摘要
叶色突变体往往伴随着叶绿素含量变化及叶绿体结构异常,是研究叶绿体发育与光合作用相关基因功能的重要材料。本研究鉴定了一个玉米叶片黄化的自然突变体74101,该突变体整个生育期均表现为叶片黄化,总叶绿素含量比野生型(74101-WT)下降53.38%,净光合速率下降25.63%。透射电子显微镜结果显示,74101中叶绿体类囊体结构紊乱,基质片层排列稀疏,无基粒结构。遗传分析与精细定位结果表明74101突变表型受1对隐性核基因控制,位于玉米第5号染色体长臂的标记K-138和K-27之间约76.05 kb物理区间内。对该区间4个候选基因测序分析发现,编码PPR蛋白的ZmNPPR5(Zm00001eb252430)基因第1126位核苷酸碱基发生突变(C-T)。与EMS突变体等位性分析进一步验证ZmNPPR5基因控制叶片黄化表型,亚细胞定位显示其在细胞核中表达。本研究成功克隆了玉米新的黄化基因ZmNPPR5,为进一步研究PPR蛋白调控叶绿体发育和叶绿素合成奠定了基础。
叶绿体是植物光合作用和能量传递的细胞器,对植物生长发育至关重要,然而调控叶绿体发育的分子机制仍不明确。叶绿体是半自主的细胞器,可编码60~200种蛋白质,其发育过程受到核基因和质体基因的共同调
五肽重复序列(PPR,pentapeptide repeat)蛋白是由若干个高度退化的35个氨基酸组成的基序串联而成,该蛋白广泛存在于植物中,并在细胞器代谢中发挥着多种功
线粒体中的PPR蛋白功能突变通常导致植物生长延迟、胚胎发育异常、叶片形状异常、叶片早衰和种子产量降低
本研究利用图位克隆技术,将黄叶突变基因定位在5号染色体上,该基因编码PPR蛋白,依据定位染色体、基因注释和蛋白表达位置将该基因命名为ZmNPPR5。ZmNPPR5基因第1126位核苷酸碱基发生突变(C-T)使蛋白表达提前终止,进而影响叶绿体发育,导致叶绿素含量下降、叶片黄化。
试验材料是育种材料74101(野生型)中发现的叶片黄化突变体,经自交黄化表型能稳定遗传,以田间编号74101命名该突变体。将突变体74101与B73自交系杂交,构建F2、BC1群体,用于遗传分析与基因定位。
在玉米三叶期选取野生型(74101-WT,正常植株)和突变体74101(黄化植株)玉米植株,分别测定其叶绿素含量。取玉米植株新鲜的第三片叶中上部,去中脉,剪成3 mm×1 mm的细丝,称取0.1 g装入10 mL离心管,加入抽提缓冲液(无水乙醇∶丙酮=1∶1)10 mL,避光抽提12~24 h,期间定期摇晃震荡,使叶片与抽提缓冲液充分接触,10000 r/min 离心5 min,保留上清。以抽提缓冲液为空白对照,用紫外分光光度计UV-2802分别测定470 nm、645 nm和663 nm 3个波长下的吸光度值。每个样品进行3次生物学重复。参考Arno
在小喇叭口期,随机选取长势一致的野生型和突变体植株各6株,用便携式光合/荧光测定仪CIRAS-3测定植株第6片叶中上部位的净光合速率、胞间二氧化碳浓度、气孔导度、蒸腾速率。分析野生型和突变体74101的光合速率相关指数的差异显著性。
随机选取三叶期野生型和突变体74101的第3片叶,切成2 mm×2 mm的叶片,经4%戊二醛和1%锇酸双重固定,采用45%、55%、70%、85%、95%、100%的乙醇逐级脱水,再利用树脂包埋,经切片、醋酸双氧铀和柠檬酸铅液染色后,使用透射电镜观察叶片细胞中叶绿体超微结构。
以黄叶突变体74101与B73自交系为亲本,正交和反交得到F1,自交得F2,以F1为母本与黄叶突变体74101杂交得到BC1,观察F2和BC1中的表型并统计分离比,对其进行遗传分析,并利用R软件完成卡方检验。采取十六烷基三甲基溴化铵(CTAB)抽提
引物名称 Primer name | 正向引物(5'-3') Forward primer (5'-3') | 反向引物(5'-3') Reverse primer (5'-3') |
---|---|---|
phi087 | GAGAGGAGGTGTTGTTTGACACAC | ACAACCGGACAAGTCAGCAGATTG |
phi048 | GCAAACCTTGCATGAACCCGATTGT | CAAGCGTCCAGCTCGATGATTTC |
S13 | CTTCCTCCAGTCCCCGCAC | TTGGTGGGTTGCGGAAGAT |
SS19 | CCTGCCATCACCTCGCCT | AACTGGACGCCAAAGCACA |
K-27 | TACTAATGCTGACGATGATGGATC | TCTCTTGTGTTGGTTTCTCTCTCT |
K-79 | ATCAGCGTCGTCGGCATTATG | GATTGGGACCTCGGACTACACT |
K-129 | GCAACAACAGCAGGCACACT | GATTACGGCTCGCAAGACATCC |
K-138 | ACCCTACCCTAACTTGCTTGGA | GGACAGCATTGAGTTTCAGTGA |
利用在线软件 SignalP(https://services.healthtech.dtu.dk/service.php?SignalP-5.0)预测ZmNPPR5蛋白质的潜在信号肽。将ZmNPPR5基因CDS克隆到瞬时表达载体PC1300中,构建由CaMv 35S启动子驱动的融合基因ZmNPPR5-GFP,再将ZmNPPR5-GFP融合基因导入玉米原生质体。荧光信号使用徕卡TCS SP5 II(德国徕卡)激光扫描共聚焦显微镜检测。
突变体74101从芽开始就表现出黄化性状(

图1 野生型与突变体74101的表型
Fig.1 Phenotypic of the wild-type (WT) and the 74101 mutant
A:幼芽期植株, bar=0.5 cm; B:三叶期植株,bar=2 cm; C:九叶期植株,bar=12 cm
A: Phenotypic of maize plant at budding stage, bar=0.5 cm; B: Phenotypic of maize plant at three leaf stage, bar=2 cm; C: Phenotypic of maize plant at nine leaf stage, bar=12 cm

图2 野生型与突变体74101叶片光合色素含量和光合作用相关指数
Fig.2 Photosynthetic pigment content and photosynthetic correlation index in leaves of wild-type and mutant 74101
A:三叶期叶片光合色素含量;B:叶片净光合作用速率; C:叶片胞间二氧化碳浓度;D:气孔导度;E:蒸腾速率。*和**分别表示在 P<0.05和P<0.01水平上差异显著
A: Photosynthetic pigment content of the leaves at three leaf stage; B: Net photosynthetic rate of leaves; C: Leaf intercellular carbon dioxide concentration; D: Stomatal conductance; E: Transpiration rate. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively
为进一步探究叶片光合色素含量变化对光合速率的影响,测定了六叶期野生型和突变体74101的光合作用相关指数。结果显示,突变体74101的净光合速率、气孔导度分别下降25.63%、18.89%,胞间二氧化碳浓度升高47.45%,蒸腾速率无显著性差异(
为进一步探究突变体74101黄化表型是否与叶绿体结构变异有关,用透射电镜观察野生型和74101三叶期的玉米叶片叶绿体结构。结果表明,野生型叶绿体花环结构清晰,叶绿体内部类囊体基粒片层结构明显,排列整齐紧凑(

图3 野生型和突变体74101花环结构和叶肉细胞透射电镜观察
Fig.3 Observation of wreath structure and mesophyll cells of wild-type and mutant 74101 by transmission electron microscope
A: WT花环结构; B、C: WT 叶肉细胞叶绿体; D: 74101花环结构; E、F: 74101叶肉细胞叶绿体; G: 类囊体基粒; H: 淀粉粒
A: WT wreath structure; B,C: WT mesophyll cell chloroplast; D: 74101 wreath structure; E,F: 74101 mesophyll cell chloroplast; G: Thylakoid grana; H: Starch granule
叶色突变体74101经过多代自交后,用自交系B73与其组配遗传分离群体。正交和反交的后代表型一致,说明该材料属于细胞核遗传且基因位于常染色体上。F1表型正常,F2和BC1群体发生性状分离,F2正常植株和黄化植株的比例符合3∶1(
群体 Populations | 株数 Number | |||
---|---|---|---|---|
正常表型 Normal phenotype plants | 黄化表型 Etiolation phenotype plants | 总计 Total | ||
74101 × B73 | 892 | 284 | 1176 | 0.45351 |
(74101 × B73)× 74101 | 198 | 189 | 387 | 0.25476 |
利用208对均匀分布在10条染色体上的SSR标记筛选出61个多态性标记,将BC1群体中每4个黄叶表型的基因混池进行连锁分析,进一步利用F2群体中32株黄叶表型个体进行验证,初步将突变位点定位于第5号染色体phi087和phi048之间。通过BC1群体中189个黄化表型进行基因精细定位,加密3个SSR多态性标记,将目的基因定位在K-79和SS19之间约865kb的物理距离内。另外使用2587个F2突变个体和3个新设计的SSR多态性标记,最终将目的基因定位在K-138和K-27之间约76.05kb的物理区间内。玉米基因组数据库网站(maizeGDB,https://www.maizegdb.org/)预测该区域有4个开放阅读框(ORF,open reading frame),包括Zm00001eb252420、Zm00001eb252430、Zm00001eb252440和Zm00001eb252450。测序比对发现Zm00001eb252430基因发生点突变,该基因编码区第1126位核苷酸碱基C突变为T(

图4 玉米ZmNPPR5的精细定位及测序分析
Fig.4 Fine mapping and sequencing analysis of ZmNPPR5 in maize
A: 初定位于玉米5号染色体长臂phi087和phi048之间;B: BC1突变个体将其缩小至K-79和SS19之间;C: F2突变个体将其限定在K-138和K-27之间约76 kb物理距离内;D: 在76 kb定位区域内共有4个开放阅读框(ORF),灰色部分表示突变基因所在的ORF;E: ZmNPPR5基因在编码区外显子发生突变,深灰色方框代表外显子
A: Initially located between phi087 and phi048 on the long arm of chromosome 5; B: Then it was narrowed to a region between K-79 and SS19 using BC1 mutants; C: Then it was narrowed to a physical distance of about 76 kb between k-138 and k-27 using F2 mutants; D: There are four open reading frames (ORFs) in the 76 kb region, and the gray part represents the ORF of the mutant gene; E: Gene ZmNPPR5 is mutated in exon of coding region, dark gray box represents exon
从齐鲁师范学院购买Zm00001eb252430基因编码提前终止的EMS突变体,2021年海南鉴定拥有纯合位点的EMS突变体植株叶片黄化(

图5 EMS突变体验证
Fig.5 EMS mutation experience certificate
A: EMS突变体表型,bar=10 cm;B: 突变体74101和EMS突变体等位性验证后代表型,bar=0.5 cm
A: EMS mutant phenotype, bar=10 cm; B: Mutant 74101 and EMS mutant were represented after allelic verification, bar=0.5 cm
在线软件SignalP(https://services.healthtech.dtu.dk/service.php?SignalP-5.0)预测ZmNPPR5蛋白没有信号肽、导肽和转运肽,因此ZmNPPR5蛋白可能在细胞核中表达。将含有CaMv 35S启动子的ZmNPPR5-GFP载体转化到玉米原生质体中,ZmNPPR5-GFP与细胞核共定位(

图6 ZmNPPR5蛋白的亚细胞定位
Fig.6 Subcellular localization of ZmNPPR5 protein
PPR家族蛋白是陆生植物特有的,大多数位于叶绿体或线粒体中。玉米是植物中第一个发现存在PPR蛋白,已报道有数百种,但只有少数被鉴定出
线粒体定位的PPR蛋白突变通常导致植物生长障碍。Emp18基因的突变在玉米早期阻止胚胎和胚乳发育,最终导致胚胎致
目前在玉米中还没有发现定位于细胞核中的PPR蛋白,本研究利用玉米黄化突变体74101定位得到细胞核中表达的ZmNPPR5基因,为研究核定位的PPR蛋白在光合作用中的重要功能提供了新的遗传材料,后续将进一步探索该基因影响叶绿体发育和光合作用的机制,为核定位PPR蛋白功能解析提供理论参考。
参考文献
Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Current Biology ,2004,14(5): 354-362 [百度学术]
Hedtke B, Börner T, Weihe A . Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science, 1997, 227: 809-811 [百度学术]
Pogson B J, Albrecht V. Genetic dissection of chloroplast biogenesis and development: An overview. Plant Physiology, 2011, 155(4): 1545-1551 [百度学术]
Yu Q B, Huang C, Yang Z N. Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants. Front Plant Science, 2014, 5: 316 [百度学术]
del Campo E M. Post-transcriptional control of chloroplast gene expression. Gene Regulation and Systems Biology, 2009, 3: 31-47 [百度学术]
Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K. Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant And Cell Physiology, 2004, 45(9): 1194-1201 [百度学术]
Schmitz-Linneweber C, Williams-Carrie R E, Williams-Voelker P M, Kroeger T S, Vichas A, Barkan A. A pentatricopep-tide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell, 2006, 18(10): 2650-2663 [百度学术]
Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A. The pentatricopeptide repeat protein PPR5 sta-bilizes a specific tRNA precursor in maize chloroplasts. Molecular And Cellular Biology, 2008, 28(17): 5337-5347 [百度学术]
Barkan A, Small I. Pentatricopeptide repeat proteins in plants. Annual Review of Plant Biology, 2014, 65: 415-420 [百度学术]
Cheng S, Gutmann B, Zhong X, Ye Y, Fisher M F, Bai F, Castleden I, Song Y, Song B, Huang J, Liu X, Xu X, Lim B L, Bond C S, Yiu S M, Small I. Redefining the structural motifs that determine RNA binding and RNA editing by penta-tricopeptide repeat proteins in land plants. Plant Journal, 2016, 85(4): 532-547 [百度学术]
Ding Y H, Liu N Y, Tang Z S, Liu J, Yang W C. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embry-ogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell, 2006, 18(4): 815-830 [百度学术]
Hammani K, Gobert A, Hleibieh K, Choulier L, Small I, Giege P. An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation. Plant Cell, 2011, 23(2): 730-40 [百度学术]
Colcombet J, Lopez-Obando M, Heurtevin L, Bernard C, Martin K, Berthome R, Lurin C. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biology, 2013, 10(9): 1557-1575 [百度学术]
Haili N, Planchard N, Arnal N, Quadrado M, Vrielynck N, Dahan J, des Francs-Small C C, Mireau H. The MTL1 pen-tatricopeptide repeat protein is required for both translation and splicing of the mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis.Plant Physiology, 2016, 170(1): 354-366 [百度学术]
Wang G, Zhong M, Shuai B, Song J, Zhang J, Han L, Ling H, Tang Y, Wang G, Song R. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. New Phytologist, 2017, 214(4): 1563-1578 [百度学术]
Ren R C, Lu X, Zhao Y J, Wei Y M, Wang L L, Zhang L, Zhang W T, Zhang C, Zhang X S, Zhao X Y. Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize.Journal of Experimental Botany, 2019,70(21): 6163-6179 [百度学术]
Ren R C, Wang L L, Zhang L, Zhao Y J, Wu J W, Wei Y M, Zhang X S, Zhao X Y. DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the Cis-splicing of nad4 in maize mitochondria.Journal of Integrative Plant Biology, 2020, 62(3): 299-313 [百度学术]
Wang X, Yang Z, Zhang Y, Zhou W, Zhang A, Lu C. Pentatricopeptide repeat protein PHOTOSYSTEM I BIOGENESIS FACTOR2 is required for splicing of ycf3. Journal of Integrative Plant Biology, 2020, 62(11): 1741-1761 [百度学术]
Xu C, Song S, Yang Y Z, Lu F, Zhang M D, Sun F, Jia R, Song R, Tan B C. DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize.Plant Journal, 2020, 103(5): 1767-1782 [百度学术]
Schmitz-Linneweber C, Williams-Carrie R E, Williams-Voelker P M, Kroeger T S, Vichas A, Barkan A. A pentatricopep-tide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell, 2006, 18(10): 2650-2663 [百度学术]
Liu X Y, Jiang R C, Wang Y, Tang J J, Sun F, Yang Y Z, Tan B C. ZmPPR26, a DYW-type pentatricopeptide repeat protein, is required for C-to-U RNA editing at atpA-1148 in maize chloroplasts. Journal of Experimental Botany, 2021, 72(13): 4809-4821 [百度学术]
Khrouchtchova A, Monde R A, Barkan A. A short PPR protein required for the splicing of specific group II introns in angi-osperm chloroplasts. RNA, 2012, 18(6): 1197-1209 [百度学术]
Wang Y, Ren Y L, Zhou K N, Liu L L, Wang J L, Xu Y, Zhang H, Zhang L, Feng Z M, Wang L W, Ma W W, Wang Y L, Guo X P, Zhang X, Lei C L, Cheng Z J, Wan J M. WHITE STRIPE LEAF4 encodes a novel P-Type PPR protein required for chloroplast biogenesis during early leaf development. Front Plant Science, 2017, 8: 1116 [百度学术]
Hao Y Y, Wang Y L, Wu M M, Zhu X P, Teng X, Sun Y L, Zhu J P, Zhang Y Y, Jing R N, Lei J, Li J F, Bao X H, Wang C M, Wang Y H, Wan J M. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. Journal of Experimental Botany, 2019, 70(18): 4705-4720 [百度学术]
Arnon D I. Copper enzymes in isolated chloroplasts. Plant Physiology, 1949, 24(1): 1-15 [百度学术]
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325 [百度学术]
Xie K, Wu S W, Li Z W, Zhou Y, Zhang D F, Dong Z Y, An X L, Zhu T T, Zhang S M, Liu S S, Li J P, Wan X Y.Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theoretical and Applied Genetics, 2018, 131(6):1363-1378 [百度学术]
Barkan A, Small I.Pentatricopeptide repeat proteins in plants. Annual review of plant biology,2014,65:415-442 [百度学术]
Zhao Y, Xu W, Zhang Y, Sun S, Wang L, Zhong S, Zhao X, Liu B. PPR647 protein is required for chloroplast RNA editing, splicing and chloroplast development in maize. International Journal of Molecular Sciences, 2021, 22: 11162 [百度学术]
Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Hartel B, Brennicke A. Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):5104-5109 [百度学术]
Igarashi K, Kazama T, Toriyama K. A gene encoding pentatricopeptide repeat protein partially restores fertility in RT98-Type cytoplasmic male-sterile rice. Plant Cell Physiology, 2016, 57(10):2187-2193 [百度学术]
Thyssen G N, Fang D D, Zeng L, Song X, Delhom C D, Condon T L, Li P, Kim H J. The Immature fiber mutant Phe-notype of cotton (Gossypium hirsutum) is linked to a 22-bp Frame-shift deletion in a mitochondria targeted pentatricopep-tide repeat gene. Genes Genomes Genetics, 2016, 6(6):1627-1633 [百度学术]
Schallenberg-Rudinger M, Oldenkott B, Hiss M, Trinh P L, Knoop V, Rensing S A. A single-target mitochondrial RNA editing factor of funaria hygrometrica can fully reconstitute RNA editing at two sites in physcomitrella patens. Plant Cell Physiology, 2017, 58(3): 496-507 [百度学术]
Li X L, Huang W L, Yang H H, Jiang R C, Sun F, Wang H C, Zhao J, Xu C H, Tan B C.EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. The New Phytologist,2019, 221:896-907 [百度学术]