摘要
小麦是多数国家重要口粮作物之一,干旱严重影响小麦的生长发育和产量。为挖掘与小麦根部性状抗旱性相关的SNP位点及候选基因,本研究以183份新疆春小麦自然群体为材料,使用20% PEG-6000溶液和正常营养液进行苗期抗旱水培试验,对总根长、根表面积、根体积、根平均直径、根鲜重、根干重、根尖数和最长根长等8个小麦根部性状的测定值进行统计分析,对根部性状的抗旱系数进行相关性分析,并结合55K基因芯片对根部性状的抗旱系数进行混合线性模型(Q+K)的全基因组关联分析。研究结果表明,正常培养下,8个根部性状变异系数为17.81%~70.71%,PEG胁迫处理下,8个根部性状变异系数为20.01%~61.62%。小麦根部性状抗旱系数的相关性分析结果表明,根平均直径抗旱系数与总根长抗旱系数、根尖数抗旱系数和最长根长抗旱系数呈极显著负相关,总根长抗旱系数与根表面积抗旱系数的相关系数最大,为0.74。全基因组关联分析结果显示,共定位到54个与根部抗旱性状相关的SNP位点(P≤0.001),单个位点可解释表型变异范围为6.18%~18.74%,分布在除3B、3D、5D、6D和7D外的16条染色体上。共检测到多效位点6个,分别位于1A、5A、7A、1B、5B和2D染色体上,可解释6.55%~18.74%的表型变异。其中,位于5A染色体上的AX-110482078~AX-110400975与根尖数、根体积和最长根长显著关联,贡献率为8.74%~15.44%。对显著关联的54个位点进行候选基因预测,获得TraesCS4A01G424000、TraesCS6A01G047200、TraesCS5B01G056600等9个可能与小麦根部性状抗旱性相关的基因,这些基因可能通过调控转脂蛋白、过氧化物酶、MYB转录因子等参与小麦逆境生理调控。
干旱影响小麦的生长发育和产量,全球大多数国家都受到干旱的影
新疆作为我国国土面积最大的地区,同时也是我国受干旱影响较为严重的地区,新疆地区的小麦生产与国家小麦供给息息相关。目前,对于新疆春小麦抗旱性基因挖掘方面的研究较少。本研究以新疆春小麦地方品种和育成品种共183份为材料,使用PEG-6000进行苗期抗旱试验,研究小麦苗期根系形态变化,并结合55K SNP芯片对根部抗旱性状进行全基因组关联分析,得到与小麦抗旱性相关的显著位点,为小麦抗旱育种做出贡献。
参试材料共183份,包括地方品种139份,育成品种44份。(详见https://doi.org/10.13430/j.cnki.jpgr. 20220911002,
性状 Trait | 处理 Treatment | 最小值 Min. | 最大值 Max. | 均值 Mean | 标准差 SD | 变异系数(%) CV | 遗传力 |
---|---|---|---|---|---|---|---|
总根长(cm) TRL | C | 58.54 | 218.50 | 118.51 | 31.16 | 26.29 | 0.71 |
T | 25.77 | 111.96 | 69.38 | 17.31 | 24.95 | ||
根表面积(c | C | 8.01 | 40.00 | 18.76 | 8.32 | 44.39 | 0.86 |
T | 5.56 | 25.11 | 11.79 | 4.81 | 40.80 | ||
根体积(c | C | 0.09 | 1.30 | 0.38 | 0.27 | 70.71 | 0.88 |
T | 0.08 | 0.74 | 0.26 | 0.16 | 61.62 | ||
根平均直径(mm)RD | C | 0.32 | 1.09 | 0.58 | 0.19 | 32.04 | 0.89 |
T | 0.37 | 1.18 | 0.68 | 0.18 | 27.16 | ||
根尖数 RTN | C | 32.50 | 319.67 | 116.06 | 45.88 | 39.53 | 0.64 |
T | 20.00 | 161.33 | 48.47 | 21.41 | 44.17 | ||
最长根长(cm) MRL | C | 8.70 | 28.45 | 17.30 | 3.08 | 17.81 | 0.79 |
T | 5.50 | 20.84 | 14.88 | 2.98 | 20.01 | ||
根鲜重(mg) RFW | C | 59.50 | 306.50 | 111.87 | 31.11 | 27.80 | 0.67 |
T | 23.00 | 128.72 | 74.24 | 19.18 | 25.83 | ||
根干重(mg) RDW | C | 6.33 | 74.00 | 12.90 | 8.52 | 66.07 | 0.52 |
T | 3.00 | 17.22 | 9.74 | 2.47 | 25.36 |
C:对照组;T:胁迫组;下同
TRL: Total root length; SA: Root surface area; RV: Root volume; RD: Root mean diameter; RTN: Root tip number; MRL: Maximum root length; RFW: Root fresh weight; RDW: Root dry weight; C: Control; T: 20% PEG stress; The same as below
参照《小麦抗旱性鉴定评价技术规范GB/T21127-2007》的方
利用中晶(Scanmaker)i800plus扫描仪将根系扫描成图像,采用万深根系分析系统分析其总根长、根表面积、根体积、根平均直径和根尖数。采用直接测量法测定其最长根长,用千分之一天平对其根鲜重进行测量,将根系放于烘箱中,105 ℃杀青15 min后80 ℃烘干至恒重,千分之一天平测定其根干重,3次重复的平均值即为材料的表型数据,各个性状抗旱系数(DC_X)=干旱处理下指标平均值/正常处理指标平均值。
用Microsoft Excel 2007进行试验数据处理,并绘制图表,选用SPSS 21.0数据处理系统进行统计分析。使用QTL IciMapping V4.1软件计算遗传
小麦苗期PEG胁迫试验结果表明(

图1 正常与PEG胁迫条件下根部性状变化
Fig.1 Changes of root traits under normal and PEG stress conditions
PEG胁迫下小麦根部性状抗旱系数的相关性分析结果表明(
抗旱系数 Drought tolerance coefficient | 总根长抗旱系数DCTRL | 根表面积抗旱系数DCSA | 根体积抗旱系数 DCRV | 根平均直径抗旱系数 DCRD | 根尖数抗旱系数 DCRTN | 最长根长抗旱系数DCMRL | 根鲜重抗旱系数DCRFW | 根干重抗旱系数DCRDW |
---|---|---|---|---|---|---|---|---|
总根长抗旱系数 DCTRL | 1 | |||||||
根表面积抗旱系数 DCSA |
0.7 | 1 | ||||||
根体积抗旱系数 DCRV |
0.2 |
0.4 | 1 | |||||
根平均直径抗旱系数 DCRD |
-0.4 | -0.01 |
0.4 | 1 | ||||
根尖数抗旱系数 DCRTN |
0.6 |
0.5 |
0.1 |
-0.4 | 1 | |||
最长根长抗旱系数DCMRL |
0.5 |
0.3 |
0.1 |
-0.3 |
0.3 | 1 | ||
根鲜重抗旱系数 DCRFW |
0.4 |
0.5 |
0.3 | 0.10 |
0.1 |
0.3 | 1 | |
根干重抗旱系数 DCRDW |
0.2 |
0.3 |
0.2 | 0.06 |
0.1 |
0.1 |
0.4 | 1 |
*,**分别代表在P <0.05,P <0.01水平上差异显著
DCTRL: Drought resistance coefficient of total root length; DCSA: Drought resistance coefficient of root surface area; DCRV: Drought resistance coefficient of root volume; DCRD: Drought resistance coefficient of average root diameter; DCRTN: Drought resistance coefficient of root tip number; DCMRL: Drought resistance coefficient of maximum root length; DCRFW: Drought resistance coefficient of root fresh weight; DCRDW: Drought resistance coefficient root dry weight; *, ** represent significant differences at P < 0.05, P < 0.01 levels respectively
使用55 K基因芯片对183份小麦品种(系)根部性状抗旱系数进行关联分析,采用混合线性模型(Q+K),共定位到54个与根部抗旱相关性状的位点,单个位点可解释的表型变异范围为6.18%~18.74%(
性状 Trait | 标记 Marker | 染色体 Chr | 位置(Mb) Position | P值 P-value | 表型贡献率(%) |
---|---|---|---|---|---|
总根长 TRL | AX-109915564 | 2D | 6.16 |
4.41 | 8.72 |
根表面积 SA | AX-110972394 | 1B | 688.36 |
6.14 | 8.53 |
AX-109862713 | 6B | 27.67 |
5.33 | 6.98 | |
AX-95127388 | 1D | 484.19 |
4.74 | 8.84 | |
AX-109915564 | 2D | 6.16 |
7.45 | 8.30 | |
根体积 RV | AX-109286564 | 4A | 45.56 |
3.76 | 17.02 |
AX-109980263 | 4A | 104.86 |
6.56 | 15.99 | |
AX-109310695 | 5A | 566.64 |
9.69 | 15.44 | |
AX-109498898 | 6A | 6.27 |
6.61 | 7.52 | |
AX-109078318 | 6A | 24.33 |
7.26 | 15.84 | |
AX-111660155 | 7A | 71.35 |
1.02 | 18.74 | |
AX-110397972 | 5B | 688.97 |
5.85 | 12.89 | |
根平均直径 RD | AX-111004678 | 1A | 32.45 |
6.70 | 6.55 |
AX-109824014~AX-111554770 | 5A | 550.57~552.06 |
4.47 | 6.18~8.83 | |
AX-111162124 | 6B | 680.86 |
7.21 | 6.47 | |
AX-111102830 | 7B | 691.54 |
7.95 | 6.37 | |
根尖数 RTN | AX-110551014 | 3A | 54.87 |
9.25 | 8.02 |
AX-108734284~AX-108755294 | 3A | 727.00~727.34 |
3.17 | 7.62~9.27 | |
AX-111144524 | 5A | 440.28 |
9.79 | 10.73 | |
AX-110482078 | 5A | 559.02 |
3.47 | 9.32 | |
AX-109600915 | 7A | 77.48 |
6.70 | 11.79 | |
AX-94898597 | 2B | 23.12 |
1.62 | 12.97 | |
AX-108955392 | 4B | 662.78 |
9.95 | 10.72 | |
AX-109953350 | 5B | 67.18 |
6.38 | 11.26 | |
AX-86167574 | 7B | 384.37 |
9.55 | 6.22 | |
AX-110944363 | 2D | 28.87 |
9.62 | 8.22 | |
AX-109894807 | 2D | 602.51 |
2.95 | 9.55 | |
最长根长 MRL | AX-111178879 | 1A | 305.60 |
2.84 | 12.33 |
AX-110567094~AX-111450487 | 2A | 706.99~707.06 |
9.05 | 8.05 | |
AX-110721315 | 3A | 706.06 |
8.09 | 6.41 | |
AX-108827999~AX-111023790 | 3A | 621.83~621.87 |
3.13 | 7.46~8.14 | |
AX-111612217 | 4A | 694.99 |
5.38 | 11.52 | |
AX-110400975 | 5A | 567.92 |
5.12 | 8.74 | |
AX-108935010 | 4B | 547.45 |
2.64 | 12.99 | |
AX-110687704 | 7B | 38.49 |
2.89 | 9.53 | |
AX-108942316 | 7B | 101.42 |
2.60 | 9.62 | |
根鲜重 RFW | AX-111622338~AX-108786039 | 1B | 687.58~687.68 |
4.24 | 8.70~8.81 |
AX-109324513 | 4B | 612.26 |
9.65 | 7.97 | |
AX-111101199 | 7B | 242.09 |
2.88 | 9.31 | |
AX-110912062~AX-109460486 | 7B | 203.70~209.35 |
5.12 | 6.27~8.59 | |
AX-111580022~AX-109397636 | 7B | 214.01~220.95 |
8.06 | 6.27~6.31 | |
AX-111478182 | 4D | 363.57 |
7.96 | 6.33 | |
根干重 RDW | AX-108855740 | 1A | 39.43 |
3.11 | 9.29 |
AX-110964697 | 1A | 113.88 |
5.46 | 8.62 | |
AX-110924520 | 1A | 154.58 |
5.46 | 8.62 | |
AX-110173584 | 1A | 219.10 |
5.46 | 8.62 | |
AX-111567492 | 4A | 460.73 |
6.03 | 8.51 | |
AX-110059659 | 5A | 456.17 |
6.73 | 8.42 | |
AX-94418601 | 6A | 574.48 |
5.38 | 8.63 | |
AX-111472681 | 1B | 289.89 |
9.58 | 8.00 | |
AX-108885690 | 1B | 448.54 |
6.58 | 8.39 | |
AX-109934166 | 5B | 60.88 |
5.57 | 8.74 | |
AX-110479150 | 6B | 706.63 |
6.57 | 8.50 | |
AX-109335338 | 7B | 636.04 |
2.62 | 9.50 |

(图2)

左:曼哈顿图;右:Q-Q图
Left: Manhattan; Right: Q-Q
图2 根部性状的Q-Q图和曼哈顿图
Fig. 2 Q-Q and Manhattan plots of root traits
在54个与抗旱相关的位点中,将在相同条件下同时检测到两个和两个以上性状显著关联的8 Mb范围内的位点看作多效性位点,本研究共检测到多效位点6个,分别位于1A、5A、7A、1B、5B和2D染色体上,贡献率为6.55%~18.74%(
性状 Trait | 标记 Marker | 染色体 Chr | 位置(Mb) Position | P值 P-value | 表型贡献率(%) |
---|---|---|---|---|---|
根平均直径、根干重 RD,RDW | AX-111004678~AX-108855740 | 1A | 32.45~39.43 |
3.11 | 6.55~9.29 |
根尖数、根体积、最长根长 RTN,RV,MRL | AX-110482078~AX-110400975 | 5A | 559.02~567.92 |
3.47 | 8.74~15.44 |
根体积、根尖数 RV,RTN | AX-111660155~AX-109600915 | 7A | 71.35~77.48 |
1.02 | 11.79~18.74 |
根鲜重、根表面积 RFW,SA | AX-111622338~AX-110972394 | 1B | 687.58~688.36 |
4.24 | 8.53~8.81 |
根干重、根尖数 RDW,RTN | AX-109934166~AX-109953350 | 5B | 60.88~67.18 |
6.38 | 8.74~11.26 |
总根长、根表面积 TRL,SA | AX-109915564 | 2D | 6.16 |
4.41 | 8.30~8.72 |
将全基因组关联分析得到的54个SNP标记,在普通小麦中国春基因组数据库中进行检索,获取与小麦根部抗旱性状相关的基因序列,并根据基因功能的释析,共得到与小麦根部性状关联的9个基因(
性状 Trait | 标记 Marker | 染色体 Chr | 物理位置(Mb) Position | 基因 Gene | 基因注释或编码蛋白 Gene annotation or coding protein |
---|---|---|---|---|---|
根体积 RV | AX-109286564 | 4A | 45.56 | TraesCS4A01G054700 | 钙依赖性蛋白激14 |
AX-109310695 | 5A | 566.64 | TraesCS5A01G354400 | 富含亮氨酸的重复蛋白激酶家族蛋白 | |
AX-109078318 | 6A | 24.33 | TraesCS6A01G047200 | 过氧化物酶 | |
AX-111660155 | 7A | 71.35 | TraesCS7A01G114800 | 肌动蛋白交联蛋白(DUF569) | |
AX-110397972 | 5B | 688.97 | TraesCS5B01G529800 | 跨膜蛋白,推测(DUF594) | |
根尖数RTN | AX-111144524 | 5A | 440.28 | TraesCS5A01G225200 | 非特异性丝氨酸/苏氨酸蛋白激酶 |
AX-109953350 | 5B | 67.18 | TraesCS5B01G056600 | MYB转录因子 | |
最长根长 MRL | AX-111612217 | 4A | 694.99 | TraesCS4A01G424000 | 转脂蛋白 |
AX-108935010 | 4B | 547.45 | TraesCS4B01G271600 | F-box家族蛋白 |
苗期是小麦生长发育的关键时
相关性分析表明根尖数抗旱系数与总根长抗旱系数极显著正相关,根鲜重抗旱系数与根干重抗旱系数极显著正相关,这与李
随着分子生物技术的不断进步,作物抗旱性及遗传基础方面的研究在分子水平上的阐释变得越来越重
在普通小麦中国春基因组数据库中将全基因组关联分析得到的54个SNP标记进行搜索,获取与小麦根部抗旱性状相关的基因序列,并依据相关基因功能的注释,推断出与小麦根部抗旱性关联的9个基因。其中位于4A染色体上的TraesCS4A01G054700编码钙依赖性蛋白激14,该家族在调控植物生长、发育与物质合成等过程中发挥了重要功
本研究以183份新疆春小麦自然群体为材料,使用20% PEG-6000进行苗期抗旱水培试验,对8个根部性状的抗旱系数进行全基因组关联分析,共定位到54个与小麦根部抗旱性状相关的位点,贡献率为6.18%~18.74%,分布在除3B、3D、5D、6D和7D外的16条染色体上。共检测到多效位点6个,位于1A、5A、7A、1B、5B和2D染色体上,贡献率为6.55%~18.74%。候选基因预测获得TraesCS4A01G054700、TraesCS4A01G424000、TraesCS5A01G354400等9个可能与小麦根部性状抗旱性相关的基因,这些基因可能通过调控钙依赖性蛋白激14、转脂蛋白、富含亮氨酸的重复蛋白激酶家族蛋白等参与小麦逆境生理调控。
参考文献
Liu C Y, Yang Z Y, Hu Y G. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crops Research, 2015, 179: 103-112 [百度学术]
Dai A. Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2 (1): 45-65 [百度学术]
Curtis T, Halford N G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. The Annals of Applied Biology, 2014, 164 (3): 354-372 [百度学术]
赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30 (5): 886-895 [百度学术]
Zhao G C.Study on Chinese wheat planting regionalization (Ⅰ). Journal of Triticeae Crops, 2010, 30 (5): 886-895 [百度学术]
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44 (7): 988-999 [百度学术]
Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44 (7): 988-999 [百度学术]
Thomas D F. Amber Waves: The extraordinary biography of wheat, from wild grass to world megacrop. Agricultural History, 2021, 95 (2): 382-383 [百度学术]
檀竹平, 高雪萍. 1997-2016年中国小麦种植区域比较优势及空间分布. 河南农业大学学报, 2018, 52 (5): 825-838 [百度学术]
Tan Z P, Gao X P. Comparative advantage and spatial distribution of wheat in China from 1997 to 2016. Journal of Henan Agricultural University, 2018, 52 (5): 825-838 [百度学术]
方燕, 闵东红, 高欣, 王中华, 王军, 刘萍, 刘霞. 不同抗旱性冬小麦根系时空分布与产量的关系. 生态学报, 2019, 39 (8): 2922-2934 [百度学术]
Fang Y, Min D H, Gao X, Wang Z H, Wang J, Liu P, Liu X. Relationship between spatiotemporal distribution of roots and grain yield of winter wheat varieties with differing drought tolerance. Acta Ecologica Sinica, 2019, 39 (8): 2922-2934 [百度学术]
王稼苜, 张志勇, 欧行奇, 胡杨. PEG胁迫对8个不同小麦品种幼苗根系的影响. 河南科技学院学报: 自然科学版, 2015, 43 (3) :1-5 [百度学术]
Wang J M, Zhang Z Y, Ou X Q, Hu Y. Effect of water stress by PEG on the seedling root characteristics of 8 wheat varieties. Journal of Henan Institute of Science and Technology:Natural Science Edition, 2015, 43 (3) :1-5 [百度学术]
苗青霞, 方燕, 陈应龙. 小麦根系特征对干旱胁迫的响应. 植物学报, 2019, 54 (5): 652-661 [百度学术]
Miao Q X, Fang Y, Chen Y L. Studies in the responses of wheat root traits to drought stress. Chinese Bulletin of Botany, 2019, 54 (5): 652-661 [百度学术]
刘洋, 王克森, 刘秀坤, 王利彬, 王灿国, 郭军, 程敦公, 穆平, 刘建军, 李豪圣, 赵振东, 曹新有, 张玉梅. 小麦幼苗根系相关性状QTL定位与分析. 山东农业科学, 2021,53 (3): 1-9 [百度学术]
Liu Y, Wang K S, Liu X K, Wang L B, Wang C G, Guo J, Cheng D G, Mu P, Liu J J, Li H S, Zhao Z D, Cao X Y, Zhang Y M. QTL mapping and analysis of root related traits in wheat seedlings. Shandong Agricultural Sciences, 2021, 53 (3): 1-9 [百度学术]
凌宏清. 小麦及其近缘种基因组测序研究进展与发展趋势. 麦类作物学报, 2016, 36 (4): 397-403 [百度学术]
Ling H Q. Progress and perspectives of genome sequencing in wheat and its relatives. Journal of Triticeae Crops, 2016, 36 (4): 397-403 [百度学术]
陈贵菊, 靳义荣, 刘彩云, 贾德新, 樊庆琦, 刘金栋, 刘鹏. 普通小麦根系建成相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21 (4): 975-983 [百度学术]
Chen G J, Jin Y R, Liu C Y, Jia D X, Fan Q Q, Liu J D, Liu P. Genome-wide association study of root system architecture related traits in common wheat (Triticum aestivum L.). Journal of Plant Genetic Resources, 2020, 21 (4): 975-983 [百度学术]
王树彬. 硬粒小麦核心种质遗传多样性及农艺和抗旱性状全基因组关联分析. 泰安: 山东大学, 2020 [百度学术]
Wang S B. Genetic diversity analysis and genome-wide association study on agronomic / drought-related traits of a durum core germplasm collection. Taian: Shandong University, 2020 [百度学术]
屈春艳. 水旱条件下小麦产量性状和抗旱性的全基因组关联分析. 泰安: 山东农业大学, 2018 [百度学术]
Qu C Y. Genome-wide association study on yield traits and drought tolerance under irrigation and drought conditions in wheat. Taian: Shandong Agricultural University, 2018 [百度学术]
张政. 小麦抗旱种质资源的筛选与相关性状的全基因组关联分析. 晋中: 山西农业大学, 2019 [百度学术]
Zhang Z. Screening of wheat drought-tolerant germplasm resources and genome-wide association analysis of related traits (Triticum aestivum L.). Jinzhong: Shanxi Agricultural University, 2019 [百度学术]
徐鑫, 张德华, 赵吉顺, 孙海丽, 李小军. 普通小麦小穗粒数性状全基因组关联分析. 植物遗传资源学报, 2022, 23 (4): 1098-1110 [百度学术]
Xu X, Zhang D H, Zhao J S, Sun H L, Li X J. Genome-wide association study of grain number per spikelet in bread wheat. Journal of Plant Genetic Resources, 2022, 23 (4): 1098-1110 [百度学术]
中国国家标准化管理委员会. GB/T21127-2007小麦抗旱性鉴定评价技术规范. 北京: 中国标准出版社, 2007 [百度学术]
Standardization Administration of the People's Republic of China. GB/T21127-2007 Technical Specification of Identification and evaluation for drought resistance in Wheat. Beijing: Standards Press of China, 2007 [百度学术]
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3 (3): 269-283 [百度学术]
严勇亮, 时晓磊, 张金波, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2021, 54 (19): 4033-4047 [百度学术]
Yan Y L, Shi X L, Zhang J B, Geng H W, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain quality related characteristics of spring wheat. Scientia Agricultura Sinica, 2021, 54 (19): 4033-4047 [百度学术]
Yang Y, Chai Y M, Zhang X, Lu S, Zhao Z C, Wei D, Chen L, Hu Y G. Multi-Locus GWAS of quality traits in bread wheat: Mining more candidate genes and possible regulatory network. Frontiers in Plant science, 2020, 11: 3-4 [百度学术]
满君霞, 张国华, 徐加利, 吴盼盼, 韩旭, 赵岩, 李斯深. 小麦RIL群体苗期抗旱性状的QTL分析. 麦类作物学报, 2019, 39 (8): 912-919 [百度学术]
Man J X, Zhang G H, Xu J L, Wu P P, Han X, Zhao Y, Li S S. QTL mapping for drought resistance related traits in wheat using RIL population at seedling stage. Journal of Triticeae Crops, 2019, 39 (8): 912-919 [百度学术]
胡雯媚, 王思宇, 樊高琼, 刘运军, 郑文, 王强生, 马宏亮. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选. 麦类作物学报, 2016, 36 (2): 182-189 [百度学术]
Hu W M, Wang S Y, Fan G Q, Liu Y J, Zheng W, Wang Q S, Ma H L. Analysis on the drought resistance and screening of drought sesistance appraisal index of wheat cultivars in seedling stage in Southwest Area. Journal of Triticeae Crops, 2016, 36 (2): 182-189 [百度学术]
时晓磊, 严勇亮, 石书兵, 王继庆, 谢磊, 张金波, 耿洪伟. 小麦根部耐盐性状全基因组关联分析. 植物遗传资源学报, 2021, 22 (1): 57-73 [百度学术]
Shi X L, Yan Y L, Shi S B, Wang J Q, Xie L, Zhang J B, Geng H W. Genome-wide association study of salt tolerance related root traits in wheat. Journal of Plant Genetic Resources, 2021, 22 (1): 57-73 [百度学术]
张莹. 干旱条件下小麦苗期和花后生物量QTL定位及抗旱性种质资源筛选. 泰安: 山东农业大学, 2016 [百度学术]
Zhang Y. QTL mapping of biomass for seedling and after blooming wheat under drought condition and selection of drought resistance germplasm. Taian: Shandong Agricultural University, 2016 [百度学术]
单长卷. 水分胁迫对洛麦9133幼苗根系生长特征的影响. 河南科技学院学报: 自然科学版, 2010, 38 (3): 8-11 [百度学术]
Shan C J. Effect of water stress on the growth characteristics of luomai 9133 seedling. Journal of Henan Institute of Science and Technology:Natural Science Edition, 2010, 38 (3): 8-11 [百度学术]
李慧. 节节麦苗期抗旱性综合评价. 雅安: 四川农业大学, 2014 [百度学术]
Li H. Comprehensive evaluation of drought resistance in Aegilops tauschii Coss seedlings stage. Ya'an: Sichuan Agricultural University, 2014 [百度学术]
王巧玲. 小麦苗期抗旱相关性状关联分析及种质资源的筛选. 泰安: 山东农业大学, 2018 [百度学术]
Wang Q L. Association analysis of drought resistance related traits in wheat seedling stage and selection of germplasm resources. Taian: Shandong Agricultural University, 2018 [百度学术]
Garcia-Suarez J V, Diazde L J L, Roder M S. Identification of QTLs and associated molecular markers related to starch degra-dation in wheat seedlings (Triticum aestivum L.) under saline stress. Cereal Research Communications, 2010, 38 (2): 163-174 [百度学术]
Mathew I, Shimelis H, Shayanowako A I T. Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS ONE, 2019, 14 (12): 10-19 [百度学术]
Li H W, Wang G, Zheng Q, Li B, Jing R L, Li Z S. Genetic analysis of biomass and photosynthetic parameters in wheat grown in different light intensities. Journal of Integrative Plant Biology, 2014, 56 (6): 594-604 [百度学术]
周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21 (2): 431-445 [百度学术]
Zhou S Y, Bi H H, Cheng X Y, Zhang X R, Run Y X, Wang H H, Mao P J, Li H X, Xu H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. Journal of Plant Genetic Resources, 2020, 21 (2) : 431-445 [百度学术]
任永哲, 徐艳花, 贵祥卫, 王素平, 丁锦平, 张庆琛, 马原松, 裴冬丽. 盐胁迫下调控小麦苗期性状的QTL分析. 中国农业科学, 2012, 45 (14): 2793-2800 [百度学术]
Ren Y Z, Xu Y H, Gui X W, Wang S P, Ding J P, Zhang Q C, Ma Y S, Pei D L. QTLs analysis of wheat seedling traits under salt stress. Scientia Agricultura Sinica, 2012, 45 (14): 2793-2800 [百度学术]
Xu Y F, An D G, Liu D C, Zhang A M, Xu H X, Li B. Mapping QTLs with epistatic effects and QTL×treatment interactions for salt tolerance at seedling stage of wheat. Euphytica, 2012, 186 (1): 233-245 [百度学术]
Bai C H, Liang Y L, Hawkesford M J. Identification of QTL associated with seedling root traits and their correlation with plant height in wheat. Journal of Experimental Botany, 2013, 64 (6): 1745-1753 [百度学术]
陈晓杰. 中国冬小麦抗旱指标评价、种质筛选及重要性状与SSR标记的关联分析. 咸阳: 西北农林科技大学, 2013 [百度学术]
Chen X J.Evaluation of drought tolerance index, selection of drought tolerant varieties and association analysis of important traits with SSR markers in Chinese winter bread wheat. Xianyang: Northwest A&F University, 2013 [百度学术]
王博华, 任毅, 时晓磊, 王继庆, 谢磊, 加娜尔·拜合提, 耿洪伟. 干旱胁迫下小麦苗期根系性状的全基因组关联分析. 植物遗传资源学报, 2022, 23(4): 1111-1123 [百度学术]
Wang B H, Ren Y, Shi X L, Wang J Q, Xie L, Baiheti J, Geng H W. Genome-wide association analysis of seedling root traits in wheat under drought stress. Journal of Plant Genetic Resources, 2022, 23(4): 1111-1123 [百度学术]
徐梦军. 小麦钙依赖性蛋白激酶TaCPK34在干旱胁迫和淀粉合成中的功能. 郑州: 河南农业大学, 2018 [百度学术]
Xiu M J. Function of calcium-dependent protein kinase TACPK34 in drought stress and starch synthesis in wheat. Zhengzhou: Henan Agricultural University, 2018 [百度学术]
孙小艳, 朱泳, 赵明敏, 李志新, 邹华文. 玉米转脂蛋白基因ZmLTP3的克隆及表达特性分析. 玉米科学, 2014, 22(1): 62-66 [百度学术]
Sun X Y, Zhu Y, Zhao M M, Li Z X, Zou H W. Cloning and characterization of a lipid transfer protein Gene, ZmLTP3, from Maize. Journal of Maize Sciences, 2014,22(1): 62-66 [百度学术]
李姝诺, 杨颖博, 马雪祺, 李元玉, 张国宁, 陈万生, 肖莹. 菘蓝中富含亮氨酸重复序列型类受体蛋白激酶基因IiLTK的克隆与表达分析. 植物生理学报, 2021, 57(9): 1715-1726 [百度学术]
Li S N, Yang Y B, Ma X Q, Li Y Y, Zhang G N, Chen W S, Xiao Y. Cloning and expression analysis of leucine-rich repeat type receptor-like protein kinase IiLTK from Isatis tinctoria. Plant Pysiology Journal, 2021, 57(9) : 1715-1726 [百度学术]
郭泽坤. 丝氨酸/苏氨酸蛋白质激酶BRSK2功能的初步研究. 上海: 复旦大学, 2004 [百度学术]
Guo Z K. Preliminary study on the function of serine/threonine protein kinase BRSK2. Shanghai: Fudan University, 2004 [百度学术]
陈雨桐, 张佳丽, 胡锦瑜, 刘桂芝, 苏芹, 黄梦迪, 田娜, 刘硕谦. 茶树过氧化物酶基因CsPRX4克隆与表达模式分析. 分子植物育种, 2022, http://kns.cnki.net/kcms/detail/46.1068.S.20221007.1620.010.html [百度学术]
Chen Y T, Zhang J L, Hu J Y, Liu G Z, Su Q, Huang M D, Tian N , Liu S Q. Cloning and expression pattern analysis of CsPRX4 of tea tree peroxidase gene. Molecular Plant Breeding, 2022, http://kns.cnki.net/kcms/detail/46.1068.s.20221007.1620.010.html [百度学术]
Navarro-Quezada A, Schumann N, Quint M. Plant F-box protein evolution is determined by lineage-specific timing of major gene family expansion waves. PLoS ONE, 2013, 8(7): e68672 [百度学术]