CHG序列类型下P427和日本晴共同富集达到显著的条目有:细胞信号(GO:0007154)、蛋白质磷酸化(GO:0006468)等23个条目。而P427、日本晴和9311共同显著富集的仅有腺苷酸核糖核苷酸(GO:0032559)、腺苷酸核苷酸结合(GO:0030554)、离子结合(GO:0043167)等3个条目。
通过对3个不同耐冷性品种的差异甲基化基因进行KEGG富集分析,结果显示P427差异甲基化基因富集在108条Pathway通路上,其中CG类型有73条、CHG类型有70条、CHH类型有88条;另外,显著富集的通路有:二萜生物合成(PATH:00904)、淀粉和蔗糖代谢(PATH:00500)、氰氨基酸代谢(PATH:00460)等通路。日本晴差异甲基化基因富集在97条通路上,其中CG类型有67条、CHG类型有70条、CHH类型有83条;主要富集在二萜生物合成(PATH:00904)、β-丙氨酸代谢(PATH:00410)、淀粉和蔗糖代谢(PATH:00500)等通路。9311差异甲基化基因富集在100条通路上,其中CG类型有56条、CHG类型有54条、CHH类型有77条;主要富集在ABC转运蛋白(PATH:02010)、苯丙烷类生物合成(PATH:0094)、氰氨基酸代谢(PATH:0046)、生物素代谢(PATH:00780)等通路。
通过P427与日本晴比较分析,显示P427单独富集的KEGG通路有15条,蛋白质输出(PATH:03060)、二苯乙烯二芳庚烯和姜辣素的生物合成(PATH:00945)、非同源末端连接(PATH:03450)、核黄素代谢(PATH:00740)、鞘糖脂生物合成球状系列(PATH:00603)、鞘脂代谢(PATH:00600)、生物素代谢(PATH:0078)、维生素B6代谢(PATH:00750)、花生四烯酸代谢(PATH:0090)、亚油酸代谢(PATH:00591)、烟酸和烟酰胺代谢(PATH:00760)、鞘糖脂生物合成神经节系列(PATH:00604)、糖胺聚糖降解(PATH:00531)、类胡萝卜素生物合成(PATH:00906)、谷胱甘肽代谢(PATH:00480)等。P427与9311比较分析,显示P427单独富集的KEGG通路也有15条(

图6 差异甲基化基因富集通路韦恩图
Fig.6 Venn diagram of enrichment pathway for differentially methylated genes
A:P427和日本晴差异甲基化基因富集通路的韦恩图;B:P427和9311差异甲基化基因富集通路的韦恩图
A: Venn diagram of P427 and Nipponbare methylation differential gene enrichment pathways; B: Venn diagram of P427 and 9311 methylation differential gene enrichment pathways
本研究发现3个不同耐冷性水稻品种的3种甲基化类型(CG/CHG/CHH)共同富集的Pathway通路有20个,如mRNA监测途径(PATH:03015)、RNA降解(PATH:03018)、RNA转运(PATH:03013)、β-丙氨酸代谢(PATH:00410)、氨基酸的生物合成(PATH:01230)等,推测这些通路受低温胁迫调控影响。而丙氨酸/天冬氨酸和谷氨酸代谢(PATH:00250)、氮代谢(PATH:00910)、柠檬烯和蒎烯降解(PATH:00903)、叶酸一个碳库(PATH:00670)等仅在P427和日本晴富集到的通路,推测这些通路可能对增强水稻耐寒性有积极贡献。而蛋白质输出(PATH:03060)、非同源末端连接(PATH:03450)、核黄素代谢(PATH:00740)、糖胺聚糖降解(PATH:00531)、维生素B6代谢(PATH:00750)、烟酸和烟酰胺代谢(PATH:00760)、油菜素类固醇生物合成(PATH:00905)等7条通路只在品种P427中富集。一般植物逆境响应机制包括代谢途径改变或抗逆基因表达量改变。在水稻苗期受到低温胁迫时,差异甲基化基因富集在以上通路,这些代谢通路是否在增强水稻低温耐受性过程中起到了关键性作用,还需要进一步的研究。
植物在受到低温胁迫时,可以通过积累渗透调节物质来降低膜脂的伤害,渗透调节物质主要包括脯氨酸,糖醇,甜菜碱等。研究显示将脯氨酸代谢或糖代谢相关酶基因导入植物中,能够使脯氨酸和糖类物质增加,从而增强植株对水分胁迫和盐胁迫的耐受

图7 甲基化相关基因KEGG信号通路富集分析-淀粉和蔗糖代谢途径
Fig.7 Enrichment analysis of KEGG signaling pathway of methylation related genes-starch and sucrose metabolism pathways
绿色表示下调基因
Green indicates down-regulated genes
植物在整个生长周期都处于固着状态,很容易受到生物或非生物胁迫的影
遭受低温等逆境胁迫后,不同样本(组织、细胞、个体等)间的基因组甲基化变化也表现不同,相关差异甲基化区域(DMR)被认为可能参与基因的转录水平调控。本研究显示,3个品种在Repeat区域的DNA甲基化水平都表现最高,且低温处理前后变化不明显,暗示这一区段DNA甲基化的变化与耐低温性可能没有相关性。启动子区甲基化变化被认为对基因调控十分重要,Li
植物全基因组DNA甲基化的改变与植物响应非生物胁迫密切相
在本研究中,经过GO富集分析发现差异甲基化基因主要富集在生物调节、发育过程、细胞连接、大分子复合物、抗氧化活性、催化活性、分子功能调节剂等GO条目。差异甲基化基因信号通路富集分析显示,主要富集在二萜生物合成、淀粉和蔗糖代谢、氰氨基酸代谢、肌醇磷酸代谢、β-丙氨酸代谢、油菜素类固醇生物合成、苯丙烷类生物合成等代谢通路。暗示这些基因可能通过基因甲基化水平改变调控细胞间信号传导和耐低温胁迫基因的表达等过程影响水稻的耐冷性。
低温胁迫直接影响植物的淀粉合成以及糖代谢。可溶性糖作为一种重要的渗透调节物质,在植物体内积累对适应低温逆境起着重要的调节作用,利于增强植物的耐冷
基因启动子区甲基化对低温胁迫响应基因的调控作用更为重要,甲基化调控基因表达不仅与甲基化程度有关,与甲基化类型也可能存在一定的关系。P427差异甲基化基因主要富集到二萜生物合成、淀粉和蔗糖代谢等代谢通路及激素信号转导通路,这些通路上的基因可能通过基因甲基化水平或模式改变调控细胞间信号传导和耐低温胁迫基因的表达过程,进而影响水稻的耐冷性。
参考文献
李青芝, 李成伟, 杨同文, DNA甲基化介导的植物逆境应答和胁迫记忆. 植物生理学报, 2014, 50 (6): 725-734 [百度学术]
Li Q Z, Li C W, Yang T W. Stress response and memory mediated by DNA methylation in plants.Plant Physiology Journal, 2014, 50 (6): 725-734 [百度学术]
Wang M, Qin L M, Xie C, Li W,Yuan J R, Kong L N, Yu W L, Xia G M, Liu S W. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol, 2014, 55(7): 1354-1365 [百度学术]
Pranav P S, Garima P, Namisha S, Swati P, Mehanathan M, Manoj P. Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Reports, 2013, 32(8): 1151-1159 [百度学术]
卓婉清, 腊红桂. 拟南芥DNA甲基化及去甲基化研究进展. 南方农业, 2015, 9(9): 129-133 [百度学术]
Zhuo W Q, La H G. Research progress on DNA methylation and demethylation in Arabidopsis.South China Agriculture,2015, 9(9): 129-133 [百度学术]
Celia M, Liliana M. An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. Journal of Experimental Botany, 2011, 62(11):3713-3725 [百度学术]
Manoj K D, Parivartan V, Rahul S, Sanjana K. Epigenetic dynamics: Role of epimarks and underlying machinery in plants exposed to abiotic stress. International Journal of Genomics, 2014,2014:187146 [百度学术]
Cathy M B, Avraham L A. Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): E981-E988 [百度学术]
潘丽娜. 表观遗传修饰调控非生物胁迫应答提高植物抗逆性. 遗传, 2013, 35(6): 745-751 [百度学术]
Pan L N. Epigenetic regulation of abiotic stress response in plants to improve the stress tolerance.Hereditas,2013, 35(6): 745-751 [百度学术]
Alexander B, Palak K, Franz J Z, Yao Y L, Igor P, Igor K. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Research, 2007, 35(5): 1714-1725 [百度学术]
Alex B, Igor K. Genetic and epigenetic effects of plant-pathogen interactions: An evolutionary perspective. Molecular Plant, 2011, 4(6): 1014-1023 [百度学术]
王华, 杨建峰. 植物抗寒基因工程研究进展. 现代农业科技, 2007, 23: 117-122 [百度学术]
Wang H,Yang J F. Research progress in genetic engineering of plant cold resistance. Modern Agricultural Science and Technology, 2007, 23: 117-122 [百度学术]
蔡克桐, 沈其文, 黄志谋, 耿协议. 茉莉酸对低温胁迫水稻幼苗的生理效应. 湖北农业科学, 2014, 53 (15):3512-3515 [百度学术]
Cai K T, Shen Q W, Huang Z M, Geng X Y. Physiological effects of jasmonate (JA) on rice seedlings under low temperature. Hubei Agricultural Sciences, 2014, 53 (15):3512-3515 [百度学术]
杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报, 2018, 53 (5):581-593 [百度学术]
Du K X, Shen W H, Dong A W.Advances in epigenetic regulation of abiotic stress response in plants. Chinese Bulletin of Botany, 2018, 53 (5):581-593 [百度学术]
王敏, 王一峰. 表观遗传修饰在植物逆境胁迫响应中的应用. 生命科学, 2013(6): 34-39 [百度学术]
Wang M, Wang Y F. Role of epigenetic modifications in plant stress response.Chinese Bulletin of Life Sciences, 2013(6): 34-39 [百度学术]
Massimo L, Fabrizio G, Serena I, Tiziana D F, Sandra C, Sergio S, Elisabetta A. Genetic and DNA-methylation changes induced by potassium dichromate in Brassicanapus L. Chemosphere, 2004, 54(8): 1049-1058 [百度学术]
Dyachenko O V, Zakharchenko N S, Shevchuk T V, Bohnert H J, Cushman J C, Buryanov Y I. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry Biokhimiia, 2006, 71(4): 570-575 [百度学术]
Alex B, Todd B, Yao Y L, Andrey G, Andriy B, Yaroslav I, Jens H, JrFrederick M, Igor K. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS ONE, 2010, 5(3):e9514 [百度学术]
Nicolas S, Mikako I, Yube Y, Nozomu K, Hiroshi S. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry, 2002, 277(40): 37741-37746 [百度学术]
Choi C S, Sano H S. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase like protein in tobacco plants. Molecular Genetics and Genomics, 2007, 277(5):589-600 [百度学术]
Jiang N, Bao Z R, Zhang X Y, Hirohiko H,Sean R E, Susan R M, Susan R W. An active DNA transposon family in rice. Nature, 2003, 421(6919):163-167 [百度学术]
Li X, Zhu J D, Hu F Y, Ge S, Ye M Z, Xiang H, Zhang G J, Zheng X M, Zhang H Y, Zhang S L, Li Q, Luo R B, Li Q, Yu C,Yu J, Sun J F, Zou X Y, Cao X F, Xie X F, Wang J, Wang W.Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics, 2012, 13:300, 1471-1486 [百度学术]
Akimoto K, Katakami H, Kim H J, Ogawa E, Sano H. Epigenetic inheritance in rice plants. Annals of Botany, 2007, 100(2): 205-217 [百度学术]
李利红, 仪慧兰, 王艺雯, 杨波. 二氧化硫胁迫诱导拟南芥NIT2基因DNA甲基化修饰. 农业环境科学学报, 2012(4): 685-690 [百度学术]
Li L H, Yi H L, Wang Y W, Yang B.Sulfur dioxide induces DNA methylation alteration of a gene encoding nitrilase 2 protein in Arabidopsis plants.Journal of Agro-Environment Science, 2012(4): 685-690 [百度学术]
张怀山, 赵桂琴, 栗孟飞, 夏曾润,王春梅. 中型狼尾草幼苗对PEG低温和盐胁迫的生理应答. 草业学报, 2014, 23(2): 180-188 [百度学术]
Zhang H S,Zhao G Q, Li M F, Xia Z R, Wang C M. Physiological responses of Pennisetum longissimum var. Intermedium seedlings to PEG, low temperature and salt stress treatments. Acta Prtaculturaesinica, 2014, 23(2): 180-188 [百度学术]
李苗苗, 冯雪, 邹春静. 外源C
Li M M, Feng X, Zou C J. Effects of exogenous C
张丽, 周欣, 蒋家月, 江昌俊,朱政. 外源ABA对茶树抗寒生理指标的影响. 茶业通报, 2012, 34(2): 72-74 [百度学术]
Zhan L, Zhou X, Jiang J Y, Jiang C J, Zhu Z. Effects of exogenous ABA on physiological indicators of cold resistance of tea tree. Journal of Tea Business, 2012, 34(2): 72-74 [百度学术]
姜寒玉, 王旺田, 雷天翔, 何百俊,张金林. 外源ABA和C
Jiang H Y,Wang W T,Lei T X,He B J,Zhang J L.Effects of exogenous ABA and C