摘要
花青素是一种天然色素,可以作为清除自由基的重要天然抗氧化剂,其富含的多种化合物在医疗保健方面十分重要。花青素影响果蔬成熟、口感、色泽,对植物的非生物和生物胁迫产生保护作用,因此优化花青素含量被视为许多园艺作物的育种目标。本研究阐述了乙烯响应因子(ERFs)作为乙烯信号传递的次级转录因子响应植物激素信号并能产生反馈调节,以多种方式介导了乙烯调控植物花青素生物合成的过程。在作用方式上,ERFs主要通过与转录因子互作、激活转录因子、与MBW形成调控复合物或直接激活结构基因启动子的方式调控植物花青素的生物合成。本研究旨在为后续深入阐明ERF调控不同物种花青素生物合成的机制、探究果蔬成熟后期花青素快速积累与乙烯释放量增加之间存在的联系提供理论依据。
花青素在人类健康保健以及植物抵抗生物和非生物胁迫方面发挥重要作
色泽是园艺作物的重要性状,花青素是植物着色的主要色素之一。作为一种水溶性黄酮类色素,花青素广泛分布于植物的花瓣、果实、茎和叶
花青素生物合成途径中,结构基因编码的一系列酶参与花青素的生物合

图1 花青素生物合成路径图
Fig.1 Pathway diagram of anthocyanin biosynthesis
这些结构基因主要由MYB家族、bHLH家族和WD40蛋白组成的MBW转录复合物共同调
植物激素等内部因素以及光照、温度、干旱等外部因素都能影响靶基因的转录激活和花青素的生物合成、积累和运输。如ERF38转录因子促进干旱条件下苹果花青素的生物合
超家族AP2/ERF成员包含一个共同的DNA结合域AP2域,根据该区域拷贝数的差异,AP2/ERF通常可分为4个家族即AP2、ERF、RAV和Solois
ERF在植物生长中起着重要作用,参与调节植物对激素、胁迫、果实成熟的反应并调控花青素合
乙烯是调节植物生长、发育、衰老和抗逆性的重要激
乙烯对花青素生物合成的调节作用因植物种类而异,例如乙烯通过抑制SlAN2-like基因转录抑制花青素的生物合

图2 转录因子ERF参与乙烯调控花青素合成的方式
Fig.2 The transcription factor ERF participates in the way that ethylene regulates anthocyanin synthesis
①②③④代表转录因子ERF介导乙烯调控花青素合成时,与MYB共同作用的多种调控通路。① 通路代表着乙烯通过激活MYB类转录因子转录加速了结构基因转录和花青素积累,同时MYB转录因子激活乙烯响应因子ERF的转录来调控乙烯生成,进一步加强乙烯介导的花青素积累。② 通路代表着乙烯响应因子ERF与MYB转录因子蛋白互作后通过上调花青素合成相关结构基因活性促进花青素合成。
;③ 通路代表着乙烯响应因子ERF通过抑制MYB类花青素合成正调控因子的表达阻碍花青素生物合成。④ 通路代表着乙烯响应因子ERF通过激活MYB类花青素合成正调控/负调控转录因子转录,促进/抑制花青素生物合成结构基因表达,从而促进/抑制花青素积累。ET: 乙烯; ETR: 乙烯受体
①②③④ represent multiple regulatory pathways in which ERF and MYB act together when the transcription factor ERF mediates ethylene to regulate anthocyanin synthesis. ①: The pathway represents that ethylene accelerates the transcription of structural genes and anthocyanin accumulation by activating the transcription of MYB transcription factors. At the same time, MYB transcription factors regulate ethylene production by activating the transcription of ethylene response factor ERF, which further enhances the ethylene mediated anthocyanin accumulation. ②: The pathway represents that the interaction between ethylene response factor ERF and MYB transcription factor protein promotes anthocyanin synthesis by upregulating the activity of structural genes related to anthocyanin synthesis. ③: The pathway represents that the ethylene responsive factor ERF inhibits anthocyanin biosynthesis by inhibiting the expression of positive regulators of MYB anthocyanin synthesis. ④: The pathway represents that ethylene response factor ERF promotes/inhibits anthocyanin accumulation by activating MYB anthocyanin synthesis positive/negative regulation of transcription factor transcription, promoting/inhibiting the expression of anthocyanin biosynthetic structural genes. ET: Ethylene; ETR: Ethylene receptor
在乙烯响应因子ERF作用下乙烯促进苹果、桑葚花青素积累却对梨花青素生物合成表现出明显的抑制效果,这体现出不同物种对乙烯反应的差异性。乙烯诱导的PpERF105通过激活负调控转录因子PpMYB140的转录,导致形成MBW复合物,该复合物下调花青素生物合成相关基因的表达抑制了梨中花青素生物合成。另外乙烯信号通路抑制正调控转录因子PpMYB10和PpMYB114的表达,导致花青素生物合成减
在作用方式上,ERF转录因子通过与MYB类转录因子蛋白互作、激活MYB类转录因子、与MBW形成转录调控复合物来影响结构基因启动子活性或直接激活结构基因启动子来发挥作用调控花青素合成(

图3 转录因子ERF调控花青素合成的作用方式
Fig.3 Mode of action of transcription factor ERF in the regulation of anthocyanin synthesis
酵母双杂和双分子荧光互补分析表明苹果中MdERF78与MdMYB1蛋白互作,双荧光素酶和GUS染色等实验证明MdERF78通过增强MdMYB1对MdDFR、MdUFGT、MdGSTF12启动子的转录活性,在ALA (5-aminolevulinic acid)诱导的花青素积累中发挥着积极作
作为伴侣,bHLH可以与MYB相互作用,调节花青素的生物合成。例如,MYBA1和MYB113与bHLH互作,以调节马铃薯中的花青素生物合
ERF转录因子不仅通过MYB类转录因子发挥作用以调控花青素生物合成,还可以直接激活结构基因的启动子调控花青素生物合成。研究发现,梨中瞬时过表达PbERF22显著上调了结构基因PbCHS、PbDFR、PbANS、PbUFGT的表达水平,进一步通过双荧光素酶实验发现PbERF22可以显著激活PbUFGT的启动子,同时PbERF22也可促进调节基因PbMYB10、PbMYB10b、PbbHLH3的表达,该基因通过增强PbMYB10、PbMYB10b以及复合物MYB10-bHLH3、MYB10b-bHLH3对PbUFGT启动子的激活作用来促进早熟梨中花青素的生物合
花青素在植物体内的合成途径已研究的较为清楚,近年来有大量的研究在阐述其调控机制,但花青素的生物合成受多种因素影响,导致不同植物花青素的合成代谢途径以及不同情况下花青素相关基因的表达水平存在差异,因此植物花青素的调控机制十分复杂,仍需科研工作者继续深入探究。研究各种转录因子调控植物花青素的合成机制,是近年来科学前沿尤为关注的热点。作为乙烯信号传递的次级转录因子,ERF与乙烯等激素的合成和释放密切相关,果实成熟后期出现乙烯水平波动以及花青素大量积累的现象引起广泛关注,研究ERF转录因子则被视为探明这一现象的突破口。
因此还有些问题需要深入探究:(1)有研究表明,乙烯水平上升能诱导乙烯响应因子ERF表达进而调控花青素的生物合成,苹果花青素合成途径中的转录因子MdMYB1可通过激活ERF调控乙烯产生。那么花青素合成途径中的其他转录因子是否也能激活ERF,从而通过调控ERF来影响乙烯合成?(2)ERF转录因子在调控花青素合成过程中多见于对MYB类转录因子的激活或与MYB、bHLH形成转录调控复合物,而MYB、bHLH、WD40联系密切,那么花青素合成过程中ERF转录因子是否与WD40存在某种联系?(3)为什么ERF转录因子调控不同植物中花青素合成的作用机制存在明显差异?
研究ERF转录因子在不同物种中花青素的调控机制以及其通过调控花青素合成来影响果蔬成熟和抵御胁迫具有更加实践性的意义,期待今后随着研究的深入可以不断阐明完善以ERF转录因子为中心的花青素合成调控网络,以丰富完善富含花青素的育种资源。
参考文献
Ahmed N U, Park J I, Jung H J, Yang T J, Hur Y, Nou I S. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene, 2014, 550 (1): 46-55 [百度学术]
Jia Z D, Ma P Y, Bian X F, Yang Q, Guo X D, Xie Y Z. Biosynthesis metabolic pathway and molecular regulation of plants anthocyanin. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34 (7): 1496-1506 [百度学术]
Sun X H, Zhou T T, Wei C H, Lan W Q, Zhao Y, Pan Y J, Wu V C H. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 2018, 94: 155-161 [百度学术]
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140 (2): 411-432 [百度学术]
An J P, Zhang X W, Bi S Q, You C X, Wang X F, Hao Y J. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal, 2020, 101 (3): 573-589 [百度学术]
Wang X, Pan L, Wang Y, Meng J, Deng L, Niu L, Liu H, Ding Y, Yao J L, Nieuwenhuizen N J, Ampomah-Dwamena C, Lu Z, Cui G, Wang Z, Zeng W. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Science, 2021, 313: 111084 [百度学术]
Kimura S, Chikagawa Y, Kato M, Maeda K, Ozeki Y. Upregulation of the promoter activity of the carrot (Daucus carota) phenylalanine ammonia-lyase gene (DcPAL3) is caused by new members of the transcriptional regulatory proteins, DcERF1 and DcERF2, which bind to the GCC-box homolog and act as an activator to the DcPAL3 promoter. Journal of Plant Research, 2008, 121 (5): 499-508 [百度学术]
An J P, Wang X F, Li Y Y, Song L Q, Zhao L L, You C X, Hao Y J. Ein3-like1, MYB1, and ethylene response factor 3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiology, 2018, 178 (2): 808-823 [百度学术]
Liu Y, Tikunov Y, Schouten R E, Marcelis L F M, Visser R G F, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Frontiers in Chemistry, 2018, 6: 52 [百度学术]
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 2014, 19: 81-90 [百度学术]
Zhang Z F, Lu J, Zheng Y L, Wu D M, Hu B, Shan Q, Cheng W, Li M Q, Sun Y Y. Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice. Journal of Nutritional Biochemistry, 2013, 24 (6): 1008-1018 [百度学术]
Kwak S S. Biotechnology of the sweet potato: Ensuring global food and nutrition security in the face of climate change. Plant Cell Reports, 2019, 38 (11): 1361-1363 [百度学术]
Tsurunaga Y, Takahashi T, Katsube T, Kudo A, Kuramitsu O, Ishiwata M, Matsumoto S. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chemistry, 2013, 141 (1): 552-556 [百度学术]
Ahmed N U, Park J I, Jung H J, Hur Y, Nou I S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Functional and Integrative Genomics, 2015, 15 (4): 383-394 [百度学术]
Cui Z H, Bi W L, Hao X Y, Li P M, Duan Y, Walker M A, Xu Y, Wang Q C. Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leafroll-associated virus 3-infected in vitro grapevine (Vitis vinifera) leaves. Plant Disease, 2017, 101 (9): 1606-1615 [百度学术]
Lin Y L, Fan L Q, He J X, Wang Z K, Yin Y P, Cheng Y L, Li Z G. Anthocyanins contribute to fruit defense against postharvest green mold. Postharvest Biology and Technology, 2021, 181: 111661 [百度学术]
Li X P, Bao L X, Li S Y, Yang Q F, Sui Q J. Progress on anthocyanin pigmentation in pigment flesh potato tubers. Crops, 2009(1): 4-8 [百度学术]
Wu T, Liu H T, Zhao G P, Song J X, Wang X L, Yang C Q, Zhai R, Wang Z G, Ma F W, Xu L F. Jasmonate and ethylene-regulated ethylene response factor 22 promotes lanolin-induced anthocyanin biosynthesis in 'Zaosu' pear (Pyrusbretschneideri Rehd.) fruit. Biomolecules, 2020, 10 (2): 278 [百度学术]
Liu H, Liu Z, Wu Y, Zheng L, Zhang G. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. International Journal of Molecular Sciences, 2021, 22 (16): 8441 [百度学术]
Baxter I R, Young J C, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer W A, Hazen S P, Murphy A S, Harper J F. A plasma membrane
Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant Journal, 2004, 37 (1): 104-114 [百度学术]
Routaboul J M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. Journal of Experimental Botany, 2012, 63 (10): 3749-3764 [百度学术]
Ilk N, Ding J,Ihnatowicz A , Koornneef M , Reymond M. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the Enhancer of AG-4 2 (HUA 2) locus in combination with Production of Anthocyanin Pigment 1 (PAP 1) and PAP 2. New Phytologist, 2014, 206: 422-435 [百度学术]
Jin W, Wang H, Li M, Wang J, Yang Y, Zhang X, Yan G, Zhang H, Liu J, Zhang K. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnol Journal, 2016, 14 (11): 2120-2133 [百度学术]
Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant, 2015, 8 (5): 689-708 [百度学术]
Jiang S, Sun Q, Zhang T, Liu W, Wang N, Chen X. MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. Journal of Plant Physiology, 2021, 257: 153353 [百度学术]
Liu X, Duan J, Huo D, Li Q, Wang Q, Zhang Y, Niu L, Luo J. The Paeonia qiui R2R3-MYB transcription factor PqMYB113 positively regulates anthocyanin accumulation in Arabidopsis thaliana and tobacco. Frontiers in Plant Science, 2022, 12: 810990 [百度学术]
Yin X J, Zhang Y B, Zhang L, Wang B H, Zhao Y D, Irfan M, Chen L J, Feng Y L. Regulation of MYB transcription factors of anthocyanin synthesis in lily flowers. Frontiers in Plant Science, 2021, 12: 761668 [百度学术]
Kim J, Kim D H, Lee J Y, Lim S H. The R3-type MYB transcription factor BrMYBL2.1 negatively regulates anthocyanin biosynthesis in Chinese cabbage (Brassica rapa L.) by repressing MYB-bHLH-WD40 complex activity. International Journal of Molecular Sciences, 2022, 23 (6): 3382 [百度学术]
Zhou H, Lin-Wang K, Wang H L, Gu C, Dare A P, Espley R V, He H P, Allan A C, Han Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant Journal, 2015, 82 (1): 105-121 [百度学术]
Yao G F, Ming M L, Allan A C, Gu C, Li L T, Wu X, Wang R Z, Chang Y J, Qi K J, Zhang S L, Wu J. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92 (3): 437-451 [百度学术]
Li C, Wu J, Hu K D, Wei S W, Sun H Y, Hu L Y, Han Z, Yao G F, Zhang H. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Horticulture Research, 2020, 7: 37 [百度学术]
Wei Z Z, Hu K D, Zhao D L, Tang J, Huang Z Q, Jin P, Li Y H, Han Z, Hu L Y, Yao G F, Zhang H. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biology, 2020, 20 (1): 258 [百度学术]
Liu R, Lai B, Hu B, Qin Y H, Hu G B, Zhao J T. Identification of microRNAs and their target genes related to the accumulation of anthocyanins in Litchi chinensis by high-throughput sequencing and degradome analysis. Frontiers in Plant Science, 2017, 7: 2059 [百度学术]
胡梦蝶, 李佳伟, 王梅, 刘彬, 马钰聪, 赵雨露, 杨鑫雷, 崔顺立, 侯名语, 蒋晓霞, 穆国俊. 花生花斑种皮花青素生物合成相关miRNA及其靶基因鉴定与分析. 植物遗传资源学报, 2022, 23 (1): 226-239 [百度学术]
Hu M D, Li J W, Wang M, Liu B, Ma Y C, Zhao Y L, Yang X L, Cui S L, Hou M Y, Jiang X X, Mu G J. Identification and analysis of miRNA and its target genes related to anthocyanin biosynthesis in variegated testa peanut. Journal of Plant Genetic Resources, 2022, 23 (1): 226-239 [百度学术]
Li S N, Wang W Y, Gao J L, Yin K Q, Wang R, Wang C C, Petersen M, Mundy J, Qiu J L. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell, 2016, 28 (11): 2866-2883 [百度学术]
El-Dis G R, Zavdetovna K L, Nikolaevich A A, Abdelazeez W M, Arnoldovna T O. Erratum to: “Influence of light on the accumulation of anthocyanins in callus culture of Vaccinium corymbosum L. cv. Sunt Blue Giant”. Journal of Photochemistry and Photobiology, 2022, 9: 100105 [百度学术]
Gaiotti F, Pastore C, Filippetti I, Lovat L, Belfiore N, Tomasi D. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L.). Scientific Reports, 2018, 8 (1): 8719 [百度学术]
Mao W W, Han Y, Chen Y T, Sun M Z, Feng Q Q, Li L, Liu L P, Zhang K K, Wei L Z, Han Z H, Li B B. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell, 2022, 34 (4): 1226-1249 [百度学术]
Shahab M, Roberto S R, Ahmed S, Colombo R C, Silvestre J P, Koyama R, de Souza R T. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Scientia Horticulturae, 2020, 259 (C): 108859 [百度学术]
Ni J B, Premathilake A T, Gao Y H, Yu W J, Tao R Y, Teng Y W, Bai S L. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. Plant Journal, 2021, 105 (1): 167-181 [百度学术]
Licausi F, Giorgi F M, Zenoni S, Osti F, Pezzotti M, Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11: 719 [百度学术]
Gu C, Guo Z H, Hao P P, Wang G M, Jin Z M, Zhang S L. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Botanical Studies, 2017, 58 (1): 6 [百度学术]
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist, 2013, 199 (3): 639-649 [百度学术]
Wu L G, Zhang Z J, Zhang H W, Wang X C, Huang R F. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiology, 2008, 148 (4): 1953-1963 [百度学术]
Sasaki K, Mitsuhara I, Seo S, Ito H, Matsui H, Ohashi Y. Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the tobacco tpoxN1 gene. Plant Journal, 2007, 50 (6): 1079-1092 [百度学术]
Li T, Wu Z, Xiang J, Zhang D H, Teng N J. Overexpression of a novel heat-inducible ethylene-responsive factor gene LlERF110 from Lilium longiflorum decreases thermotolerance. Plant Science, 2022, 319: 111246 [百度学术]
Hong Y B, Wang H, Gao Y Z, Bi Y, Xiong X H, Yan Y Q, Wang J J, Li D Y, Song F M. ERF transcription factor OsBIERF3 positively contributes to immunity against fungal and bacterial diseases but negatively regulates cold tolerance in rice. International Journal of Molecular Sciences, 2022, 23 (2): 606 [百度学术]
Wu W, Wang M M, Gong H, Liu X F, Guo D L, Sun N J, Huang J W, Zhu Q G, Chen K S, Yin X R. High CO2/hypoxia-induced softening of persimmon fruit is modulated by DkERF8/16 and DkNAC9 complexes. Journal of Experimental Botany, 2020, 71 (9): 2690-2700 [百度学术]
Koyama T, Sato F. The function of ethylene response factor genes in the light-induced anthocyanin production of Arabidopsis thaliana leaves. Plant Biotechnology (Tokyo), 2018, 35 (1): 87-91 [百度学术]
Ni J B, Zhao Y, Tao R Y, Yin L, Gao L, Strid Å, Qian M J, Li J C, Li Y J, Shen J Q, Teng Y W, Bai S L. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnology Journal, 2020, 18 (5): 1223-1240 [百度学术]
Zhang Z J, Zhang H W, Quan R D, Wang X C, Huang R F. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology, 2009, 150 (1): 365-377 [百度学术]
Khunmuang S, Kanlayanarat S, Wongs-Aree C, Meir S, Philosoph-Hadas S, Oren-Shamir M, Ovadia R, Buanong M. Ethylene induces a rapid degradation of petal anthocyanins in cut Vanda 'Sansai Blue' orchid flowers. Frontiers in Plant Science, 2019, 10: 1004 [百度学术]
De Santis D, Bellincontro A, Forniti R, Botondi R. Time of postharvest ethylene treatments affects phenols, anthocyanins, and volatile compounds of cesanese red wine grape. Foods, 2021, 10 (2): 322 [百度学术]
Costa D V, Almeida D P, Pintado M. Effect of postharvest application of ethylene on the profile of phenolic acids and anthocyanins in three blueberry cultivars (Vaccinium corymbosum). Journal of the Science of Food and Agriculture, 2018, 98 (13): 5052-5061 [百度学术]
Palma J M, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas F J. Nitric oxide in the physiology and quality of fleshy fruits. Journal of Experimental Botany, 2019, 70 (17): 4405-4417 [百度学术]
Guo H W, Ecker J R. The ethylene signaling pathway: New insights. Current Opinion in Plant Biology, 2004, 7 (1): 40-49 [百度学术]
Gao Z Y, Chen Y F, Randlett M D, Zhao X C, Findell J L, Kieber J J, Schaller G E. Localization of the raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biological Chemistry, 2003, 278 (36): 34725-34732 [百度学术]
Alonso J M, Stepanova A N. The ethylene signaling pathway. Science, 2004, 306 (5701): 1513-1515 [百度学术]
Li T, Jiang Z Y, Zhang L C, Tan D M, Wei Y, Yuan H, Li T L, Wang A D. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant Journal, 2016, 88 (5): 735-748 [百度学术]
Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12 (3): 393-404 [百度学术]
Xiao Y Y, Chen J Y, Kuang J F, Shan W, Xie H, Jiang Y M, Lu W J. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany, 2013, 64 (8): 2499-2510 [百度学术]
Li Z F, Zhang L X, Yu Y W, Quan R D, Zhang Z J, Zhang H W, Huang R F. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant Journal, 2011, 68 (1): 88-99 [百度学术]
Xu Y, Liu X, Huang Y, Xia Z, Lian Z, Qian L, Yan S, Cao B, Qiu Z. Ethylene inhibits anthocyanin biosynthesis by repressing the R2R3-MYB regulator SlAN2-like in tomato. Internation Journal of Molecular Sciences, 2022, 23 (14): 7648 [百度学术]
Dong T, Zheng T, Fu W, Guan L, Jia H, Fang J. The effect of ethylene on the color change and resistance to botrytis cinerea infection in 'Kyoho' grape fruits. Foods, 2020, 9 (7): 892 [百度学术]
Wang S, Li L X, Fang Y, Li D, Mao Z L, Zhu Z H, Chen X S, Feng S Q. MdERF1B-MdMYC2 module integrate ethylene and jasmonic acid to regulate the biosynthesis of anthocyanin in apple. Horticulture Research, 2022, 9: uhac142 [百度学术]
Zhang J, Xu H F, Wang N, Jiang S H, Fang H C, Zhang Z Y, Yang G X, Wang Y C, Su M Y, Xu L, Chen X S. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology, 2018, 98 (3): 205-218 [百度学术]
Mo R, Han G, Zhu Z, Essemine J, Dong Z, Li Y, Deng W, Qu M, Zhang C, Yu C. The ethylene response factor ERF5 regulates anthocyanin biosynthesis in 'Zijin' mulberry fruits by interacting with MYBA and F3H genes. International Journal of Molecular Sciences, 2022, 23 (14): 7615 [百度学术]
Ni J B, Zhao Y, Tao R Y, Yin L, Gao L, Strid Å, Qian M J, Li J C, Li Y J, Shen J Q, Teng Y W, Bai S L. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnology Journal, 2020, 18 (5): 1223-1240 [百度学术]
Fang X, Zhang L, Wang L. The transcription factor MdERF78 is involved in ALA-induced anthocyanin accumulation in apples. Frontiers in Plant Science, 2022, 13: 915197 [百度学术]
Ni J B, Bai S L, Zhao Y, Qian M J, Tao R Y, Yin L, Gao L, Teng Y W. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in 'Red Zaosu' pear fruits by interacting with MYB114. Plant Molecular Biology, 2019, 99 (1-2): 67-78 [百度学术]
Liu Y H, Lin-Wang K, Espley R V, Wang L, Yang H Y, Yu B, Dare A, Varkonyi-Gasic E, Wang J, Zhang J L, Wang D, Allan A C. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany, 2016, 67 (8): 2159-2176 [百度学术]
Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F. Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in Kiwifruit (Actinidia chinensis). Journal of Agricultural and Food Chemistry,2021, 69 (12): 3677-3691 [百度学术]
Ning Z Y, Hu K D, Zhou Z L, Zhao D L, Tang J, Wang H, Li L X, Ding C, Chen X Y, Yao G F, Zhang H. IbERF71, with IbMYB340 and IbbHLH2, coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potato (Ipomoea batatas L.). Plant Cell Reports, 2021, 40 (1): 157-169 [百度学术]
Ma H Y, Yang T, Li Y, Zhang J, Wu T, Song T T, Yao Y C, Tian J. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. Plant Cell, 2021, 33 (10): 3309-3330 [百度学术]