摘要
植物芥酸是在以FAE1(Fatty acid elongase 1)编码的β-酮脂酰-CoA合酶为关键限速酶的多酶复合体的催化下合成的,主要以TAG形式储存于种子中,是一种重要的油脂化工原料。不同植物来源的FAE1基因序列差异是导致其芥酸合成能力差异的根本原因。为分离和鉴定芥酸高合成能力的FAE1,本研究采用同源克隆法从油菜、海甘蓝、旱金莲和荷包蛋花等4种植物中克隆获得了12条正常编码的FAE1基因序列,并分别构建表达载体在酵母中进行诱导表达和芥酸含量比较分析。结果表明,源于不同植物的12条FAE1基因cDNA序列一致性介于52.1%~99.9%,氨基酸序列一致性介于49.9%~99.8%,FAE1基因具有明显的种属特性。酵母表达及GC-MS分析结果表明,源于绵油328、海甘蓝和荷包蛋花的8个FAE1基因具有超长链脂肪酸合成能力,其中CaFAE1-3合成芥酸能力最强(4.82%),其次为GjFAE1-1(4.53%),LdFAE1合成芥酸能力最弱(0.29%);CaFAE1-3对C20∶1转化率可达95.39%,在高芥酸育种领域具有极大的应用潜力。另外4个源自阳光80和旱金莲的FAE1基因均不具有芥酸合成功能,因为GyFAE1-2、TmFAE1-1和TmFAE1-2在保守的半胱氨酸或(和)组氨酸位点存在突变,而GyFAE1-1存在1个R395K突变,导致酶活丧失。本研究增进了对FAE1基因结构与功能之间关系的认识,为油菜和海甘蓝的高芥酸育种及芥酸性状基因工程改良提供了科学依据。
超长链脂肪酸(VLCFAs,very-long-chain fatty acids)是指主链碳原子数超过18个的脂肪酸,在生物体内主要以三酰甘油(TAG,triacylglycerol)、蜡质前体、甘油磷脂及鞘磷脂等4种形式存在,参与多种生命活动进
芥酸(Erucic acid, C22∶1)是一种超长链单不饱和脂肪酸,主要由十字花科(Cruciferae)和金莲花科(Tropaeolaceae)等植物合成并以TAG形式贮存于种子
Ghanevati
酵母自身仅能合成微量的VLCFAs,且不能合成C22∶1等超长链单不饱和脂肪酸,但在其体内重组表达功能型FAE1则能合成C22∶
高芥酸油菜绵油328(芥酸含量51.3%)、高油酸油菜阳光80(芥酸含量<2.0%)种子由长江大学油菜课题组提供;海甘蓝种子由中国农业科学院油料作物研究所陆光远副研究员馈赠;旱金莲和荷包蛋花种子由长江大学生命科学学院何勇副教授馈赠。油菜与海甘蓝均播种于长江大学农业科技产业园试验地,常规田间管理。旱金莲和荷包蛋花,用营养土种植于植物生长培养室中(25±2 ℃,16 h/8 h(光照/黑暗))。
大肠杆菌(DH5α)和酵母菌株(INVSc1)感受态细胞均购自上海维地生物技术有限公司,酵母表达质粒pYES2/NT A由长江大学油菜遗传育种实验室保存。植物基因组DNA提取试剂盒(EasyPure Plant Genomic DNA Kit)、平末端连接试剂盒(pEASY-Blunt Cloning Kit)、质粒提取试剂盒(Plasmid MiniPrep Kit)及高保真DNA聚合酶(FastPfu DNA polymerase)、T4 DNA连接酶等均购自北京全式金生物技术有限公司;琼脂糖凝胶回收试剂盒(FastPure Gel DNA Extraction Mini Kit)购自南京诺唯赞生物技术有限公司;限制性内切酶EcoRI、BamHI等购自Fermentas公司;酵母氮源基础(YNB)、DO Supplement-Ura购自北京酷莱博科技有限公司;棉子糖、半乳糖购自上海麦克林生化科技有限公司;脂肪酸甲酯化试剂甲醇、正庚烷、石油醚均为色谱纯,其他试剂均为分子试剂级或分析纯。
已报道的绝大多数FAE1是无内含子蛋白编码基
引物名称 | 引物序列(5'-3') | 引物名称 | 引物序列(5'-3') |
---|---|---|---|
Primer name | Sequence (5'-3') | Primer name | Sequence (5'-3') |
BnFAE1-F | CCGGAATTCATGACGTCCGTTAACGTAAAGC | BnFAE1-R | CGGGATCCTTAGGACCGACCGTTTTGGAC |
CaFAE1-F | CCGGAATTCATGACGTCCATTAACGTAAAGCTC | CaFAE1-R | CGGGATCCTTAGGACCGACCGTTTTGGG |
TmFAE1-F | CCGGAATTCATGTCAGGAACAAAAGCAACATCAG | TmFAE1-R | CGGGATCCTTAATTTAATGGAACCTCAACCGGAA |
LdFAE1-F | CCGGAATTCATGTCGGAGACAAAACCTGAGA | LdFAE1-R | CGGGATCCTTAGACAACAGCAACCGGAAAC |
LdFAE1-Ex2-F | GGAGAAGACAAAGGTGAATCCGAAG | LdFAE1-Ex1-R | CTTCGGATTCACCTTTGTCTTCTCC |
Linker-F | AGCTTGGGCCGGAATTCCGGGATCCCGGCT | Linker-R | CTAGAGCCGGGATCCCGGAATTCCGGCCCA |
pYES2-sq-F | AATATACCTCTATACTTTAACGTC | pYES2-sq-R | GCGTGAATGTAAGCGTGAC |
引物序列中斜体加粗字母表示限制性内切酶识别序列
Italic and bold letters in primer sequences indicate the restriction enzyme recognition site
对测序后的FAE1基因序列采用BioEdit 7.0(http://www.mbio.ncsu.edu/bioedit/bioedit.html)、序列处理在线工具包(http://www.bio-soft.net/sms/)、MOTIF Search (https://www.genome.jp/tools/motif/)、TMHMM 2.0(https://services.healthtech.dtu.dk/service.php?TMHMM-2.0)、MEGA-X (https://www.megasoftware.net/)等进行基因结构、DNA及推导氨基酸序列比对、限制性酶切位点、结构域预测以及系统进化树构建等分析。
为避免表达载体N端标签序列(6×His、Xpres
提取pYES2/HEBX质粒DNA,用EcoRI和BamHI进行双酶切,回收大片段;然后与经相同双酶切处理的各FAE1扩增产物进行连接、转化和重组子鉴定。对于各FAE1重组表达质粒菌,经测序引物组合(pYES2-sq-F/pYES2-sq-R)初筛后,各挑取2~3个单菌落送北京擎科生物技术有限公司进行测序验证。对于序列无误的单菌落,摇菌后用质粒提取试剂盒抽提质粒DNA,用于酵母转化。
各FAE1重组表达质粒及空载体pYES2/HEBX质粒的酵母转化,参照酵母菌INVSc1感受态细胞产品说明书进行。转化菌液涂布于SD-U平板筛选后,挑取单菌落用载体测序引物组合进行菌落PCR鉴定,阳性菌落用于后续诱导表达分析。为得到理想的FAE1蛋白表达量,诱导表达前,以酵母转化菌(pYES2/HEBX、pYES2/HEBX-TmFAE1-1、pYES2/HEBX-GyFAE1-1)绘制生长曲线,获得的最佳诱导表达条件为:30℃,250 r/min,振荡培养16 h。
取诱导表达后的各重组菌菌液于4 ℃,4000 r/min离心6 min收集酵母菌体。无菌水重复清洗3次后,菌体置-80 ℃冰箱中冷冻8 h,然后放入真空冷冻干燥机中干燥。称取酵母干燥菌体65 mg或种子样品100 mg按照武玉花
酵母菌株INVSc1仅能合成微量的VLCFAs,对研究结果影响极小,故计算各脂肪酸含量及脂肪酸转化率时均未加以考虑。因FAE1延长酶仅以C18∶0或C18∶1为初始底物进行碳链延长,并不涉及不饱和键数的改变,因此每一分子超长链脂肪酸均可对应一分子C18∶0或C18∶1,故其脂肪酸转化率可以按照公式:转化率=[1-Cn/(Cn+C(n+2)+C(n+4)+C(n+6))]×100%计算(n=18~22),饱和脂肪酸和单不饱和脂肪酸分类计算。
测序结果分析表明,不同植物基因组中的FAE1基因拷贝数不同,且功能基因间存在SNP位点,编码氨基酸序列存在差异(

图1 不同植物来源FAE1氨基酸序列功能结构域及关键氨基酸位点分析
Fig.1 Key amino acid site and functional domain analyses of FAE1 originated from different plant species
GjFAE1、GyFAE1、CaFAE1、TmFAE1和LdFAE1分别表示克隆自高芥酸油菜绵油328、高油酸油菜阳光80、海甘蓝、旱金莲和荷包蛋花的FAE1基因的氨基酸推导序列;AAA70154.1为拟南芥FAE1氨基酸序列;下同。表示丙二酰辅酶A结合位点;
表示二聚体组装作用位点;
表示催化活性位点;
表示短链酯酰CoA结合位点;红色矩形内序列表示跨膜结构域(Ⅰ、Ⅱ、Ⅲ)
GjFAE1, GyFAE1, CaFAE1, TmFAE1, and LdFAE1 represent the deduced amino acid sequences of FAE1 isolated from high erucic acid rapeseed Mianyou 328, high oleic acid rapeseed Yangguang 80, Crambe abyssinica, Tropaeolum majus, and Limnanthes douglasii, respectively. AAA70154.1 represents the arabidopsis FAE1 protein; The same as below. symbol indicates key sites for malonyl-CoA binding;
symbol indicates key sites for dimer interface;
symbol indicates key sites for active;
symbol indicates key sites for product binding site; Sequences in red rectangle represent transmembrane domain Ⅰ,Ⅱ and Ⅲ

图2 不同植物来源的FAE1系统进化树
Fig.2 Phylogenetic tree of FAE1 originated from different plant species
GjFAE1: 绵油328 FAE1; GyFAE1: 阳光80 FAE1; CaFAE1: 海甘蓝 FAE1; TmFAE1: 旱金莲 FAE1; LdFAE1: 荷包蛋花 FAE1; AAA70154.1: 拟南芥 FAE1
GjFAE1: FAE1 isolated from rapeseed cultivar Mianyou 328; GyFAE1: FAE1 isolated from rapeseed cultivar Yangguang 80; CaFAE1: FAE1 isolated from Crambe abyssinica;TmFAE1: FAE1 isolated from Tropaeolum majus; LdFAE1: FAE1 isolated from Limnanthes douglasii; AAA70154.1: FAE1 from Arabidopsis
FAE1是一种膜结合蛋
依据旱金莲FAE1蛋白序列(ABD77097)的功能注释,对本研究克隆所获得的12条FAE1蛋白序列及拟南芥FAE1蛋白序列(AAA70154)分析发现,参与丙二酰辅酶A结合的氨基酸位点F272、V334、GRA(394~396)均极其保守,位点R98、DT(101~102)可塑性较大。十字花科的FAE1在98、101~102均分别为K、DI,而与旱金莲(R、DT)和荷包蛋花(H、KC)的差异较大;参与二聚体组装的位点在十字花科内较保守,与旱金莲和荷包蛋花的差异较大;3个催化活性位点(C223、H391、N424)极其保守,除TmFAE1-1为F223外,其余FAE1的3个活性位点氨基酸完全相同;参与短链脂酰CoA结合的位点也较为保守,E251、I253、R273、G344、V339、S426和S456在所有FAE1中完全相同。上述有些关键氨基酸位点还同时参与多种作用,如V325既参与二聚体组装也参与短链脂酰CoA的结合,V334既参与丙二酰辅酶A结合也参与短链脂酰CoA的结合(
从上述序列分析结果可以看出,不同植物来源的FAE1一级结构存在广泛的氨基酸差异,这些差异位点的协同作用可能是导致芥酸等超长链脂肪酸合成能力差异的根本原因。
武玉花
GC-MS分析结果表明,阴性对照(含pYES2/HEBX空载体酵母转化菌)不积累C22∶1(

图3 不同FAE1基因转化酵母脂肪酸组分的气质色谱分析
Fig.3 GC-MS analysis of fatty acid components in yeast transformed with different FAE1 genes
A: 空载质粒Pyes2/HEBX; B, C: GjFAE1-1, GjFAE1-2; D~H: CaFAE1-1~CaFAE1-5; I, J: GyFAE1-1, GyFAE1-2; K, L: TmFAE1-1, TmFAE1-2; M: LdFAE1. 色谱峰1至峰11代表的脂肪酸分别为棕榈酸(C16∶0)、棕榈油酸(C16∶1)、硬脂酸(C18∶0)、油酸(C18∶1)、花生酸(C20∶0)、花生烯酸(C20∶1)、山嵛酸(C22∶0)、二十二碳烯酸(C22∶1,cis-11)、芥酸(C22∶1,cis-13)、木蜡酸(C24∶0)、神经酸(C24∶1)
A: Negative plasmid Pyes2/HEBX; B, C: GjFAE1-1, GjFAE1-2; D-H: CaFAE1-1-CaFAE1-5; I, J: GyFAE1-1, GyFAE1-2; K, L: TmFAE1-1, TmFAE1-2; M: LdFAE1.Chromatographic peak 1 to peak 11 represents palmitic acid (C16∶0), palmitoleic acid (C16∶1), stearic acid (C18∶0), oleic acid (C18∶1), arachidic acid (C20∶0), eicosenoic acid (C20∶1), behenic acid (C22∶0), docosenoic acid (C22∶1, cis-11), erucic acid (C22∶1, cis-13), lignoceric acid (C24∶0), and nervonic acid (C24∶1), respectively

图4 种子中脂肪酸组分的气质色谱分析
Fig.4 GC-MS analysis of fatty acid components in seeds
A: 绵油328; B: 海甘蓝; C: 阳光80; D: 旱金莲; 色谱峰1至峰12代表的脂肪酸分别为棕榈酸(C16∶0)、棕榈油酸(C16∶1)、硬脂酸(C18∶0)、油酸(C18∶1)、亚油酸(C18∶2)、花生酸(C20∶0)、花生烯酸(C20∶1)、亚麻酸(C18∶3)、山嵛酸(C22∶00)、芥酸(C22∶1)、木蜡酸(C24∶0)、神经酸(C24∶1)
A: Mianyou328; B: Crambe abyssinica; C: Yangguang80; D: Tropaeolum majus; Chromatographic peak 1 to peak 12 represent palmitic acid (C16∶0), palmitoleic acid (C16∶1), stearic acid (C18∶0), oleic acid (C18∶1), linoleic acid (C18∶2), arachidic acid (C20∶0), eicosenoic acid (C20∶1), linolenic acid (C18∶3), behenic acid (C22∶0), erucic acid (C22∶1), lignoceric acid (C24∶0), and nervonic acid (C24∶1), respectively
峰号 Peak number | 脂肪酸种类 Fatty acid type | 转化基因及平均脂肪酸相对含量 Target gene and average relative abundance of fatty acid | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GjFAE1-1 | GjFAE1-2 | CaFAE1-1 | CaFAE1-2 | CaFAE1-3 | CaFAE1-4 | CaFAE1-5 | LdFAE1 | GyFAE1-1 | GyFAE1-2 | TmFAE1-1 | TmFAE1-2 | pYES2/HEBX | ||
1 | 棕榈酸(C16∶0) | 14.76 | 14.97 | 15.02 | 14.79 | 14.58 | 16.94 | 15.39 | 14.77 | 21.27 | 21.22 | 21.31 | 20.95 | 21.15 |
2 | 棕榈油酸(C16∶1) | 25.10 | 24.03 | 24.41 | 24.15 | 25.72 | 28.83 | 25.15 | 25.28 | 29.55 | 29.35 | 28.18 | 29.58 | 28.24 |
3 | 硬脂酸(C18∶0) | 3.90 | 4.30 | 4.38 | 4.04 | 3.78 | 5.11 | 4.39 | 5.68 | 10.71 | 10.30 | 11.03 | 10.09 | 10.66 |
4 | 油酸(C18∶1) | 8.65 | 9.38 | 9.46 | 8.84 | 9.48 | 13.81 | 9.70 | 17.84 | 24.65 | 24.51 | 24.48 | 25.25 | 24.71 |
5 | 花生酸(C20∶0) | 0.88 | 0.90 | 0.92 | 0.93 | 0.84 | 0.89 | 0.78 | 3.30 | 0.15 | 0.15 | 0.17 | 0.17 | 0.19 |
6 | 花生烯酸(C20∶1) | 2.15 | 2.03 | 2.62 | 2.42 | 0.48 | 1.99 | 1.97 | 4.92 | 0.07 | 0.06 | 0.04 | 0.03 | 0.06 |
7 | 山嵛酸(C22∶0) | 3.11 | 2.74 | 2.46 | 2.97 | 2.77 | 1.42 | 2.69 | 1.88 | 0.08 | 0.08 | 0.10 | 0.10 | 0.11 |
8 |
二十二碳烯酸 (C22∶1(cis-11)) | 3.87 | 3.49 | 4.17 | 3.73 | 3.88 | 3.41 | 3.22 | 0.17 | |||||
9 | 芥酸(C22∶1(cis-13)) | 4.53 | 4.05 | 3.68 | 3.73 | 4.82 | 1.31 | 4.42 | 0.29 | |||||
10 | 木蜡酸(C24∶0) | 5.27 | 4.82 | 4.20 | 5.12 | 4.60 | 2.68 | 4.64 | 2.50 | 0.13 | 0.15 | 0.17 | 0.16 | 0.21 |
11 | 神经酸(C24∶1) | 1.18 | 1.13 | 1.02 | 1.28 | 1.23 | 0.36 | 1.27 | 0.06 |
脂肪酸相对含量值取自两次独立生物重复测定的平均值;表中空格表示未检测到相应脂肪酸
The value of relative abundance of fatty acid is taken from the average of two independent biological repeated determinations; The space in the table indicates that the corresponding fatty acid is undetectable
来自阳光80和旱金莲FAE1的酵母转化菌均未检测到C22∶1、C24∶1脂肪酸的积累。对其序列分析发现,GyFAE1-2编码产物第282位为苯丙氨酸F,而非丝氨酸S,是一种无活性的产物;GyFAE1-1蛋白氨基酸序列与本研究具有芥酸合成能力的其他FAE1蛋白相比,其在第395位为赖氨酸K,而其他FAE1蛋白为精氨酸R,可能是其无活性的原因,其编码基因来自于C基因
虽然自然界中旱金莲种子的芥酸含量最高,但其种子含油量极低(6%~10%),且具有匍匐性生长习性、种子成熟期不一致、易脱落等不利性状,致使其无法大规模推广和应
甘蓝型油
因此,生产上高、低芥酸品种的选育主要是FAE1的选择。选择功能失活型FAE1培育低芥酸或高油酸品种用于食用油生产,如阳光80、中双系列、华杂系列等品
肖玲
底物特异性是FAE1最重要的特性之一,与其一级结构紧密相关。不同的FAE1对不同碳链长度和饱和度的脂酰-CoA亲和力存在差异,并最终决定了合成的VLCFAs的碳链长度。AtFAE1仅以C18∶1-CoA和C20∶1-CoA为底
Blacklock
FAE1基因剂量与芥酸含量。转基因研究表明,种子中芥酸含量与其转入FAE1拷贝数成正相关,功能拷贝数越多芥酸含量越高,且含油量也越
FAE1芥酸合成能力与芥酸含量。Puyaubert
FAE1基因表达调控与芥酸含量。FAE1启动子具有极强的种子表达特异性,且活性要高于同类启动子napin,由其驱动的FAE1的转录高峰期与油脂积累进程几乎同
芥酸是一种重要的化工原料,具有广泛的应用领域和巨大的市场需求,培育超高芥酸含量的作物品种,经济价值可观,社会效益明
基于对种子中脂肪酸生物合成通路、转运储存机制及分布规
(1)育种手段的选择。油菜和海甘蓝基因组中均不具有将芥酸导入到TAG的sn-2位功能的溶血性磷脂酸酰基转移酶(LPAAT),因此常规育种方法无法突破66.7%的理论极限含量,采用转基因、基因编辑等生物技术手段是必然选择。遗传修饰材料再辅以分子标记辅助选择、小孢子培养、人工杂交等技术可以快速实现目标基因的聚合和纯合,从而大大加速育种进程。
(2)遗传转化受体材料的选择。众多研究表明,FAE1对种子芥酸含量具有加性和显性效应,单个FAE1转基因贡献的芥酸含量在1%~30%之间。含油量高及基础芥酸含量高的受体材料,往往具有对芥酸合成有利的基因型(主基因+修饰基因),加上转入的FAE1作用,可以大大提升对“源”(C18∶1)的转化效率。目前,以油菜和海甘蓝为受体材料的遗传转化技术体系已相当成熟,因此高芥酸油菜和海甘蓝是理想的遗传转化受体材料,但应注意特殊基因型受体材料的遗传转化体系的优化。
(3)靶标基因的选择与载体构建策略。已有研究表明,种子中芥酸含量主要取决于FAE1、FAD2和LPAAT 3个基因的协同作用,它们涉及芥酸合成与储存的“源”、“流”和“库”三个环节,因此,这3个基因是芥酸基因工程的主要靶标。针对这3个基因,理想的高芥酸材料基因型应该是FAE1 FAE1/fad2 fad2/LPAAT LPAAT。芥酸高合成能力的FAE1可实现油酸“源”的高效转化;FAD2的失活(fad2)可以阻断油酸“源”向多不饱和方向转化,增加其向碳链延伸方向转化的底物量,再结合高活性、多拷贝FAE1可实现“引流”和“扩流”效果;外源LPAAT负责芥酸入“库”,将游离芥酰-CoA导入到TAG的sn-2位。表达载体启动子应均为种子特异启动子,FAE1启动子要优于napin和CaMV 35SP。3个基因可以构建在一个表达载体中,也可以分开构建、转化然后再通过杂交而聚合,但后者后期筛选、鉴定工作量较大。以fad2fad2基因型高含油量高芥酸材料为受体,再构建FAE1+LPAAT共表达载体进行转化较为可行。
(4)FAE1基因的选择。实现超高芥酸的3个目标基因当中,FAE1的选择可塑性最大。目前并不清楚决定FAE1芥酸合成能力的最佳一级结构,这也是本研究的出发点和初衷,筛选自然界中存在的芥酸高合成能力的FAE1。本研究克隆的12个正常编码的FAE1当中,CaFAE1-3对C20∶1的转化率可达95.39%,若再配合一个对C18∶1高转化率的FAE1,则可显著提高芥酸的合成量。此外,还可以利用点突变、基因改组(Gene shuffling)等技术人为促进FAE1的进化,筛选获得芥酸合成能力进一步提高的FAE1用于遗传转化。因此,要实现超高芥酸就应选择具有高合成能力的FAE1基因。
参考文献
Bach L, Faure J D. Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies, 2010, 333 (4): 361-370 [百度学术]
Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses. Cells, 2021, 10 (6): 1284 [百度学术]
孟继红. 芥酸合成基因表达的量化分析及芥酸种质资源的TRAP分子鉴定. 乌鲁木齐: 新疆农业大学, 2007 [百度学术]
Meng J H. Quantitive analysis gene expression of erucic acid synthesis and TRAP molecular identification of erucic acid germplasm. Urumqi: Xinjiang Agricultural University, 2007 [百度学术]
淮东欣. 调控超长链脂肪酸合成关键基因对植物种子中脂肪酸组成的影响. 武汉: 华中农业大学, 2015 [百度学术]
Huai D X. Effects of regulating the key genes in very long chain fatty acid biosynthesis pathway on fatty acid composition in plant seeds. Wuhan: Huazhong Agricultural University, 2015 [百度学术]
吴关庭, 郎春秀, 陈锦清. 芥酸的生产及其衍生产品开发. 中国油脂, 2007, 32 (6): 27-31 [百度学术]
Wu G T, Lang C X, Chen J Q. Production of erucic acid and development of its derivative product. China Oils and Fats, 2007, 32 (6): 27-31 [百度学术]
James D W J, Lim E, Keller J, Plooy I, Ralston E, Dooner H K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon Activator. Plant Cell, 1995, 7: 309-319 [百度学术]
Lassner M W, Lardizabal K, Metz J G. A jojoba β-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell, 1996, 8 (2): 281-292 [百度学术]
Han J X, Lühs W, Sonntag K, Zähringer U, Borchardt D S, Wolter F P, Heinz E, Frentzen M. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Molecular Biology, 2001, 46 (2): 229-239 [百度学术]
Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D, Pradhan A K. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theoretical and Applied Genetics, 2004, 108 (4): 743-749 [百度学术]
Kanrar S, Venkateswari J, Dureja P, Kirti P B, Chopra V L. Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FATTY ACID ELONGATION 1 (BjFAE1) gene. Plant Cell Reports, 2006, 25 (2): 148-155 [百度学术]
Das S, Roscoe T J, Delseny M, Srivastava P S, Lakshmikumaran M. Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Science, 2002, 162: 245-250 [百度学术]
Katavic V, Mietkiewska E, Barton D L, Giblin E M, Reed D W, Taylor D C. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. European Journal of Biochemistry, 2002, 269 (22): 5625-5631 [百度学术]
Mietkiewska E, Giblin E M, Wang S, Barton D L, Dirpaul J, Brost J M, Katavic V, Taylor D C. Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiology, 2004, 136 (1): 2665-2675 [百度学术]
Mietkiewska E, Brost J M, Giblin E M, Barton D L, Taylor D C. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Plant Biotechnology Journal, 2007, 5 (5): 636-645 [百度学术]
Cahoon E B, Marillia E F, Stecca K L, Hall S E, Taylor D C, Kinney A J. Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiology, 2000, 124 (1): 243-251 [百度学术]
Guo Y, Mietkiewska E, Francis T, Katavic V, Brost J M, Giblin M, Barton D L, Taylor D C. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Molecular Biology, 2009, 69 (5): 565-575 [百度学术]
Taylor D C, Francis T, Guo Y, Brost J M, Katavic V, Mietkiewska E, Michael Giblin E, Lozinsky S, Hoffman T. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnology Journal, 2009, 7: 925-938 [百度学术]
刘念, 范其新, 汤天泽, 蒙大庆, 罗华友, 李红. 种植密度和施氮量对特高芥酸绵油309产量和品质的影响及相关性分析. 湖北农业科学, 2014, 53 (23): 5673-5676 [百度学术]
Liu N, Fan Q X, Tang T Z, Meng D Q, Luo H Y, Li H. Effects of densities, nitrogen rates on yield, quality of rapeseed Mianyou 309 with high erucic acid and correlation analysis. Hubei Agricultural Sciences, 2014, 53 (23): 5673-5676 [百度学术]
刘念, 汤天泽, 范其新, 蒙大庆, 李芝凡, 陈军. 不同地点、播期和氮肥施用量对特高芥酸油菜经济和品质性状的影响. 甘肃农业大学学报, 2015, 50 (3): 68-72 [百度学术]
Liu N, Tang T Z, Fan Q X, Meng D Q, Li Z F, Chen J. Effects of site, sowing date and nitrogen application amount on economical characters, quality traits of high erucic acid rapeseed. Journal of Gansu Agricultural University, 2015, 50 (3): 68-72 [百度学术]
Ghanevati M, Jaworski J G. Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS. Biochimica et Biophysica Acta, 2001, 1530 (1): 77-85 [百度学术]
Katavic V, Barton D L, Giblin E M, Reed D W, Kumar A, Taylor D C. Gaining insight into the role of serine 282 in B. napus FAE1 condensing enzyme. FEBS Letters, 2004, 562 (1-3): 118-124 [百度学术]
肖玲, 卢长明. 油菜脂肪酸延长酶基因fae1片段的克隆与SNP分析. 中国农业科学, 2005, 38(5): 891-896 [百度学术]
Xiao L, Lu C M. Cloning of fae1 gene partial sequence and SNP analysis in Brassica species. Scientia Agricultura Sinica, 2005, 38(5): 891-896 [百度学术]
Wang N, Shi L, Tian F, Ning H C, Wu X M, Long Y, Meng J L. Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biology, 2010, 10: 137 [百度学术]
武玉花, 吴刚, 肖玲, 曹应龙, 卢长明. 十字花科植物中低芥酸野生种的发掘和FAE1基因功能的验证. 中国农业科学, 2009, 42 (11): 3819-3827 [百度学术]
Wu Y H, Wu G, Xiao L, Cao Y L, Lu C M. Discovery of low erucic acid wild species and functional characterization of FAE1 genes in crucifer species. Scientia Agricultura Sinica, 2009, 42 (11): 3819-3827 [百度学术]
Blacklock B J, Jaworski J G. Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases. European Journal of Biochemistry, 2002, 269 (19): 4789-4798 [百度学术]
Sun X Q, Pang H, Li M M, Peng B, Guo H S, Yan Q Q, Hang Y Y. Evolutionary pattern of the FAE1 gene in brassicaceae and its correlation with the erucic acid trait. PLoS ONE, 2013, 8 (12): e83535 [百度学术]
Roscoe T J, Lessire R, Puyaubert J, Renard M, Delseny M. Mutations in the fatty acid elongation 1 gene are associated with a loss of beta-ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Letters, 2001, 492 (1-2): 107-111 [百度学术]
Blacklock B J, Jaworski J G. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochemical and Biophysical Research Communications, 2006, 346 (2): 583-590 [百度学术]
Stenback K E, Flyckt K S, Hoang T, Campbell A A, Nikolau B J. Modifying the yeast very long chain fatty acid biosynthetic machinery by the expression of plant 3-ketoacyl CoA synthase isozymes. Scientific Reports, 2022, 12 (1): 13235 [百度学术]
Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier J A, Dunn T M. Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. The Journal of Biological Chemistry, 2006, 281 (14): 9018-9029 [百度学术]
Taylor D C, Francis T, Lozinsky S, Hoffman T, Giblin M, Marillia E F. Cloning and characterization of a constitutive lysophosphatidic acid acyltransferase 2 (LPAT2) gene from Tropaeolum majus L. The Open Plant Science Journal, 2010, 4: 7-17 [百度学术]
Wang Y P, Sonntag K, Rudloff E. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theoretical and Applied Genetics, 2003, 106 (7): 1147-1155 [百度学术]
徐爱遐, 黄镇, 马朝芝, 肖恩时, 张修森, 涂金星, 傅廷栋. 芥菜型油菜FAE1基因序列特征及其与芥酸含量关系的初步分析. 作物学报, 2010, 36 (5): 794-800 [百度学术]
Xu A X, Huang Z, Ma C Z, Xiao E S, Zhang X S, Tu J X, Fu T D. FAE1 sequence characteristics and its relationship with erucic acid content in Brassica juncea. Acta Agronomica Sinica, 2010, 36 (5): 794-800 [百度学术]
Wang P D, Xiong X J, Zhang X B, Wu G, Liu F. A review of erucic acid production in Brassicaceae oilseeds: Progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Frontiers in Plant Science, 2022, 13: 899076 [百度学术]
Cheng J H, Salentijn E M J, Huang B Q, Krens F A, Dechesne A C, Visser R G F, van Loo E N. Isolation and characterization of the omega-6 fatty acid desaturase (FAD2) gene family in the allohexaploid oil seed crop Crambe abyssinica Hochst. Molecular Breeding, 2013, 32: 517-531 [百度学术]
Siebel J, Pauls K P. Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids. Theoretical and Applied Genetics, 1989, 77: 489-494 [百度学术]
吴江生. 甘蓝型油菜芥酸含量的遗传研究. 湖北农业科学, 1989 (7): 16-17, 32 [百度学术]
Wu J S. Genetic study on erucic acid content in Brassica napus. Hubei Agricultural Sciences, 1989 (7): 16-17, 32 [百度学术]
戚存扣, 盖钧镒, 章元明. 甘蓝型油菜芥酸含量的主基因+多基因遗传. 遗传学报, 2001, 28 (2): 182-187 [百度学术]
Qi C K, Gai J Y, Zhang Y M. Major gene plus poly-gene inheritance of erucic acid content in Brassica napus L.. Acta Genetica Sinica, 2001, 28 (2): 182-187 [百度学术]
Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D. The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theoretical and Applied Genetics, 1998, 96: 852-858 [百度学术]
Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe T J. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theoretical and Applied Genetics, 1998, 96 (2): 177-186 [百度学术]
Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics, 2006, 114 (1): 67-80 [百度学术]
Wang N, Wang Y, Tian F, King G J, Zhang C, Long Y, Shi L, Meng J L. A functional genomics resource for Brassica napus: Development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. The New Phytologist, 2008, 180 (4): 751-765 [百度学术]
Li X Y, van Loo E N, Gruber J, Fan J, Guan R, Frentzen M, Stymne S, Zhu L H. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Plant Biotechnology Journal, 2012, 10 (7): 862-870 [百度学术]
Wu G, Wu Y H, Xiao L, Li X D, Lu C M. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theoretical and Applied Genetics, 2008, 116 (4): 491-499 [百度学术]
Yan G X, Li D, Cai M X, Gao G Z, Chen B Y, Xu K, Li J, Li F, Wang N, Qiao J W, Li H, Zhang T Y, Wu X M. Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L.. Breeding Science, 2015, 65 (3): 257-264 [百度学术]
傅寿仲, 张洁夫, 戚存扣, 浦惠明, 高建芹, 陈新军. 工业专用型高芥酸油菜新品种选育. 作物学报, 2004, 30 (5): 409-412 [百度学术]
Fu S Z, Zhang J F, Qi C K, Pu H M, Gao J Q, Chen X J. Breeding of high erucic acid rapeseed (B. napus) for industrial use. Acta Agronomic Sinica, 2004, 30 (5): 409-412 [百度学术]
Saini N, Singh N, Kumar A, Vihan N, Yadav S, Vasudev S, Yadava D K. Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breeding Science, 2016, 66 (5): 831-837 [百度学术]
Wu Y, Xiao L, Wu G, Lu C. Cloning of fatty acid elongase1 gene and molecular identification of A and C genome in Brassica species. Science in China Series C: Life Sciences 2007, 50 (3): 343-349 [百度学术]
Jourdren C, Barret P, Horvais R, Foisset N, Delourme R, Renard M. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Molecular Breeding, 1996, 2: 61-71 [百度学术]
Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R. The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling. Plant Molecular Biology, 2008, 67 (5): 547-566 [百度学术]
Denic V, Weissman J S. A molecular caliper mechanism for determining very long-chain fatty acid length. Cell, 2007, 130 (4): 663-677 [百度学术]
Cao Z Y, Tian F, Wang N, Jiang C C, Lin B, Xia W, Shi J Q, Long Y, Zhang C Y, Meng J L. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. Journal of Genetics and Genomics, 2010, 37 (4): 231-240 [百度学术]
Liu Y H, Du Z L, Lin S L, Li H M, Lu S P, Guo L, Tang S. CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus. Frontiers in Plant Science, 2022, 13: 848723 [百度学术]
Puyaubert J, Garbay B, Costaglioli P, Dieryck W, Roscoe T J, Renard M, Cassagne C, Lessire R. Acyl-CoA elongase expression during seed development in Brassica napus. Biochimica et Biophysica Acta, 2001, 1533 (2): 141-152 [百度学术]
Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Molecular Biology, 2001, 46 (6): 717-725 [百度学术]
Lee H G, Park B Y, Kim H U, Seo P J. MYB96 stimulates C18 fatty acid elongation in Arabidopsis seeds. Plant Biotechnology Report, 2015, 9: 161-166 [百度学术]
Sasongko N D, Möllers C. Toward increasing erucic acid content in oilseed rape (Brassica napus L.) through the combination with genes for high oleic acid. Journal of the American Oil Chemists Society, 2005,82 (6): 445-449 [百度学术]
Roslinsky V, Falk K C, Gaebelein R, Mason A S, Eynck C. Development of B. carinata with super-high erucic acid content through interspecific hybridization. Theoretical and Applied Genetics, 2021, 134 (10): 3167-3181 [百度学术]
Heath D W, Earle E D. Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters. Theoretical and Applied Genetics, 1995, 91: 1129-1136 [百度学术]
王志伟, 张自阳, 林丽婷, 张金文, 刘明久, 乔岩. Artificial miRNA调控甘蓝型油菜芥酸的研究. 核农学报, 2019, 33 (1): 24-30 [百度学术]
Wang Z W, Zhang Z Y, Lin L T, Zhang J W, Liu M J, Qiao Y. Study of artificial miRNA regulate erucic acid in Brassica napus. Journal of Nuclear Agricultural Sciences, 2019, 33 (1): 24-30 [百度学术]
Jadhav A, Katavic V, Marillia E F, Michael Giblin E, Barton D L, Kumar A, Sonntag C, Babic V, Keller W A, Taylor D C. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metabolic Engineering, 2005, 7 (3): 215-220 [百度学术]
Nath U K, Wilmer J A, Wallington E J, Becker H C, Möllers C. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2009, 118 (4): 765-773 [百度学术]
Lassner M W, Levering C K, Davies H M, Knutzon D S. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiology, 1995, 109: 1389-1394 [百度学术]
陈柳, 毛善婧, 陆莉, 储成才, SONNTAG Karin, 王幼平. 导入LPAAT和KCS基因对油菜种子芥酸含量的影响. 作物学报, 2006, 32 (8): 1174-1178 [百度学术]
Chen L, Mao S J, Lu L, Chu C C, Karin S, Wang Y P. Influence of introducing LPAAT and KCS genes into rape on erucic acid content of seed. Acta Agronomica Sinica, 2006, 32 (8): 1174-1178 [百度学术]
石江华, 郎春秀, 王伏林, 吴学龙, 陈锦清, 吴关庭. 工业用高油高芥酸转基因油菜株系的获得. 分子植物育种, 2016, 4 (3): 586-592 [百度学术]
Shi J H, Lang C X, Wang F L, Wu X L, Chen J Q, Wu G T. Development of high oil and high erucic acid transgenic rapeseed lines for industrial use. Molecular Plant Breeding, 2016, 4 (3): 586-592 [百度学术]
Lu S P, Aziz M, Sturtevant D, Chapman K D, Guo L. Heterogeneous distribution of erucic acid in Brassica napus seeds. Frontiers in Plant Science, 2020, 10: 1744 [百度学术]