摘要
以红色深浅不一的红肉桃种质为材料,探讨影响其花色素苷含量的分子机理,为高效选育红色深浅不等的红肉桃品种提供理论依据。利用GUS染色测定桃果肉花色素苷重要基因PpMYB10.1的启动子活性,利用DNA-pulldown鉴定结合于PpMYB10.1启动子上的转录抑制因子,利用双荧光素酶及酵母双杂交验证转录抑制因子的功能。结果表明:(1)具有深红、红、浅红的桃果肉,其对应的PpMYB10.1表达量及花色素苷含量依次下降。(2)具有483 bp序列的PpMYB10.1启动子,其启动活性弱于缺失该序列的启动子。(3)利用该483 bp序列鉴定到的转录抑制子基因Prupe.2G302800,虽然不能直接抑制PpMYB10.1的转录,但能够结合花色素苷合成的主效基因PpBL,并抑制其转录活性,可能对降低PpMYB10.1表达具有一定功能。本研究通过483 bp缺失序列鉴定到的转录抑制子Prupe.2G302800,虽然不是红肉变浅的直接因素,但通过抑制PpBL转录活性,对于红肉桃红色变浅,可能具有一定作用。
关键词
红肉桃是一类特殊的桃种质资源,因果肉呈红色或紫红色,故也称血
红肉桃根据花色素苷大量积累时间,可以划分成两种类型。第一种是成熟期积累型,代表品种有大红袍、天津水蜜
成熟期积累型的红肉桃,根据花色素苷含量,又可分为深红、红及浅红等不同梯度,极大地丰富了红肉桃的供应类型。Hara-Kitagawa
用于试验的红色深浅不同的10份红肉种质,均属于成熟期大量积累花色素苷的红肉桃,分别为天津水蜜、园春白、武汉大红袍、微尖红肉、万州酸桃、红桃、大红袍、谷城大红袍、望谟小米桃、武汉2号,以上材料树龄14年,定植于中国农业科学院郑州果树研究所国家桃种质资源圃(郑州)。果肉拍照及样品采集于果实完全成熟时进行,具体为挑选树冠外围3~5个果实,横切拍照,并切取果皮与果核之间的果肉,迅速置于液氮,完全冷冻后用锡箔纸包裹,置于-80 ℃冰箱。

图1 红肉桃不同红色深浅
Fig.1 Different intensities of the red-flesh color
A:天津水蜜;B:万州酸桃;C:大红袍
A: Tianjin Shui Mi; B: Wanzhou Suan Tao; C: Da Hong Pao
花色素苷提取与测定参考赵慧芳
花色素苷含量采用示差法测定。吸取2 mL上述上清液,分别用pH=1.0(0.2 mol/L KCL∶0.2 mol/L HCl=25∶67)与pH=4.5(0.2 mol/L NaAc·3H2O∶0.2 mol/L HAc=1∶1)的缓冲液稀释至20 mL,20 mL(2 mL 1% HCl-乙醇+18 mL缓冲液)作为空白对照。缓冲液分别在510 nm与700 nm处测定吸光值A510、A700,利用以下公式计算花色素苷含量。
A:吸光值;ACY:花色素苷总含量;V:提取液的总体积;m:取样量;449.2:矢车菊素-3-葡萄糖苷的摩尔分子质量;26900:矢车菊素-3-葡萄糖苷的摩尔消光系数。
为了检测启动子活性,两段PpMYB10.1启动子序列(1126 bp、1609 bp)合成(北京六合华大基因科技有限公司,北京,中国)并连接到pBI121表达载体多克隆位点(MCS)区,以构建重组载体:proPpMYB10.1(1126 bp)∶GUS及proPpMYB10.1(1609 bp)∶GUS,CaMV35S∶GUS为阳性对
引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') | 应用 Applicaton |
---|---|---|
PpBL F | acgggggactctagaggatccATGTTGGGAATGGAAGACGCA | 载体构建(pBI121) |
PpBL R | cgatcggggaaattcgagctcTTACTTAGCATCCATGATATAATCCA | 载体构建(pBI121) |
PpNAC1 F | acgggggactctagaggatccATGGAGAGCACCGACTCCTC | 载体构建(pBI121) |
Pp NAC1 R | cgatcggggaaattcgagctcCTATCCCAAATTGGACTCAG | 载体构建(pBI121) |
Prupe.2G302800 F | acgggggactctagaggatccATGGCTTCCGATCTCGAAAA | 载体构建(pBI121) |
Prupe.2G302800 R | cgatcggggaaattcgagctcTTAGTACTCCCATTTCTTCA | 载体构建(pBI121) |
PpBL F1 | tggccatggaggccgaattcATGTTGGGAATGGAAGACGCA | 载体构建(pGBDT7) |
PpBL R1 | ccgctgcaggtcgacggatccTTACTTAGCATCCATGATATAATCCA | 载体构建(pGBDT7) |
Prupe.2G302800 F1 | ggccatggaggccagtgaattcATGGCTTCCGATCTCGAAAA | 载体构建(pGADT7) |
Prupe.2G302800 R1 | ctcgagctcgatggatcccgtTTAGTACTCCCATTTCTTCA | 载体构建(pGADT7) |
PpMYB10.1 F | GAAATGATTGGTGGGAAACC | 实时定量PCR |
PpMYB10.1 R | GTCCTTCTTCTGAAACATTGGT | 实时定量PCR |
PpTEF2 F PpTEF2 R |
GATTCCGGTGCCCAGAAGT CCAGCAGCTTCCATTCCAA |
实时定量PCR 实时定量PCR |
引物中小写字母代表载体上的序列,大写字母代表基因上的序列
The small letters represent sequences on the vector and the capital letters represent sequences on the genes
为了明确启动子上的483 bp缺失对PpMYB10.1转录活性的影响,将构建好的过表达载体转化到农杆菌感受态细胞GV3101中,28 ℃培养2 d。从平板上挑取单菌落,悬浮于1.0 mL LB培养基中(含50 mg/mL卡那霉素),28 ℃培养10 h。从中吸取10 μL,转移到15 mL LB培养基中(含50 mg/mL卡那霉素),28 ℃摇床培养8~12 h。之后,5000 rpm离心10 min,收集菌体,并用侵染缓冲液(0.5 mol/L MES, 1.0 mmol/L MgCL2,1.0 umol/L As)将菌体OD值调到0.4~0.6。调好的菌液悬浮物于室温静置2~3 h,用真空离心浓缩器压入新鲜桃果肉。暗处理16~24 h,见光培养24 h后,用GUS试剂盒(华越洋生物科技有限公司,北京,中国)染色。
为了鉴定结合于483 bp上的转录抑制因子,将该序列设计为探针,并在河南瑞英生物技术有限公司(河南,中国)合成。果实核蛋白用蛋白提取试剂盒提取(生工生物工程股份有限公司,上海,中国)。(1)将200 pmol生物素标记的探针DNA与核酸孵育液混合,配置成500 μL的体系,再与链霉亲和磁珠一起孵育1h,磁力架上磁力分离吸取上清液,用于后续挂珠效率检测。(2)用预冷的核酸孵育缓冲液洗涤2次,蛋白孵育缓冲液洗涤2次,放置磁力架上分离,并提取上清液。(3)将蛋白提取物与蛋白孵育缓冲液配置成500 μL体系,与DNA-磁珠复合物4 ℃孵育过夜,以形成蛋白-DNA-磁珠复合物。(4)将该复合物放置磁力架上磁力分离,以尽可能去除上清,用预冷的蛋白孵育缓冲液冲洗磁珠6~7次,收集沉淀。(5)加入100 μL蛋白洗脱液,95 ℃水浴5 min,12000 r/min离心5 min,吸取上清液。从上清液中吸取5~10 uL,置于聚丙烯酰胺凝胶点样孔中,电泳检测试验组与对照组中蛋白种类差异(试验组是蛋白-DNA-磁珠复合物,对照组是蛋白-磁珠复合物)。之后,上清液用于质谱鉴定,以确定蛋白液中蛋白质数量及理化性质。
为了验证质谱鉴定到的转录因子对PpMYB10.1的抑制活性,将上述1.3构建的重组载体proPpMYB10.1(1126)∶LUC及proPpMYB10.1(1609)∶LUC侵染A.tumefaciens GV3101,其OD值经检测并调至0.6;将重组载体CaMV35S∶PpBL,CaMV35S∶Prupe. 2G302800,CaMV35S∶PpNAC1,CaMV35S∶GUS也侵染A.tumefaciens GV3101,其OD值经检测并调至1.1。之后,将上述两类重组载体以1∶5的体积比混匀,静置30 min,用注射器注入烟草叶片中。暗处理16~24 h,见光培养24 h,之后,将叶片浸入双荧光素钠盐缓冲液(生工生物工程股份有限公司,上海,中国),10 min后取出,放入成像系统(上海天能科技有限公司,上海,中国)获取LUC强度值。
为了检测PpBL与质谱鉴定到的转录因子Prupe.2G302800之间是否存在互作,将PpBL的CDS序列克隆并连接到pGBKT7的MCS区,引物见
果实RNA用快速试剂盒提取(北京艾德莱生物科技有限公司,北京,中国)。质检后的RNA,取1.5 μL,用反转录试剂盒反转录成cDNA(天根生化科技有限公司,北京,中国)。反应体系包含:2.0 μL稀释倍数为10×的cDNA,0.5 μL上下游引物,10 μL SYBR mix,7 μL的ddH2O。扩增体系包含如下步骤:95 ℃ 30 s;95 ℃ 15 s,58 ℃ 15 s,72 ℃ 15 s,45个循环。内参引物基于PpTEF2设计,扩增包含3个技术重
利用NCBI在线软件Primer-BLAST(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome)进行引物设计;利用Excel2007对定量数据进行处理;利用Prism软件做柱形图及韦恩图;利用PhotoshopCS6对不同类型的图片进行组合。
与参考基因组相
为了进一步探究两处变异对红肉桃红色深浅的影响,首先对深红、红、浅红对应的PpMYB10.1表达量及花色素苷含量进行测定。结果表明,深红果肉对应的PpMYB10.1表达量及花色素苷含量最高,分别为4.20及69.960 mg/100 g,红色果肉次之,分别为1.87~3.29及8.501~16.003 mg/100 g,浅红果肉第三,分别为0.94~1.34及1.886~5.769 mg/100 g(
随后,对其中之一的483 bp的缺失序列进行了验证。共设计了两段启动子序列,第一段不包含483 bp缺失序列,长度为1126 bp(
PpBL与PpNAC1形成二聚体,上调PpMYB10.1转

图2 PpMYB10.1启动子上两处变异对其启动活性影响检测
Fig.2 Validation of influence of two variations in PpMYB10.1 promoter on priming activity
A:红色深浅不一的红肉桃果肉中花色素苷含量测定,不同小写字母表示不同品种花色素苷含量在P<0.05水平上差异显著,1:大红袍;2:谷城大红袍;3:望谟小米桃;4:园春白;5:武汉大红袍;6:红桃;7:天津水蜜;B:红色深浅不一的红肉桃果肉中PpMYB10.1表达量测定,不同小写字母表示不同品种PpMYB10.1表达量在P<0.05水平上差异显著;1:大红袍;2:谷城大红袍;3:望谟小米桃;4:武汉2号;5:园春白;6:武汉大红袍;7:微尖红肉;8:万州酸桃;9:红桃;10:天津水蜜;C:483 bp缺失序列对PpMYB10.1启动子活性影响检测,黑色直线表示不同长度的PpMYB10.1启动子,CAMV35S启动子为阳性对照,红色方框代表483 bp缺失序列,果盘蓝色越深,表明启动子活性越强
A: Detection of anthocyanin content in different intensities of the red-flesh color peach, different small letters indicate the significant differences of anthocyanin content in different varieties at P<0.05 level, 1: Da Hong Pao; 2: Gucheng Da Hong Pao; 3: Wangmo Xiao Mi Tao; 4: Yuan Chun Bai; 5: Wuhan Da Hong Pao;6: Hong Tao; 7: Tianjin Shui Mi; B: Relative expression of PpMYB10.1 in different intensities of the red-flesh color peach, different small letters indicate the significant differences of PpMYB10.1 expression in different varieties at P<0.05 level, 1: Da Hong Pao; 2: Gucheng Da Hong Pao; 3: Wangmo Xiao Mi Tao; 4: Wuhan 2; 5: Yuan Chun Bai; 6: Wuhan Da Hong Pao; 7: Wei Jian Hong Rou; 8: Wanzhou Suan Tao; 9: Hong Tao; 10: Tianjin Shui Mi; C: Detection of influence of 483 bp deletion in PpMYB10.1 promoter on its priming activity, black lines indicate different length promoter sequence of PpMYB10.1, CAMV35S promoter is used as a positive control, red rectangle indicates 483 bp deletion, promoter activity increases with increasing blue color intensity of peach fruit discs
启动子的低启动活性,一般与结合其上的转录抑制子密切相
双荧光素酶试验被用来验证3个候选基因的转录抑制活性。Prupe.4G232600、Prupe.2G302800及Prupe.6G284800的CDS替换pBI121表达载体的GUS序列,由35S启动子调控(35S∶Prupe.4G232600、35S∶Prupe.2G302800及35S∶Prupe.6G284800)。重组载体与proPpMYB10.1(1609 bp)∶LUC分别转化农杆菌GV3101,之后共侵染烟草。结果表明,在烟草叶片中,具有35S∶Prupe.4G232600+proMYB10.1(1609 bp)及35S∶Prupe.2G302800+proMYB10.1(1609 bp)的注射位点,其LUC活性高于对照35S∶GUS+proMYB10.1(1609 bp)。而具有35S∶Prupe. 6G284800+proMYB10.1(1609 bp)注射位点的LUC活性几乎与对照35S∶GUS+proMYB10.1(1609 bp)相当(

图3 483 bp序列影响PpMYB10.1转录机制分析
Fig.3 Influence of 483 bp deletion on PpMYB10.1 transcription
A:PpBL/PpNAC1对PpMYB10.1启动子(携带与未携带483 bp)激活能力检测,黑色直线表示不同长度的PpMYB10.1启动子, MCS序列为阴性对照,红色方框代表483 bp缺失序列;B:果实核蛋白聚丙烯酰胺凝胶图;C:质谱分析鉴定到的果实核蛋白,15及5分别是试验组及对照组鉴定到的核蛋白数量,386是试验组与对照组共有的核蛋白数量
A: Detection of PpBL/PpNAC1 activation to PpMYB10.1 promoter (with and without 483 bp sequence), black lines indicate different length promoter sequence of PpMYB10.1, MCS sequence is used as negative control, red rectangle indicates 483 bp deletion; B: Polyacrylamide gel diagram of fruits nuclear protein in test and control groups; C: Fruit nuclear proteins identified through mass spectrometry, 15 and 5 are the number of nuclear proteins identified by the test group and the control group, respectively, 386 is the number of nuclear proteins shared by the test group and the control group
蛋白质登录号 Accession | 基因编号 Gene ID | 蛋白质分子量(kDa) MW | 注释信息 Description |
---|---|---|---|
A0A251MZG7 | Prupe.8G176700 | 38.8 | 未知特征的蛋白 |
M5XHN6 | Prupe.1G253600 | 15.1 | 未知特征的蛋白 |
M5W271 | Prupe.7G227300 | 45.9 | 未知特征的蛋白 |
A0A251R8E8 | Prupe.1G360400 | 22.1 | 未知特征的蛋白 |
M5X1T4 | Prupe.2G232500 | 38.5 | 具有还原型辅酶Ⅱ dom结构域的蛋白质 |
A0A251PT15 | Prupe.4G232600 | 59.4 | WRKY20转录因子 |
M4QFW7 | Prupe.2G162400 | 28.1 | 磷酸甘露糖变位酶2 |
M5W5T0 | Prupe.6G284800 | 12.1 | 巨噬细胞移动抑制因子同源物 |
M5X2Q0 | Prupe.4G074900 | 19.5 | COPZ1蛋白 |
A0A251R812 | Prupe.1G352200 | 43.5 | α-半乳糖苷酶 |
M5WTZ0 | Prupe.4G038700 | 34.9 | 具有PKS_ED结构域的蛋白质 |
M5X1L2 | Prupe.2G302800 | 40.7 | SPK1的G2等位基因抑制因子 |
A0A251NBV4 | Prupe.7G153600 | 59.2 | 琥珀酸脱氢酶(辅酶Q)黄素蛋白亚基 |
Q38JC5 | Prupe.7G259600 | 21.5 | 受温度诱导的脂质运载蛋白 |
M5VZS0 | Prupe.6G076300 | 27.3 | 未知特征的蛋白 |
加粗的条目表示用于之后验证的候选基因
The terms bold represent candidate genes for further validation

图4 3个候选基因对PpMYB10.1抑制活性检测
Fig.4 Suppression of three candidate genes to PpMYB10.1 transcription
在烟草叶片中,具有35S∶Prupe. 2G302800+35S∶PpBL+35S∶PpNAC1+proMYB10.1(1609 bp)的农杆菌注射位点,LUC活性明显低于35S∶GUS+35S∶PpBL+35S∶PpNAC1+proMYB10.1(1609 bp),这表明Prupe.2G302800可能对PpBL或PpNAC1具有抑制作用(

图5 Prupe.2G302800功能分析
Fig.5 Prupe.2G302800 functional analysis
A:pBI121及pGreenⅡ0800LUC重组载体构建及PpBL/PpNAC1对PpMYB10.1启动子激活能力检测;B:Prupe.2G302800与PpBL互作分析
A: Recombinant vector construction of pBI121 and pGreenⅡ0800LUC, and detection of PpBL/PpNAC1 activation ability to PpMYB10.1promoter at injection sites with and without Prupe.2G302800 products; B: Detection of interaction between Prupe.2G302800 and PpBL
花色素苷是黄酮类合成途径的终产物,由许多酶催化合成,如苯丙氨酸3裂解酶(PAL),肉桂酸-4-羟化酶(C4H),查尔酮合成酶(CHS),查尔酮异构酶(CHI),黄酮醇-3’羟化酶(F3’H),二羟基黄酮醇还原酶(DFR)及类黄酮-3-O-糖基转移酶(UFGT
桃果肉中主要花色素苷为矢车菊-3-葡萄糖苷,个别品种也有矢车菊-3-芸香糖
参考文献
王力荣,朱更瑞. 桃种质资源描述规范和数据标准. 北京: 中国农业出版社. 2005:74-75 [百度学术]
Wang L R, Zhu G R. Descriptors and data standard for peach (Prunus persica). Beijing: China Agriculture Press, 2005: 74-75 [百度学术]
Wang J, Mazza G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry, 2002, 50: 850-857 [百度学术]
赵玉,王力荣,曹珂,朱更瑞,方伟超,陈昌文,彭福田. 桃果肉花色苷遗传多样性及红肉桃判定指标的探讨. 植物遗传资源学报, 2013,14(1): 167-172 [百度学术]
Zhao Y, Wang L R, Cao K, Zhu G R, Fang W C, Chen C W, Peng F T. Genetic diversity of anthocyanin in peach fruit and the evaluating criterion of red-flesh peach. Journal of Plant Genetic Resources, 2013, 14(1): 167-172 [百度学术]
丁体玉,曹珂,方伟超,朱更瑞,陈昌文,王新卫,王力荣. 红肉桃两类花色素苷积累模式与相关基因表达差异. 中国农业科学,2017,50(13):2553-2563 [百度学术]
Ding T Y, Cao K, Fang W C, Zhu G R, Chen C W, Wang X W, Wang L R. The difference of anthocyanin accumulation pattern and related gene expression in two kinds of red flesh peach. Scientia Agricultura Sinica, 2017, 50 (13): 2553-2563 [百度学术]
王富荣,龚林忠,王会良,刘勇,艾小艳,顾霞,刘模发,何华平. 特早熟红肉桃新品种‘早仙红’.园艺学报,2018,45(1):193-194 [百度学术]
Wang F R, Gong L Z, Wang H L, Liu Y, Ai X Y, Gu X, Liu M F, He H P. A new early-maturing red-flesh peach cultivar ‘Zaoxianhong’. Acta Horticulturae Sinica, 2018, 45(1): 193-194 [百度学术]
Hara-Kitagawa M, Unoki Y, Hihara S, Oda K. Development of simple PCR-based DNA marker for the red-fleshed trait of a blood peach ‘Tenshin-suimitsuto’. Molecular Breeding, 2020, 40:5 [百度学术]
Zhou H, Lin-Wang K, Wang H, Gu C, Dare A, Espley R V, He H, Allan A C, Han Y. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal, 2015, 82: 105-121 [百度学术]
赵慧芳,王小敏,闾连飞,吴文龙,李维林. 黑莓果实中花色苷的提取和测定方法研究. 食品工业科技,2008,29 (5):176-179 [百度学术]
Zhao H F, Wang X M, Lv L F, Wu W L, Li W L. Study on the extraction and assay method of anthocyanin in blackberry fruits. Science and Technology of Food Industry, 2008, 29(5): 176-179 [百度学术]
Huang M, Roose M L, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter F G. Construction of high-density genetic maps and detection of QTLs associated with huanglongbing tolerance in citrus. Frontiers in Plant Science, 2018, 9: 1694 [百度学术]
Hellens R P, Allan A C, Friel E N, Bolitho K, Grafton K, Templeton M D, Karunairetnam S, Gleave A P, Laing W A. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 2005, 1: 13 [百度学术]
Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13: 68 [百度学术]
Tong Z, Gao Z, Wang F, Zhou J, Zhang Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10: 71 [百度学术]
Verde I, Abbott A G, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori M T, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel L A, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein D M, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner D S, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar D S. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45: 487-494 [百度学术]
Tuan P A, Bai S L, Yaegaki H, Tamura T, Hihara S, Moriguchi T, Oda K. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biology, 2015, 15:1-14 [百度学术]
Zhou H, Lin-Wang K, Wang F, Espley R V, Ren F, Zhao J B, Ogutu C, He H P, Jiang Q, Allan A C, Han Y P. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist, 2018, 221: 1919-1934 [百度学术]
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.The Plant Journal, 2008, 53: 814-827 [百度学术]
Grotewold E. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology, 2006, 57: 761-780 [百度学术]
Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal, 2008, 55: 954-967 [百度学术]
Zhao J, Zhang W, Zhao Y, Gong X, Guo L, Zhu G, Wang X, Gong Z, Schumaker K S, Guo Y. SAD2, an importin - like protein, is required for UV-B response in Arabidopsis by mediating MYB4 nuclear trafficking. Plant Cell, 2007, 19: 3805-3818 [百度学术]
Schenke D, B€ottcher C, Scheel D. Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant, Cell & Environment, 2011, 34: 1849-1864 [百度学术]
沈志军,马瑞娟,俞明亮,许建兰,蔡志翔,倪林箭,颜少宾. 桃三种肉色类型果实抗氧化因子的比较评价.中国农业科学,2012,45(11):2232-2241 [百度学术]
Shen Z J, Ma R J, Yu M L, Xu J L, Cai Z X, Ni L J, Yan S B. Evaluation of antioxidant factors in peach with three types of flesh color. Scientia Agricultura Sinica, 2012, 45(11): 2232-2241 [百度学术]
Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13: 68 [百度学术]
Taube M, Pienkowska J R, Jarmolowski A, Kozak M. Low-resolution structure of the full-length barley (Hordeum vulgare) SGT1 protein in solution, obtained using small-angle X-ray scattering. PLoS ONE, 2014, 9(4): e93313 [百度学术]
Pei H, Sun Q X, Hao Q, Lv B, Wu J J, Fu D L. The HSP90-RAR1-SGT1 based protein interactome in barley and stripe rust. Physiological and Molecular Plant Pathology, 2015, 91: 11-19 [百度学术]