摘要
EIN3/EILs(Ethylene-insensitive proteins/ethylene-insensitive 3-like)家族蛋白是乙烯信号转导途径中的主要成员,在植物生长发育及胁迫响应中发挥着重要调控作用。本研究以玉米(Zea Mays L.)自交系B73为材料,从中分离了乙烯信号转导相关的ZmEIL2基因,并对其进行生物信息学、亚细胞定位及表达模式分析。结果表明,ZmEIL2基因的开放阅读框(ORF, open reading frame)全长1,788 bp,编码595个氨基酸残基,蛋白分子量为63.81 kD,理论等电点为6.34,保守结构域分析表明ZmEIL2基因具有EIN3/EILs家族所特有的EIN3结构域。系统进化分析表明ZmEIL2蛋白与高粱(Sorghum bicolor L.) SbEIL1蛋白亲缘关系最近,与拟南芥(Arabidopsis thaliana L.)和大豆(Glycine max (L.) Merr.)的EIL蛋白亲缘关系较远,且不同物种间存在明显的种属特性。亚细胞定位发现该基因同时定位于细胞膜和细胞核。组织特异性表达分析表明ZmEIL2基因在玉米苞叶中的表达量最高,其次为雌穗、雄穗和花丝,在穗位叶中的表达量最低。同时,ZmEIL2基因的表达受到脱水、PEG、ABA、高盐、高温和低温等非生物胁迫的显著诱导,其中对PEG、ABA、高盐的响应较为强烈,同时叶片中ZmEIL2基因的表达水平明显高于茎和根系。研究结果将为深入研究ZmEIL2基因响应逆境胁迫的分子机理奠定理论基础。
乙烯(Ethylene)是植物体内一种重要的内源激素,调控植物种子萌发、细胞伸长、叶片衰老、生殖、果实成熟等多个生物学过
关于EIN3/EIL家族蛋白生物学功能的研究表明,EIN3/EIL不仅参与植物的生长发育过程,还在植物生物及非生物胁迫响应中发挥着重要调控作用。在生长发育方面,EIN3/EIL蛋白在棉花(Gossypium arboreum L.)纤维发
在玉米(Zea Mays L.)基因组中共鉴定发现9个EIL基
供试玉米自交系B73、本氏烟草(Nicotiana tabacum L.)种子由国家作物种质资源库-甘肃分库保存,根癌农杆菌(Agrobacterium tumefaciens)菌株GV3101、pCAM35-GFP载体质粒由农业农村部西北寒旱区作物基因资源与种质创新重点实验室保存。挑选饱满一致的B73种子,用70%的酒精消毒5~10 min,用ddH2O清洗后播于无菌的珍珠岩中催芽,待幼苗长至两叶一心时改用1/2 MS培养液进行水培,培养室温度为25 ℃,光周期条件为16 h 光照/8 h黑暗。幼苗生长到三叶一心期时分别进行脱水、20% PEG、200 μmol/L ABA、250 mmol/L NaCl、42 ℃高温和4 ℃低温处理,在处理后0 h、1 h、3 h、6 h、12 h和24 h分别采集幼苗叶片、茎和根系组织,另外,在玉米抽雄期采集玉米穗位叶、苞叶、雌穗、雄穗、花丝样品,DEPC水清洗干净后液氮速冻,保存于-80 ℃冰箱中用于总RNA提取。
利用TRIzol Reagent(Invitrogen)提取脱水处理12 h的三叶一心期玉米幼叶总RNA,反转录获得cDNA(TaKaRa)。根据GenBank中公布的玉米ZmEIL2基因mRNA序列(GenBank登录号:KJ727458.1),利用Primer premier 5软件设计RT-PCR扩增引物EIL2-F、EIL2-R(
引物名称 Primer name | 引物序列(5′- 3′) Primer sequence (5′- 3′) | 产物大小(bp) Product length |
---|---|---|
EIL2-F | ATGATGGGAGGAGGGACGC | 1788 |
EIL2-R | TCAGTAGAACCAATTGGCG | |
qEIL2-F | GAGTGCTTCTTTGGAGAGGAAG | 101 |
qEIL2-R | CTCATCATCATCTCGTCCAAGG | |
qEF1a-F | TGGGCCTACTGGTCTTACTACTGA | 135 |
qEF1a-R | ACATACCCACGCTTCAGATCCT | |
EIL2-GFP-F | AGAACACGGGGGACGAGCTCATGATGGGAGGAGGGACG | 1785 |
EIL2-GFP-R | ACCATGGTGTCGACTCTAGAGTAGAACCAATTGGCGTTGGAG |
引物序列中下划线为载体序列
The vector sequence is shown as the underline in the primer sequence
在Gramene网站(https://ensembl.gramene.org)查找ZmEIL2基因的gDNA序列,利用DNAMAN软件对ZmEIL2基因cDNA序列与gDNA序列进行基因组结构分析;利用Protparam工具(http://www.expasy.org/tools/protparam.html)对ZmEIL2蛋白的基本理化性质进行预测;利用基于Hphob./Kyte & Doolittle算法的ProtScale在线软件(http://web.expasy.org/protscale/)进行蛋白亲水/疏水性分析;用SOPMA工具(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_ automat.pl?page=npsa_sopma.html)对ZmEIL2蛋白的二级结构进行预测;ZmEIL2蛋白的保守结构域分析通过NCBI中的CD-Search工具(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)进行。使用Blast(https://blast.ncbi.nlm.nih.gov/Blast.cgi)工具在NCBI上查找同源性较高的EIL蛋白序列,采用Cluster X2和GeneDoc软件进行多序列比对,用MEGA7.0软件中的Neighbor-Joining法进行系统进化树构建。
设计特异性引物EIL2-GFP-F/EIL2-GFP-R,以测序正确的克隆载体质粒pEASY-Blunt-ZmEIL2为模板,进行亚克隆。回收目的片段,经测序验证后将其连接至经Sac I和Xba I双酶切后的pCAM35-GFP线性化载体上,通过同源重组连接到绿色荧光蛋白的N端,获得亚细胞定位载体pCAM35-ZmEIL2-GFP。将pCAM35-ZmEIL2-GFP质粒转化农杆菌GV3101,获得阳性菌株后,扩大培养制备浸染液,通过注射器将农杆菌液注入到烟草叶片内,用记号笔圈定侵染区域,48 h后,切取侵染区域,撕取表皮制片,通过激光共聚焦显微镜观察ZmEIL2蛋白的亚细胞定位情况。
利用Primer premier 5软件设计定量引物(
以脱水处理12 h的三叶一心期玉米叶片为材料,提取总RNA并反转录为cDNA。以cDNA为模板,扩增得到约1800 bp的特异性条带(

图1 ZmEIL2基因克隆及序列分析
Fig.1 Cloning and sequence analysis of ZmEIL2
A:ZmEIL2基因的RT-PCR扩增结果,M:DL 2000 分子量标准,1~2:ZmEIL2基因RT-PCR扩增产物;B:ZmEIL2蛋白亲水/疏水性分析;C:ZmEIL2蛋白的二级结构分析,蓝色:α-螺旋,红色:延伸链,绿色:β-折叠,紫色: 无规则卷曲;D:ZmEIL2蛋白的保守结构域分析
A: RT-PCR amplification of ZmEIL2 gene, M: DL 2000, 1-2: RT- PCR amplification fragment of ZmEIL2; B: Hydrophobic/hydrophilic analysis of ZmEIL2 protein; C: Analysis of secondary structure of ZmEIL2 protein, blue: Alpha helix, red: Extended strand, green: Beta turn, purple: Random coil; D: Analysis of conserved domains of ZmEIL2 protein
将玉米ZmEIL2蛋白序列与水稻(Oryza sativa L.)、小麦、大麦(Hordeum vulgare L.)、高粱、谷子(Setaria italic L.)及糜子(Panicum miliaceum L.)、拟南芥和大豆(Glycine max (L.) Merr.)中蛋白同源性较高的EIL蛋白序列进行比对,发现9种植物的EIL蛋白N端的EIN3结构域保守性较高,C端保守性较差(

图2 ZmEIL2蛋白的多序列比对和系统进化树构建
Fig.2 Multiple sequence alignment and phylogenetic tree construction of ZmEIL2 and related proteins
TaEIL2:小麦TaEIL2蛋白;HvEIL2:大麦HvEIL2蛋白;ZmEIL2:玉米ZmEIL2蛋白;SbEIL1:高粱SbEIL1蛋白;PmEIL1:糜子PmEIL1蛋白;SiEIL1:谷子SiEIL1蛋白;OsEIL1:水稻OsEIL1蛋白;GmEIL1:大豆GmEIL1蛋白;AtEIL1:拟南芥AtEIL1蛋白;黑色和灰色区域分别表示在9个物种中高度一致和部分一致的氨基酸序列
TaEIL2: The TaEIL2 protein of wheat; HvEIL2: The HvEIL2 protein of barley; ZmEIL2: The ZmEIL2 protein of maize; SbEIL1: The SbEIL1 protein of sorghum; PmEIL1: The PmEIL1 protein of prosomillet; SiEIL1: The SiEIL1 protein of millet; OsEIL1: The OsEIL1 protein of rice; GmEIL1: The GmEIL1 protein of soybean; AtEIL1: The AtEIL1 protein of Arabidopsis thaliana; The black and gray region show the highly and partially consistent amino acid sequences among nine species
将N端融合有ZmEIL2基因的pCAM35-GFP载体转化农杆菌后注射烟草,并以pCAM35-GFP空载体作为对照,通过激光共聚焦显微镜观察荧光信号,发现对照组的烟草表皮细胞中的荧光信号呈散乱分布,在细胞膜、细胞质、细胞核中均有荧光信号,而融合ZmEIL2基因的烟草表皮细胞中只在细胞膜和细胞核中发现了荧光信号(

图3 ZmEIL2蛋白的亚细胞定位
Fig.3 The subcellular localization of ZmEIL2 protein
GFP:绿色荧光蛋白通道;Bright:明场通道;Merged:3个通道的叠加照片;绿色代表GFP蛋白在激光共聚焦显微镜下所发出的绿色荧光
GFP: Green fluorescent protein channel; Bright:Open field channel; Merged: Superposition of the three channels; Green indicates the green fluorescence of GFP protein under confocal laser scanning microscope
分别提取玉米穗位叶、苞叶、雌穗、雄穗及花丝总RNA,反转录获得cDNA后进行qRT-PCR分析。如

图4 ZmEIL2基因的组织特性表达
Fig.4 Tissue specific expression of ZmEIL2 in different maize tissues
数据为3个生物学重复±标准差,不同小写字母代表差异显著(P<0.05)
The error bar represents ± SD of three biological replication. Different lowercase letters are significantly different at the 0.05 probability level. ML: Mature leaf; EL: Bract; E: Ear; TA: Tassel; SK: Silks
为了明确ZmEIL2基因在不同非生物胁迫下的表达模式,采用qRT-PCR方法分析在脱水、PEG、ABA、高盐、高温和低温6种非生物胁迫下玉米叶片、茎及根系中ZmEIL2基因的表达水平变化。结果发现ZmEIL2基因的表达受6种非生物胁迫的显著诱导,不同胁迫下的表达模式不尽一致,其中,对PEG、ABA和盐胁迫的响应最为强烈,同时叶片中的表达量明显高于茎和根系(

图5 ZmEIL2基因在不同非生物胁迫下的表达
Fig.5 Expression of ZmEIL2 genes in response to different abiotic stresses
A:脱水胁迫;B:PEG胁迫(20% PEG-6000);C:ABA胁迫(200 μmol/L ABA);D:盐胁迫(250 mmol/L NaCl);E:高温胁迫(42 ℃高温);F:低温胁迫(4 ℃低温);数据为3个生物学重复±标准差;*、**分别表示与对照相比在P<0.05和P<0.01水平上差异显著
A: Dehydration stress; B: PEG (20% PEG-6000); C: ABA stress (200 μmol/L ABA); D: Salt stress (250 mmol/L NaCl); E: Heat stress (42 ℃); F: Cold stress (4 ℃). The error bar represents ± SD of three biological replication. *, ** mean significant difference at the P< 0.05 and P< 0.01 probability levels, respectively
在脱水处理下,ZmEIL2在叶片和根系中的表达量分别在处理后6 h和3 h最高,分别为对照(脱水处理0 h)的12.32倍和6.11倍,茎中的表达量在24 h最高,为对照的1.9倍(
EIN3/EIL蛋白是高等植物所特有的一类转录因子家族,目前多个植物中EIN3/EIL蛋白家族成员已经得到鉴定,在拟南芥、水稻、玉米中均鉴定到9个家族成
试验证明大部分EIN3/EIL蛋白是在细胞核中发挥转录调控作
ZmEIL2基因全长1788 bp的ORF序列,共编码595个氨基酸残基,只有1个外显子。编码蛋白分子量为63.81 kD,理论等电点为6.34,具有EIN3保守结构域,属于玉米EIN3/EIL蛋白家族,与高粱SbEIL1蛋白亲缘关系最近。亚细胞定位于细胞核和细胞膜。ZmEIL2基因在玉米苞叶中的表达量最高,其次是雌穗、雄穗和花丝,在穗位叶中的表达最低,其表达受脱水、PEG、ABA、高盐、高温和低温胁迫显著诱导,其中对PEG、ABA和盐胁迫的响应较为强烈,叶片中的表达量明显高于茎和根系。本研究结果为进一步研究ZmEIL2基因响应玉米逆境胁迫应答的分子机理提供了的理论参考。
参考文献
Johnson P R, Ecker J R. The ethylene gas signal transduction pathway: A molecular perspective. Annual Review of Genetics, 1998, 32: 227 [百度学术]
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015, 20(4): 219-229 [百度学术]
黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学:生命科学, 2019, 49(10): 1227-1281 [百度学术]
Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars (in Chinese). Scientia Sinica(Vitae), 2019, 49(10): 1227-1281 [百度学术]
Chao Q M, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker J R. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell, 1997, 89: 1133-1144 [百度学术]
Solano R, Stepanova A, Chao Q, Ecker J R. Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & Development, 1998, 12: 3703-3714 [百度学术]
Peng J Y, Li Z H, Wen X, Li W Y, Shi H, Yang L S, Zhu H Q, Guo H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics, 2014, 10: e1004664 [百度学术]
Salih H, He S P, Li H G, Peng Z, Du X M. Investigation of the EIL/EIN3 transcription factor gene family members and their expression levels in the early stage of cotton fiber development. Plants, 2020: 9: 128 [百度学术]
Bie B B, Pan, J S, He H L, Yang X Q, Zhao J L, Cai R. Molecular cloning and expression analysis of the ethylene insensitive3 (EIN3) gene in cucumber (Cucumis sativus). Genetics and Molecular Research, 2013, 12: 4179-4191 [百度学术]
Tieman D M, Ciardi J A, Taylor M G, Klee H J. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant Journal, 2001, 26: 47-58 [百度学术]
Chen H M, Xue L, Chintamanani S, Germain H, Lin H Q, Cui H T, Cai R, Zuo J R, Tang X Y, Li X, Guo H W, Zhou J M. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. The Plant Cell, 2009, 21(8): 2527-2540 [百度学术]
Liu J, Zhang T R, Jia J Z, Sun J Q. The wheat mediator subunit TaMED25 interacts with the transcription factor TaEIL1 to negatively regulate disease resistance against powdery mildew. Plant Physiology, 2016, 170: 1799-1816 [百度学术]
Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell, 2006, 18: 3235-3251 [百度学术]
Zhong S W, Zhao M T, Shi T Y, Shi H, An F Y, Zhao Q, Guo H W. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences, 2009, 106(50): 21431-21436 [百度学术]
Li G, Zhang L, Wang M, Di D, Kronzucker H J, Shi W. The Arabidopsis AMOT1/EIN3 gene plays an important role in the amelioration of ammonium toxicity. Journal of Experimental Botany, 2019, 70: 1375-1388 [百度学术]
Ren M Y, Feng R J, Shi H R, Lu L F, Yun T Y, Peng M, Guan X, Zhang H, Wang J Y, Zhang X Y, Li C L, Chen Y J, He P, Zhang Y D, Xie J H. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. PLoS ONE, 2017, 12: e177621 [百度学术]
Jyoti S D, Azim J B, Robin A H K. Genome-wide characterization and expression profiling of EIN3/EIL family genes in Zea mays. Plant Gene, 2021, 25: 100270 [百度学术]
Shi Q L, Dong Y B, Qiao D H, Zhou Q, Zhang L, Ma Z Y, Li Y L. Characterization and functional analysis of transcription factor ZmEIL1 in maize. Biologia Plantarum, 2017, 61: 266-274 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
Berardini T Z, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The Arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome, Genesis, 2015, 53: 474-485 [百度学术]
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Buell C R. The TIGR rice genome annotation resource: Improvements and new features. Nucleic Acids Research, 2007, 35: 883-887 [百度学术]
He Y Q, Huang W D, Yang L, Li Y T, Lu C, Zhu Y X, Ma D F, Yin J L. Genome-wide analysis of ethylene-insensitive3 (EIN3/EIL) in Triticum aestivum. Crop Science, 2020, 60: 2019-2037 [百度学术]
Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research, 2017, 45: 1040-1045 [百度学术]
Guo H W, Ecker J R. The ethylene signaling pathway: New insights. Current Opinion in Plant Biology, 2004, 7(1): 40-49 [百度学术]
Rieu I, Mariani C, Weterings K. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses. Journal of Experimental Botany, 2003, 54: 2239-2244 [百度学术]
Yang C, Ma B, He S J, Xiong Q, Duan K X, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 2015, 169(1): 148-165 [百度学术]