摘要
为发掘玉米矮秆基因,解析矮化机理,以玉米矮秆突变体K718d、野生型K718及其F2分离群体为材料,结合BSA全基因组重测序(BSA-reseq)和转录组测序(RNA-seq)定位矮秆基因。在1号染色体上检测到3个侯选区域,总长度为21.03 Mb,包含基因438个。共鉴定出差异表达基因2374个,其中上调基因1452个,下调基因922个。KEGG分析显示,差异表达基因主要涉及苯丙烷代谢、脂肪酸链延长和半乳糖代谢等通路。基因功能注释显示,差异表达基因参与细胞生长发育、细胞壁组成和植物激素合成代谢等过程。BSA-reseq与RNA-seq联合分析,共筛选出基因26个,其中非同义突变基因19个。结合同源基因功能注释、基因表达量和生物信息学分析,初步获得与植物激素代谢相关的Zm00001d032035和Zm00001d032422候选基因2个。PCR扩增和qRT-PCR 分析显示,与K718相比,K718d中2个基因编码区碱基和氨基酸序列均有不同程度突变,基因表达量均极显著降低。研究结果为进一步克隆矮秆基因和育种应用提供参考。
关键词
矮秆玉米株型紧凑,上疏下密利于通风透光,光能利用率高,适合密植,通过选育优良矮化玉米杂交种可有效减少玉米倒伏,稳定和提高玉米产
随着高通量测序的不断发展,通过BSA-reseq能够高效准确地对目标基因进行定位,然而不足之处是无法确保能够精细定位基因的位置,往往还需结合分子标记或转录组和蛋白组数据等方法,来达到获取候选基因的目
董丽
玉米高秆自交系K718(野生型),经自然突变获得的矮秆突变体K718d,及其组配的F1和F2群体,均由四川正红生物技术有限公司提供。
2020年冬,在海南种植矮秆突变体K718d和野生型K718,共168株,构建F1。2021年3月,在成都双流种植F1群体,共42株,构建F2。同年8月于广西南宁种植F2群体,共571株。田间管理同一般大田生产。
将K718d及K718饱满、大小一致的种子,表面进行短暂的消毒,用无菌水清洗,然后在带土的发芽盒中发芽,温度28 ℃,光照16 h,黑暗8 h培养,用于转录组测序分析。
统计K718d×K718 F1及F2群体植株的株高分离比例,并进行卡方检验。玉米抽雄吐丝期,在K718d×K718 F2群体中随机选取高株和矮株各30株,提取DNA分别等量混合,构建高秆池和矮秆池,同时选取双亲各1株提取DNA。利用Illumina Hiseq X Ten 平台对2个混池和双亲分别展开30×和10×全基因组重测序。通过BWA软
取3叶期K718d与K718幼茎组织,利用TRIzol Kit提取RNA,送至北京百迈客生物技术股份有限公司,构建cDNA文库,并利用Illumina HiSe
选取6个差异表达基因,参照PrimeScript 1st Strand cDNA synthesis Kit(Takara)试剂盒说明书进行cDNA的合成。内参选择玉米管家基因Actin1(
引物名称 Primer name | 正向引物 Forward primer | 反向引物 Reverse primer | 引物作用 Use of primers |
---|---|---|---|
Actin1 | TCACCCTGTGCTGCTGACCG | GAACCGTGTGGCTCACACCA | qRT-PCR |
Zm00001d029913 | TCCTTGTTGTCCTACAGCAG | TTGCCGTCCTTGAAGATG | qRT-PCR |
Zm00001d045563 | CTCGTCAACATCTCCTTCG | GAAGACGGAAATCTCCAGC | qRT-PCR |
Zm00001d043019 | ATCCGCCAGATAAGGACTG | TGGGTAGGTCTTGTTCTCCC | qRT-PCR |
Zm00001d042953 | TGTTGACGGCAAAGGTGT | CACTCATCAGCAGAGGCTT | qRT-PCR |
Zm00001d037118 | GCCAAGGAAGACGATACCT | AATCAGCGACCACCTGTT | qRT-PCR |
Zm00001d014614 | TCATCCTCTCTGGTCCAATC | CAGTTCGTCTCTCAGCAAGA | qRT-PCR |
2035-1 | TCCGCGTTCCACTCCCACAGT | AGCAGAGCAGGTGCTACATCG | 克隆Zm00001d032035 |
2035-2 | GTCCTTCACCATGACAAACGTC | TGTAACGTATTCACGAGGGAGG | 克隆Zm00001d032035 |
2422 | CGGTGCTACTGACGGTTGCTCTAG | CACTCACTCC ATAACATAGGTC | 克隆Zm00001d032422 |
Zm00001d032035 | TTCAACCAGATGTTCGCC | GTCCATTAGCAGTGCCTTG | qRT-PCR |
Zm00001d032422 | ATGCTGGACAAGCTGTGGGA | TCGCTGTAGAGCCAGTCGTAGA | qRT-PCR |
BSA-reseq与RNA-seq联合分析获得候选基因,参考候选基因序列设计交叉引物,其中引物2035-1、2035-2对应Zm00001d032035,2422对应Zm00001d032422(
K718d×K718的F1群体共42株,均表现为高秆。F2群体共571株,其中高秆433株,矮秆138株,经卡方检验,高秆植株与矮秆植株分离比例符合3∶1(
群体 Population | 总株数 Total plants | 高秆植株 High plants | 矮秆植株 Dwarf plants | 预期比例 Expected rotio(H∶D) | |
---|---|---|---|---|---|
K718d×K718 F1 | 42 | 42 | 0 | — | — |
K718d×K718 F2 | 571 | 433 | 138 | 3∶1 | 0.169 |
(0.05,1)=3.84, (0.01,1)=6.63 |
对两个亲本K718d、K718以及F2群体高秆池、矮秆池进行重测序,GC含量在45.16%以上,Q30达到93%以上,平均比对率为99.15%,平均测序深度23.50×,说明样品测序正常(
样品 Sample | 过滤后的读段 Clean reads | GC含量(%) GC content | Q30(%) | 平均测序深度(×) Average depth of sequencing | 定位百分比(%) Mapped percent |
---|---|---|---|---|---|
K718 | 98,867,181 | 45.40 | 94.01 | 12 | 99.32 |
K718d | 99,584,067 | 45.21 | 93.70 | 12 | 99.13 |
BH1 | 276,066,479 | 45.21 | 93.37 | 34 | 99.06 |
BD1 | 290,029,483 | 45.16 | 93.52 | 36 | 99.10 |
BH1:高秆混池;BD1:矮秆混池
BH1: High plant mixed pool; BD1: Dwarf plant mixed pool
利用两个极端混池的SNP值计算SNP-index值,再进一步将两个混池得到的SNP-index值相减即是Δ(SNP-index),将Δ(SNP-index)分别对应到SNP所在的染色体位置进行作图,利用拟合后ΔSNP-index的99百分位数,即0.54,共获得位于1号染色体的3个区段:208.48~208.56 Mb、209.64~213.78 Mb、214.45~231.26 Mb,共包含438个基因(

图1 SNP-index关联值在染色体上的分布
Fig.1 Distribution of SNP-index correlation values on chromosomes
彩色的点代表计算出来的ΔSNP-index;黑色的线为拟合后的ΔSNP-index;红色虚线为显著性关联阈值
The colored dots represent the calculated ΔSNP-index; The black line is the fitted ΔSNP-index; The red dashed line is the threshold of significance association
对3个野生型生物学重复(W1、W2、W3),3个矮秆突变体生物学重复(d1、d2、d3)进行转录测序分析,Q30碱基百分比在91.88%及以上,GC含量在52.89%及以上,比对效率从82.05%到86.93%不等,表明测序质量理想,可用于后续分析(
样品 Samples | 获得的读段 Obtained reads | Q30 (%) | GC含量(%) GC content | 比对效率(%) Mapped reads |
---|---|---|---|---|
W1 | 20,617,779 | 92.41 | 53.82 | 82.33 |
W2 | 23,222,472 | 92.54 | 52.89 | 86.93 |
W3 | 25,358,241 | 91.88 | 53.29 | 82.06 |
d1 | 22,427,634 | 92.30 | 53.76 | 82.33 |
d2 | 22,160,781 | 92.34 | 53.99 | 82.05 |
d3 | 22,991,081 | 93.56 | 53.95 | 82.81 |
W1,W2,W3:野生型生物学重复;d1,d2,d3:矮秆突变体生物学重复
W1,W2,W3: Wild-type biological replicates ; d1,d2,d3: Dwarf mutant biological replicates
在K718d与K718幼茎组织中,共鉴定出2374个DEGs,其中上调基因1452个,下调基因922个。GO分析表明,生物学过程中,主要注释到代谢过程、细胞过程和单生物过程等;细胞组分中,主要注释到细胞、细胞部分和细胞器等;分子功能中,主要注释到催化活性、结合、核酸结合转录因子活性等(

图2 差异表达基因的GO注释分类统计
Fig.2 Statistics of GO annotation classification of differentially expressed genes
通路 ID | 通路描述 Description | q值 q-value | 基因数量 Gene number |
---|---|---|---|
ko00360 | 苯丙烷酸代谢 | 1.78E-01 | 10 |
ko00062 | 脂肪酸伸长 | 2.21E-01 | 9 |
ko00052 | 半乳糖代谢 | 2.21E-01 | 17 |
ko00940 | 苯丙素生物合成 | 2.24E-01 | 32 |
ko00603 | 鞘糖脂的生物合成 | 2.40E-01 | 5 |
ko00591 | 亚油酸的新陈代谢 | 2.94E-01 | 5 |
ko00945 | 二苯乙烯类、二芳基庚烷类和姜辣素的生物合成 | 2.94E-01 | 9 |
ko00073 | 角质、亚硫酸盐和蜡的生物合成 | 3.08E-01 | 8 |
ko00942 | 花青素生物合成 | 3.08E-01 | 2 |
ko00500 | 淀粉和蔗糖代谢 | 3.08E-01 | 32 |
ko00950 | 异喹啉生物碱生物合成 | 4.02E-01 | 6 |
ko00943 | 异黄酮类生物合成 | 4.02E-01 | 4 |
ko00941 | 类黄酮生物合成 | 4.02E-01 | 13 |
ko00430 | 牛磺酸和低牛磺酸代谢 | 4.02E-01 | 2 |
ko04626 | 植物-病原互作 | 5.28E-01 | 56 |
ko00195 | 光合作用 | 5.67E-01 | 9 |
ko00920 | 硫代谢 | 5.67E-01 | 7 |
ko00650 | 丁酸盐代谢 | 5.67E-01 | 6 |
ko02010 | ABC转运 | 5.67E-01 | 12 |
ko04145 | 吞噬体 | 5.67E-01 | 13 |
为了对差异表达基因进行功能注释,将挖掘到的差异表达基因,在NCBI数据库进行功能注释分析,结果表明,差异表达基因参与众多生物学过程。基于K718d矮秆材料表型,本研究集中分析可能与矮秆表型相关的差异表达基因。与野生型K718相比,矮秆突变体K718d中与细胞生长发育相关的Zm00001d037118(MYB23)等基因表达量上调,Zm00001d037911(Rop3小GTP结合蛋白)等基因下调;与细胞壁组成相关的Zm00001d029913(细胞膨胀素B4)等基因表达量上调,Zm00001d008266(过氧化物酶24)等基因下调;与植物激素合成代谢等相关的Zm00001d045563(D3)等基因表达量上调(
生物学过程 Biological process | 上调或下调 Up or down | 基因ID Gene ID |
---|---|---|
细胞生长发育 Cell growth | 上调 | Zm00001d037118、Zm00001d017268、Zm00001d038338、Zm00001d046518、Zm00001d051269、Zm00001d052397 |
下调 | Zm00001d037911、Zm00001d047483、Zm00001d020408 | |
细胞壁组成 Cell wall composition | 上调 | Zm00001d029913、Zm00001d014614、Zm00001d047293、Zm00001d009152、Zm00001d024386、Zm00001d045048、Zm00001d051526 |
下调 | Zm00001d008266、Zm00001d032465、Zm00001d045138、Zm00001d031479、Zm00001d049432 | |
纤维素合成分解 Cellulose biosynthetic and catabolic process | 上调 | Zm00001d041972、Zm00001d044744 |
下调 | Zm00001d017949 | |
木质素分解过程 Lignin catabolic process | 上调 | Zm00001d012477、Zm00001d042905、Zm00001d043019 |
赤霉素合成 Gibberellin biosynthetic | 上调 | Zm00001d045563、Zm00001d037724 |
生长素代谢 Auxin catabolic process | 上调 | Zm00001d033463、Zm00001d030661、Zm00001d013302、Zm00001d023904、Zm00001d008201、Zm00001d041462、Zm00001d037724 |
下调 | Zm00001d050972、Zm00001d036415 | |
脱落酸Abscisic acid | 下调 | Zm00001d005867、Zm00001d047968 |
乙烯Ethylene | 下调 | Zm00001d038852 |
水杨酸Salicylic acid | 上调 | Zm00001d039963 |
茉莉酸Jasmonic acid | 上调 | Zm00001d006638、Zm00001d027901、Zm00001d033050 |
为验证转录组测序的质量,选取Zm00001d037118、Zm00001d029913、Zm00001d014614、Zm00001d043019、Zm00001d045563和Zm00001d042953等6个分别与细胞生长发育、细胞壁组成、木质素分解、赤霉素合成和ABC转运家族相关的基因在K718d与K718幼茎中进行qRT-RCR定量验证。与K718相比,6个基因在K718d中表达量上调。分析结果与转录组测序结果基本一致,说明RNA-seq的结果可靠(

图 3 实时荧光定量PCR与转录组测序结果比较
Fig.3 Comparison of the relative expression abundance measured by qRT-PCR and RNA-seq
BSA-reseq与转录组测序结果进行联合分析,将候选区间内的基因与差异表达基因进行比对,共筛选出基因26个,其中非同义突变基因19个。进一步结合同源基因功能注释、基因表达量与生物信息学分析,初步获得2个与植物激素调节相关的基因Zm00001d032035和Zm00001d032422。Zm00001d032035编码香叶醇8-羟化酶,属于细胞色素P450家族706亚家族,与拟南芥AT4G12320基因同源,编码细胞色素P450。另一个基因是Zm00001d032422,在玉米基因组中尚未注释,与拟南芥AT2G33830基因同源,编码非特异性磷脂酶C4(
基因名称 Gene name | 功能注释 Functional annotation | 上调或下调 Up or down |
---|---|---|
Zm00001d032035 | 香叶醇8-羟化酶 | 下调 |
Zm00001d032422 | — | 下调 |
Zm00001d032047 | 胚芽样蛋白亚家族3成员 | 下调 |
Zm00001d032069 | 假定的蛋白激酶超家族蛋白 | 上调 |
Zm00001d032090 | 细胞色素P450还原酶 | 上调 |
Zm00001d032245 | DNA修复蛋白RAD4 | 下调 |
Zm00001d032261 | 环丙烷-脂肪酰基磷脂合酶 | 上调 |
Zm00001d032376 | 抗病蛋白Pik-2 | 下调 |
Zm00001d032424 | 胆汁酸钠1 | 上调 |
Zm00001d032465 | 网格蛋白结合蛋白 | 下调 |
Zm00001d032532 | 谷氨酰tRNA还原酶1叶绿体 | 上调 |
Zm00001d032210 | — | 上调 |
Zm00001d032402 | — | 下调 |
Zm00001d032404 | — | 下调 |
Zm00001d032410 | — | 下调 |
Zm00001d032423 | — | 下调 |
Zm00001d032543 | — | 下调 |
Zm00001d032265 | — | 上调 |
Zm00001d032375 | — | 下调 |
— 无注释
— Uncommented
根据Zm00001d032035和Zm00001d032422基因组序列,设计交叉覆盖基因组的引物进行PCR扩增、测序、拼接和比对。结果显示,与K718相比,K718d中Zm00001d032035基因,在第90位碱基处插入12 bp,同时存在16处单碱基突变,2处缺失和1处插入,编码区全长1568 bp(

图4 Zm00001d032035序列比对
Fig.4 Sequence alignment of Zm00001d032035
a:编码区碱基比对;b:氨基酸序列比对;红色和蓝色:B73与K718的序列相对于K718d序列不变;白色为K718d发生序列改变;下同
a: Coding region bases sequence alignment; b: Amino acid sequence alignment; Red and blue: The sequence of B73 and K718 is unchanged relative to the sequence of K718d; White: Sequence changes in K718d; The same as below
与K718相比,K718d中的Zm00001d032422在第140位碱基处存在1处单碱基突变,第181位碱基处缺失9 bp,编码区全长348 bp(

图5 Zm00001d032422序列比对
Fig.5 Sequence alignment of Zm00001d032422
a:编码区碱基序列比对;b:氨基酸序列比对
a: Coding region bases sequence alignment; b: Amino acid sequence alignment
对突变体K718d与野生型K718的幼茎组织进行qRT-PCR分析。结果表明,Zm00001d032035和Zm00001d032422基因在突变体K718d中的表达量均极显著低于K718(P<0.001)。推测K718d矮化可能与这两个基因表达量降低有关(

图6 K718d和K718中的Zm00001d032035和Zm00001d032422的表达量分析
Fig.6 Expression analysis of Zm00001d032035 and Zm00001d032422 in K718d and K718
**:差异极显著(P<0.001)
**:The difference is extremely significant (P<0.001)
研究发现,与赤霉素相关的矮化突变主要是通过GA的合成代谢与信号转导两个途径对植株高度进行调
Zm00001d032422与拟南芥AT2G33830基因同源,编码非特异性磷脂酶C4。磷脂酶是一类水解酶,在植物生长发育、生物胁迫及非生物胁迫中起重要的调控作
参考文献
Li C , Tang J , Hu Z Y , Wang J W , Yu T , Yi H Y , Cao M J . A novel maize dwarf mutant generated by Ty1-copia LTR-retrotransposon insertion in Brachytic2 after spaceflight. Plant Cell Reports, 2019, 39(6): 1-16 [百度学术]
Spielmeyer W , Ellis M H , Chandler P M . Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 9043-9043 [百度学术]
Peng J , Richards D E , Hartley N M , Murphy G P , Devos K M , Flintham J E , Beales J , Fish L J , Worland A J , Pelica F , Sudhakar D , Christou P , Snape J W , Gale M D , Harberd N P. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999,400(6741): 256-261 [百度学术]
Sun T P , Kamiya Y . Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase a of gibberellin biosynthesis. Plant Cell, 1994, 6(10): 1509-1518 [百度学术]
Multani D S , Briggs S P , Chamberlin M A , Blakeslee J J , Murphy A S , Johal G S . Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003, 302(5642): 81-84 [百度学术]
Lawit S J , Wych H M , Xu D , Kundu S , Tomes D T. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010, 51(11): 1854-1868 [百度学术]
王立静,哈丽旦,张素梅,徐春花,李启芳,刘保申.新的玉米矮秆突变基因的鉴定与遗传分析.华北农学报,2008(5):23-25 [百度学术]
Wang L J , Ha L D , Zhang S M ,Xu C H , Li Q F , Liu B S. Identification and genetic analysis of new dwarf mutation genes in maize. Acta Agriculturae Boreali-Sinica, 2008(5): 23-25 [百度学术]
Wang Y J , Deng D X , Ding H D , Xu X M , Zhang R , Wang S X , Bian Y L , Yin Z T , Chen Y. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: Physiological and transcriptomic evidence. PloS ONE, 2013, 8(6): e66466 [百度学术]
董春林,翟广谦,张正,杨睿,张明义,张彦琴,杨丽莉,常建忠.玉米矮秆突变体A2的表型鉴定及转录组分析.玉米科学,2019,27(4):52-57 [百度学术]
Dong C L, Zhai G Q, Zhang Z, Yang R, Zhang M Y, Zhang Y Q, Yang L L,Chang J Z. Phenotypic identification and transcriptome analysis of maize dwarf stalk mutant A2. Journal of Maize Sciences, 2019, 27(4): 52-57 [百度学术]
陈浣,夏菲,吴新儒,孙玉合.集群分离分析法在植物基因定位上的应用.基因组学与应用生物学,2016,35(6):1546-1551 [百度学术]
Chen H, Xia F, Wu X R ,Sun Y H. Application of cluster isolation analysis method in plant gene localization. Genomics and Applied Biology, 2016, 35(6): 1546-1551 [百度学术]
Gao J, Gao D X, Zhou W Y, Liang H F, Huang J, Qing D J, Chen W W, Wu H, Yang X H, Li D T, Gao L J, Deng G F. Mapping and identifying a candidate gene Plr4, a recessive gene regulating purple leaf in rice, by using bulked segregant and transcriptome analysis with next-generation sequencing. International Journal of Molecular Sciences, 2019, 20(18): 4335 [百度学术]
Sunggil K, Cheol W K, Minkyu P, Doil C. Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq. Theoretical & Applied Genetics, 2015, 128(11): 2289-2299 [百度学术]
董丽,石海春,赵长云,余学杰,柯永培.玉米矮秆突变体K718d的遗传鉴定.华北农学报,2021,36(6):71-77 [百度学术]
Dong L , Shi H C , Zhao C Y , Yu X J , Ke Y P. Genetic identification of maize dwarf mutant K718d. Acta Agriculturae Boreali-Sinica, 2021, 36(6): 71-77 [百度学术]
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 2009, 25(14):1754-1760 [百度学术]
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis tool kit: A map reduce framework for analyzing next generation DNA sequencing data. Genome Research, 2010, 20 (9): 211-230 [百度学术]
李盼,李超,张瑞茂,张显强,罗京.甘蓝型矮秆直立株型油菜株高性状基因的初步定位.植物遗传资源学报,2020,21(1):83-93 [百度学术]
Li P , Li C , Zhang R M , Zhang X Q , Luo J . Preliminary localization of high trait genes in cabbage-type dwarf upright rape plants. Journal of Plant Genetic Resources, 2020, 21(1): 83-93 [百度学术]
Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360 [百度学术]
Florea L, Song L, Salzberg S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Research, 2013, 2: 188 [百度学术]
刘磊,詹为民,丁武思,刘通,崔连花,姜良良,张艳培,杨建平.玉米矮化突变体gad39的遗传分析与分子鉴定.作物学报,2022,48(4):886-895 [百度学术]
Liu L, Zhan W S, Ding W S, Liu T,Cui L H, Jiang L L,Zhang Y P,Yang J P. Genetic analysis and molecular identification of the dwarf mutant gad39 in maize. Acta Agronomica Sinica, 2022, 48(4): 886-895 [百度学术]
Helliwell C A, Sheldon C C, Olive M R, Walker A R, Zeevaart J A, Peacock W J, Dennis E S. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15): 9019-9024 [百度学术]
Davidson S E, Smith J J, Helliwel C A, Poole A T, Reid J B. The pea gene LH encodes ent-kaurene oxidase. Plant Physiol, 2004, 134 (3): 1123-1134 [百度学术]
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134(4): 1642-1653 [百度学术]
Helliwell C A, Chandler P M, Poole A. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 2065-2070 [百度学术]
Winkler R. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7(8): 1307-1317 [百度学术]
Davidson S E, Elliott R C, Helliwell C A, Poole A T, Reid J B. The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol, 2003, 131(1): 335-344 [百度学术]
Hoisington D A, Coe E H . Mapping in maize using RFLPs//Gustafson J P. Gene manipulation in plant improvement II. stadler genetics symposia series. Boston, MA: Springer US, 1990: 331-352 [百度学术]
帅良,孙健,段振华,李丽,何雪梅,李昌宝,廖玲燕.植物非特异性磷脂酶C的研究进展.江苏农业科学,2019,47(18):30-37 [百度学术]
Shuai L, Sun J, Duan Z H, Li L,He X M, Li C B, Liao L Y . Research advances in plant nonspecific phospholipase C. Jiangsu Agricultural Sciences, 2019, 47(18): 30-37 [百度学术]
孙大千,董金晔,李洋,肖红庆,徐赫韩,李海燕,王法微.磷脂酰肌醇特异性磷脂酶C基因研究进展.生物技术,2017,27(1):92-97 [百度学术]
Sun D Q, Dong J Y, Li Y, Xiao H Q,Xu H H, Li H Y,Wang F W. Research advances in phosphatidylositositol-specific phospholipase C gene. Biotechnology, 2017, 27(1): 92-97 [百度学术]
胡利芹,薛飞洋,李微微,王二辉,徐兆师,李连城,周永斌,贾冠清,刁现民,马有志,陈明.谷子非特异性磷脂酶C基因SiNPC4的克隆及功能分析.作物学报,2015,41(7):1017-1026 [百度学术]
Hu L Q, Xue F Y, Li W W, Wang E H,Xu Z S, Li L C, Zhou Y B, Jia G Q, Diao X M, Ma Y Z,Chen M. Cloning and functional analysis of non-specific phospholipase C gene SiNPC4 in foxtail millet (Setaria italic). Acta Agronomica Sinica, 2015, 41(7): 1017-1026 [百度学术]