摘要
种皮颜色是作物重要的驯化性状和形态标记,绿豆种皮颜色与黄酮类化合物含量有关。挖掘绿豆种皮颜色相关基因有助于开发新品种,提高绿豆种皮的应用价值。本研究以冀绿9号(黑色种皮)和资源330(黄色种皮)为亲本构建F2分离群体,采用BSA-seq方法进行定位。结果表明,SNPs和InDels关联区域交集位于4号染色体共3.26 Mb的区段,包含324个基因,其中非同义突变基因共49个,移码突变基因15个。进一步开发KASP分子标记进行精细定位,筛选出高质量KASP引物11对。最终将绿豆种皮色位点定位于4号染色体上的KA330~KA421之间,物理距离为16、302、330~18、013、421 bp(1.71 Mb)。结合转录组数据分析和qRT-PCR表达分析共筛选出6个候选基因,其中LOC106758748基因注释为MYB90,其功能为参与调控黄酮类化合物生物合成,故可能是调控绿豆种皮颜色的关键基因。本研究结果可为绿豆种皮色相关基因的克隆和在育种中的利用提供一定的理论依据。
种皮由珠被(母本)发育而来,指被覆于种子周围的皮,可以保护种子的内部不受伤害。种皮中含有丰富的化合物,如黄酮、蛋白质和多肽等。研究表明,不同颜色的种皮中黄酮类化合物含量不
迄今为止,国内外研究人员对作物种皮颜色均已开展了较为频繁的研究。赵钰涵
随着高通量全基因组测序技术的发展,基于深度测序的批量分离分析(BSA,bulked segant analysis)从基因组中检测SNP和InDel可快速发掘候选基因,并已在大
本研究使用的母本材料为冀绿9号,是河北农业科学院优质品种,种皮黑色,结荚一致,不炸荚,抗倒性强;父本材料为资源330,是山西沁县农家品种,种皮黄色。2019年6月利用冀绿9号和资源330配置组合,同年8月底收获杂交F1并统计表型数据。2020年5月将亲本和杂交荚同时种植,收获F2脱粒后晒干备用,统计表型数据。2021年5月将亲本及F2分离群体527株(后期23株花落未结荚)种植在山西省晋中市山西农业大学东阳试验基地,小区长5 m,宽2 m,4行种植,每行20株,共种植10个小区,种子成熟后统计表型数据,进行卡方检验。
选取后代极端黑色种皮和黄色种皮绿豆各30株,取相对应植株顶端幼嫩叶片1~2片,称取1~2 g,采用改良的CTAB
为了保证信息分析质量,原始测序序列依次通过以下步骤的筛选:(1)对原始序列过
SNP检测主要使用GAT
过滤后,得到高质量SNPs和InDels的位点。应用欧式距离法(ED, euclidean distance
基于冀绿9号与资源330的BSA-seq全基因组重测序数据,在初定位的候选区域内,选择非同义突变的SNP位点上下游150 bp序列,通过DNAMAN和Primer 3(https://bioinfo.ut.ee/primer3-0.4.0/)设计引物,在每个SNP位点设计出两个等位基因特异的正向引物(Allele-specific forward primer 1、2)和一个通用反向引物(Common reverse primer),由生工生物工程股份有限公司合成引物。对引物进行AQP基因分型试验,反应体系如下: 第1步:95 ℃ 10 min;第2步:95 ℃ 20 s,55~61 ℃ 40 s,每个循环降0.8℃,共进行10个循环;第3步:95 ℃ 20 s,55 ℃ 40 s,共进行35个循环。反应结束后,将PCR产物放入荧光定量PCR仪中进行荧光数据读取,挑选出分型清晰的KASP引物。
关联分析结果合并取交集,用BLAS
利用实验室前期转录组数据(https://dp.biocloud.net/rna_ref.html#/zh/report/result)绘制候选基因热图,挑选表达量差异倍数>2的候选基因,计算公式为:差异倍数=|亲本1中3次重复FAKM值的平均值/亲本2中3次重复FAKM值的平均值|。对精细定位区间内的基因进行比对,取开花后第10 d、第15 d和第20 d 3个时期亲本的种皮,使用RNAprep Pure Plant Plus Kit法(多糖多酚植物总RNA提取试剂盒)提取RNA,具体步骤按其说明书进行操作。反转录后进行qRT-PCR实验,采用二步法进行反应:第1步预变性95 ℃ 30 s;第2步PCR反应95 ℃ 5 s,60 ℃ 34 s,40个循环,内参为Actin3(Vradi03g00210),3个生物学重复,3次技术重
引物名称 Primer name | 正向引物(5'-3') Forward sequence(5'-3') | 反向引物(5'-3') Reverse sequence(5'-3') |
---|---|---|
LOC106759353 | AGGATTTCGCAGGGTCTTGA | CCACGCTGTTGATCCAGAAG |
LOC106759554 | AAGCTGCTCTTCTCCCATGT | TTCGCATGCAGCTTATCCAC |
LOC106758122 | CTCGCCTCATCAACAACTCC | CGTCGTCTGGGAAATTGAGG |
LOC106758748 | CAGCAGGGTGTGAGAATTGG | GTCGCTCCATGTTTCAGCTT |
LOC106759605 | AGCGAGTACTAGGGTCAAGC | TCAAAGCCTTTCCGGTAGGT |
LOC106759331 | ACCATGGGACAGACTTTCGT | CCAATGCCTCTAACCACACG |
Actin3 | CAGTGTCTGGATTGGAGGCT | GTCCTCGACCACTTGATG |
表型分析表明,两个亲本种皮颜色有显著差异,冀绿9号种皮颜色为黑色,资源330种皮颜色为黄色。由于种皮是由珠被发育而来的,进行杂交获得F1种子种皮颜色为母本种皮颜色,F2种子种皮颜色为黑色,未发生分离。因此,相对于黄色种皮,黑色种皮是完全显性性状。F3种子种皮颜色发生分离,出现除亲本之外的中间型绿色种皮。卡方检验结果表明,F3种子种皮颜色黑色、绿色与黄色的分离比例符合12∶3∶1(
种子世代Generation | 总株数 Total plants | 黑粒株数 Black | 绿粒株数 Green | 黄粒株数 Yellow | 分离比例 Expected ratio | P值 P-value | |
---|---|---|---|---|---|---|---|
F1 | 25 | 20 | 0 | 0 | |||
F2 | 98 | 98 | 0 | 0 | |||
F3 | 504 | 372 | 97 | 35 | 12∶3∶1 | 0.55 | 0.05 |
根据卡方测验临界表值
According to the critical value table chi-square test
对原始测序数据处理后最终得到67.67 Gb高质量的Clean Reads数据。其中亲本冀绿9号和资源330的Clean Reads共为104,954,882,GC含量分别为34.31%和34.74%;黑色种皮和黄色种皮子代混池的Clean Reads共为122,830,167,GC含量分别为33.75%和33.76%,测序数据质量较高(Q20≥97.94%,Q30≥93.76%)(
样本 Sample | 过滤后序列数 Clean reads | 过滤后碱基数 Clean bases | Q20(%) | Q30(%) | GC含量(%) Clean_GC_rate | 平均测序深度 Ave_depth | 1×覆盖率(%) Cov_ratio1X | 5×覆盖率(%) Cov_ratio5X | 10×覆盖率(%) Cov_ratio10X |
---|---|---|---|---|---|---|---|---|---|
J9 | 51,754,834 | 15,363,374,502 | 97.94 | 93.76 | 34.31 | 26 | 97.23 | 96.03 | 93.05 |
330 | 53,200,048 | 15,773,244,276 | 98.04 | 94.00 | 34.74 | 23 | 96.48 | 94.83 | 90.44 |
Bpool | 60,865,703 | 18,099,744,344 | 98.01 | 97.64 | 33.75 | 31 | 98.19 | 97.26 | 95.47 |
Ypool | 61,964,464 | 18,434,322,572 | 97.99 | 93.86 | 33.76 | 32 | 98.20 | 97.22 | 95.49 |
J9:冀绿9号; 330:资源330;Bpool:黑色种皮子代极端混池; Ypool:黄色种皮子代极端混池
J9: Jilv 9; 330: Ziyuan 330; Bpool: The black offspring mixing pool; Ypool: The yellow offspring mixing pool
运用二代高通量BWA软件,比对定位Clean Reads在绿豆参考基因组上的位置,平均比对效率为98.17%(
SNP检测结果显示,亲本之间共获得885,311个SNP位点,其中非同义突变的SNP 18,506个,混池之间获得的SNP数量为240,205个;InDel检测亲本之间共获得190,609个Small InDels(插入或缺失1~5 bp);混池之间共获得53,726个Small InDels。亲本与混池之间共同有SNP数量为564,545个;共同有InDel数量为117,598个(

图1 样品间SNP(A)和InDel(B)的统计韦恩图
Fig.1 Statistical Venn plots of SNP(A) and InDel(B) between samples
J9:冀绿9号;330:资源330;Bpool:黑色种皮子代极端混池;Ypool:黄色种皮子代极端混池;图中数字为检测到SNP或InDel的数量
J9: Jilv 9;330: Ziyuan 330; Bpool: The black offspring mixing pool; Ypool: The yellow offspring mixing pool; The numbers in the figure are the number of detected SNPs or InDel
过滤后得到高质量SNP位点537,469个。ED算法进行关联分析,取所有位点拟合值的Median+3SD作为分析的关联阈值,计算得出关联阈值0.53,共得到1个区域,位于绿豆4号染色体长臂,总长度为6.44 Mb,共包含640个基因,其中具有非同义突变位点的基因共136个(

图2 关联值在染色体上的分布
Fig.2 Distribution of based linkage value on chromosomes
A: SNP-ED; B: InDel-ED; C: SNP-index; D: InDel-index。A、B图中横坐标为染色体名称,彩色的点代表每个SNP/InDel位点的ED值,黑色的线为拟合后的ED值,红色的虚线代表显著性关联阈值,A图阈值为0.53,B图阈值为0.56,ED值越高,代表该点关联效果越好。C、D图中横坐标为染色体名称,彩色的点代表每个SNP/InDel位点的ΔSNP-index/ΔInDel-index值,黑色的线为拟合后的ΔSNP-index/ΔInDel-index值,红色的虚线代表显著性关联阈值,阈值为0.6
A: SNP-ED; B: InDel-ED; C: SNP-index; D: InDel-index. The abscissa in the A,B plot is the chromosome name. Each coloured dot represents an ED-based link age value of an SNP/InDel site. Black line represents ED value after fitting. Red dashed line represents linkage threshold. Figure A has a threshold of 0.53 and Figure B has a threshold of 0.56. A larger ED value indicates a stronger linkage of the SNP site to target trait. Figures C and D, the abscissa is the name of the chromosome, and the colored points represent the calculated ΔSNP-index/ΔInDel-index value of each SNP/InDel site. The black line is the fitted ΔSNP-index/ΔInDel-index value, the black line is the fitted ΔSNP-index/ΔInDel-index value. The red dashed line represents the significance association threshold, which is 0.6
过滤后得到高质量InDel位点116,462个。ED算法进行关联分析,关联阈值为0.56,共得到3个区域,分别在1号、4号、11号染色体,总长度为7.53 Mb,共包含740个基因,其中具有移码突变位点的基因共42个(
根据BSA-seq的测序结果,在初定位到的3.26 Mb候选区间内设计出47对KASP引物。应用AQP基因分型技术,筛选出高质量有明显分型趋势的KASP引物11对(
引物名称 Primer name | 位置(bp) Position | 正向引物(5'-3') Forward sequence(5'-3') | 反向引物(5'-3') Reverse sequence(5'-3') |
---|---|---|---|
KA575 | 15625575 |
1: GAAGGTGACCAAGTTCATGCTCCAATAGTGTGCACTGGCTCC 2: GAAGGTCGGAGTCAACGGATTCCAATAGTGTGCACTGGCTCT | TGAACTCAAAATATGTATG-AAAGCAT |
KA969 | 15884969 |
1: GAAGGTGACCAAGTTCATGCTGGTGGGTTGGACTAGGTTCG 2: GAAGGTCGGAGTCAACGGATTTGGTGGGTTGGACTAGGTTCA | CACTAAGTGACCAACCCG-ACTCATTT |
KA622 | 15981622 |
1: GAAGGTGACCAAGTTCATGCTTTGTTTCAAGCTCAAGAAACTCTAGAAAT 2: GAAGGTCGGAGTCAACGGATTTTGTTTCAAGCTCAAGAAACTCTAGAAAC | TGCATGTGTTATTTGGGTT-ACCTTT |
KA330 | 16302330 |
1: GAAGGTGACCAAGTTCATGCTCGTATAGACTGGCGATGGAAACG 2: GAAGGTCGGAGTCAACGGATTCGTATAGACTGGCGATGGAAACT | CGATTCCGCGAACTGATG-AAGAAATA |
KA908 | 16381908 |
1: GAAGGTGACCAAGTTCATGCTGCCCACCCACTACTTCGAGT 2: GAAGGTCGGAGTCAACGGATTGCCCACCCACTACTTCGAGA | TGAATCATCGGCTTCTGAAA |
KA995 | 16882995 |
1: GAAGGTGACCAAGTTCATGCTTGGTAGTCCTCCGAACGGTTTA 2: GAAGGTCGGAGTCAACGGATTGGTAGTCCTCCGAACGGTTTG | CCAACCTTCGACCATTATT-AGTGC |
KA679 | 17867679 |
1: GAAGGTGACCAAGTTCATGCTCCTAAAGAGAGAAATGAGCGTCAA 2: GAAGGTCGGAGTCAACGGATTCCTAAAGAGAGAAATGAGCGTCAG | GTATGTCGAACGTCCTCC-TTGTTC |
KA421 | 18013421 |
1: GAAGGTGACCAAGTTCATGCTGCTCAAACACCCACGAGACTTAAT 2: GAAGGTCGGAGTCAACGGATTGCTCAAACACCCACGAGACTTAAG | GTTATTAATCCATTTACAAATGTT-TAATTTTGC |
KA030 | 18016030 |
1: GAAGGTGACCAAGTTCATGCTGACGGAAGCAGTTATAAAAGGGC 2: GAAGGTCGGAGTCAACGGATTGACGGAAGCAGTTATAAAAGGGG | CCATGTAATCTCATCCCAC-AGTGA |
KA759 | 18266759 |
1: GAAGGTGACCAAGTTCATGCTCTTAGCCCATCGGGAACCG 2: GAAGGTCGGAGTCAACGGATTCTTAGCCCATCGGGAACCC | GACAATAGAGAATCAAGCCATG-CGTAA |
KA346 | 18552346 |
1: GAAGGTGACCAAGTTCATGCTCATCCCTTTCAACTTAACCCTGATC 2: GAAGGTCGGAGTCAACGGATTCATCCCTTTCAACTTAACCCTGATG | TCCCTCTTGTCAATGCCTTCTTTA |
表中1和2分别代表带有不同的接头序列的正向引物,1能够分别被 FAM标记的荧光探针识别,2能够分别被HEX 标记的荧光探针识别
In table 1 and 2, respectively, represent forward primers with different joint sequences. 1 can be recognized by FAM labeled fluorescent probes and 2 can be recognized by HEX labeled fluorescent probes respectively

图3 用于精细定位的交换单株的表型和基因型
Fig.3 Phenotypes and genotypes of exchanged individual plants used for fine mapping
J9:冀绿9号;330:资源330;DB:籽粒颜色黑色;DY:籽粒颜色黄色; LFDY:籽粒颜色黄色;黑色、白色和灰色格分别表示冀绿9号、资源330、杂合体基因型; B:种皮颜色为黑色,Y:种皮颜色为黄色
J9: Jilyu 9; 330: Ziyuan 330; DB: Grain color black; DY: Grain color yellow; LFDY: Grain color yellow; The genotypes of the swapped individual plants used for fine mapping are shown in black, white and grey grids for Jilv 9, Ziyuan 330 and heterozygote genotypes. B: The seed coat color is black, Y: The seed coat color is yellow
对精细定位区间内非同义突变和移码突变的24个基因进行功能注释(
基因 ID Gene ID | 基因功能注释 Gene function annotation |
---|---|
LOC106758464 | 乙烯响应转录因子ERF118 |
LOC106758122 | 三螺旋转录因子ASIL2 |
LOC106759554 | 叶绿体转录终止因子MTEF1 |
LOC106758456 | ALP1蛋白 |
LOC106759353 | 含有ELMO结构域的蛋白质A亚型X3 |
LOC106758052 | 枯草杆菌蛋白酶Glyma18g48580 |
LOC106758196 | PRA1家族蛋白F4类同种型X1 |
LOC106758571 | 2-脱氢-3-脱氧磷酸酯醛缩酶 |
LOC106759622 | 未知功能蛋白 |
LOC106758992 | 未知功能蛋白 |
LOC106759100 | 未知功能蛋白 |
LOC106759605 | 半胱氨酸蛋白酶ATG4亚型X1 |
LOC106758960 | MDIS1相互作用的受体激酶2 |
LOC106758788 | 枯草杆菌蛋白酶Glyma18g48580 |
LOC106758437 | 未知功能蛋白 |
LOC106759555 | 未知功能蛋白 |
LOC106758748 | 转录因子MYB90 |
LOC106758197 | 未知功能蛋白 |
LOC106758726 | 枯草杆菌蛋白酶Glyma18g48580 |
LOC106758701 | 含有五肽重复序列蛋白At1g71460 |
LOC106758809 | 未知功能蛋白 |
LOC106759331 | 核苷 |
LOC106758447 | 富含亮氨酸重复受体类蛋白激酶At1g35710 |
LOC106758452 | 受体类蛋白30 |

图4 GO基因富集分析
Fig.4 GO enrichment of genes in candidate regions
此图展示的是关联区域内所有基因背景下GO各二级功能的基因分类情况
This figure shows the enrichment of genes in candidate regions to Level 2 GO terms
对候选区间内有功能注释的17个候选基因,进行荧光定量PCR验证。结合两个材料开花后种皮第10 d、第15 d和第20 d 3个时期转录组数据(https://dp.biocloud.net/rna_ref.html#/zh/report/result),筛选开花后同一时期两种材料的差异表达基因。GFOLD绝对值大于2的基因被视为差异表达基因,根据上述基因的表达量(FPKM,fragments per kilobase of exon per million mapped)使用R包绘制热图(

图5 差异基因表达分析
Fig.5 Differential gene expression analysis
J9:冀绿9号;330:资源330。A:候选基因热图,横纵标以亲本名称-第几天-重复次数命名,10d,15d,20d分别为第10天,第15天,第20天,-1,-2,-3为3次重复。B:开花后第10,15,20天,冀绿9号和资源330种皮中差异基因表达分析,横坐标命名为品种名称-第几天;利用t测验进行显著性分析, *P<0.05,**P<0.01
J9: Jilv 9; 330: Ziyuan 330. A: Heat map of candidate genes, the horizontal and vertical markers are named by parent name - day number - number of repetitions, 10 d, 15 d, 20 d for day 10, day 15, day 20, respectively, -1, -2, -3 for three repetitions. B: Analysis of differential gene expression in Jilyu 9 and Ziyuan 330 species on the 10th, 15th and 20th days after flowering. The ordinate is named variety name - day. Student t test was used for significance analysis, *P<0.05,**P<0.01
BSA-seq是一种针对目标性状,选择两个亲本和表型极端差异的子代构建混池进行全基因组重测序,检测混池间DNA差异片段即为候选区间的先进技
近年来,种皮颜色的相关基因已有大量报道,多数基因与黄酮类化合物密切相关。小麦中控制籽粒颜色的基因Myb10定位在染色体3A/3B/3D长臂上,该基因通过调节花青素的积累来控制种皮颜
在20世纪中后期,国外学者认为绿豆种皮颜色受一对基因控
通过BSA-Seq全基因组重测序,将绿豆种皮色候选基因定位到4号染色体1.71 Mb的区间。区间内共注释到24个基因,其中非同义突变基因22个,移码突变基因2个。结合基因的同源注释和转录组数据分析,LOC106758122、LOC106759605、LOC106759353、LOC106759554、LOC106759331和LOC106758748可能为绿豆种皮颜色相关的候选基因,这些基因可能在调控种皮颜色过程中起着重要作用,为后期构建绿豆种皮色高密度遗传图谱奠定了基础。
参考文献
廉雪, 张耀文. 不同种皮色绿豆黄酮类含量的初步研究. 山西农业科学, 2020, 48 (1): 55-57 [百度学术]
Lian X, Zhang Y W. Preliminary study on flavonoifds content of mung bean in different seed coat color. Journal of Shanxi Agricultural Sciences, 2020, 48 (1): 55-57 [百度学术]
Shen S L, Tang Y S, Zhang C, Yin N W, Mao Y Y, Sun F J, Chen S, Hu R, Liu X Q, Shang G X, Liu L Z, Lu K, Li J N, Qu C. Metabolite profiling and transcriptome analysis provide insight into seed coat color in Brassica juncea. International Journal of Molecular Sciences , 2021, 22 (13): 7215 [百度学术]
Cantero G, Campanella C, Mateos S, Cortés F. Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. Mutagenesis, 2006, 21(5): 321-325 [百度学术]
赵钰涵, 周希萌, 赵慧玲, 付春, 夏晗, 厉广辉, 赵术珍, 马长乐, 王兴军, 赵传志. 利用SNP芯片结合BSA的方法定位花生黑色种皮颜色基因. 分子植物育种, 2021, 19 (9): 2977-2984 [百度学术]
Zhao Y H, Zhou X M, Zhao H L, Fu C, Xia H, Li G H, Zhao S Z, Ma C L, Wang X J, Zhao C Z. Mapping of gene controlling black testa of peanut using SNP array and BSA analysis.Molecular Plant Breeding , 2021, 19 (9): 2977-2984 [百度学术]
Herniter I A, Muñoz-Amatriaín M, Lo S, Guo Y N, Close T J. Identification of candidate genes controlling black seed coat and pod tip color in cowpea (Vigna unguiculata (L.) Walp). Genes Genomes Genetics, 2018, 8 (10): 3347-3355 [百度学术]
García-Fernández C, Campa A, Ferreira J J. Dissecting the genetic control of seed coat color in a RIL population of common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2021, 134 (11): 3687-3698 [百度学术]
Zhang K, Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P, Tian R, Pan J, Li G, Thudi M, Ma C, Wang X, Zhao C. BSA‑seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theoretical and Applied Genetics, 2022, 135 (5):1529-1540 [百度学术]
曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47 (8): 1460-1471 [百度学术]
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq.Acta Agronomica Sinica , 2021, 47 (8): 1460-1471 [百度学术]
Liu S, Wang P, Liu Y, Wang P. Identification of candidate gene for resistance to broomrape (Orobanche cumana) in sunflower by BSA-seq. Oil Crop Science, 2020, 5 (2): 47-51 [百度学术]
张尧锋, 张冬青, 余华胜, 林宝刚, 华水金, 丁厚栋, 傅鹰. 基于极端混合池(BSA)全基因组重测序的甘蓝型油菜有限花序基因定位. 中国农业科学, 2018, 51 (16): 3029-3039 [百度学术]
Zhang Y F, Zhang D Q, Yu H S, Lin B G, Hua S J, Ding H D, Fu Y. Location and mapping of the determinate growth habit of Brassica napus by bulked segregant analysis (BSA) using whole genome re-sequencing. Scientia Agricultura Sinica, 2018, 51 (16): 3029-3039 [百度学术]
Rani A, Kumar V, Gill B S, Rathi P, Shukla S, Singh R K, Husain S M. Linkage mapping of mungbean yellow mosaic India virus (MYMIV) resistance gene in soybean. Breed Science, 2017, 67 (2): 95-100 [百度学术]
程须珍, 王素华, 吴绍宇, 周吉红, 王述民, 杨又迪. 绿豆抗豆象基因PCR标记的构建与应用. 中国农业科学, 2005, 38 (8): 6 [百度学术]
Cheng X Z, Wang S H, Wu S Y, Zhou J H, Wang S M, Yang Y D. Tagging and utilization of bruchid resistance gene using PCR markers in mungbean. Scientia Agricultura Sinica, 2005, 38 (8): 6 [百度学术]
Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H. Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications , 2014, 5: 5443 [百度学术]
Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15 (1): 8-15 [百度学术]
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25 (14): 1754-1760 [百度学术]
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20 (9): 1297-1303 [百度学术]
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 2013, 23 (4): 687-697 [百度学术]
Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+: Genetic mapping and mutant identification without crossing in rice. The Public Library of Science, 2013, 8 (7): e68529 [百度学术]
Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 1997, 25 (17): 3389-3402 [百度学术]
邓泱泱, 荔建琦, 吴松锋, 朱云平, 陈耀文, 贺福初. nr数据库分析及其本地化. 计算机工程, 2006, 32(5): 71-74 [百度学术]
Deng Y Y, Li J Q, Wu S F, Zhu Y P, Chen Y W, He F C. Integrated nr database in protein annotation system and its localization. Computer Engineering, 2006, 32 (5): 71-74 [百度学术]
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T. Gene ontology: Tool for the unification of biology. Nature genetics , 2000, 25 (1): 25-29 [百度学术]
Tatusov R L, Galperin M Y, Natale D A, Koonin E V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28 (1): 33-36 [百度学术]
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004, 32 (S1): D277-D280 [百度学术]
李佳伟,马钰聪,杨鑫雷,王梅,崔顺立,侯名语,刘立峰,胡梦蝶,蒋晓霞,穆国俊.花生种皮色素合成相关通路的转录组-代谢组学联合分析.植物遗传资源学报, 2022, 23 (1):240-254 [百度学术]
Li J W,Ma Y C,Yang X L,Wang M,Cui S L,Hou M Y,Liu L F,Hu M D,Jiang X X,Mu G J. Transcriptomics-metabolomics combined analysis highlight the mechanism of testa pigment formation in peanut(Arachis hypogaea L.). Journal of Plant Genetic Resources, 2022, 23 (1):240-254 [百度学术]
Groos C, Gay G, Perretant M R, Gervais L, Bernard M, Dedryver F, Charmet G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theoretical and Applied Genetics, 2002, 104 (1): 39-47 [百度学术]
Megan T S, Michael J T, Bernard E P, Susan M. Caught red-handed: Rc encodes a basic helix-loop-helix potein conditioning red pericarp in rice. Plant Cell, 2006,18 (2): 283-294 [百度学术]
Zhang K, Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P, Tian R, Pan J, Li G, Thudi M, Ma C, Wang X, Zhao C. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theoretical and Applied Genetics, 2022, 135 (5):1529-1540 [百度学术]
Chu L W, Zhao P, Wang K L, Zhao B, Li Y S, Yang K, Wan P. VaSDC1 is involved in modulation of flavonoid metabolic pathways in black and red seed coats in adzuki bean (Vigna angularis L.). Frontiers in Plant Science, 2021, 12: 679892 [百度学术]
Manguiat P H, Lantican R, Carpena A, Catedral I. Inheritance of seed color, size, and luster in mungbean (Vigna radiata Wilczek). Philippine Journal of Crop Science, 1978, 3 (4): 238-241 [百度学术]
Bhadra S K, Akhter M I, Quashem A. Genetics of seed lustre and joint inheritance of seed-coat colour and seed lustre in mungbean (Vigna radiata (L.) Wilczek). Bangladesh Journal of Botany (Bangladesh), 1991, 20: 61-64 [百度学术]
王丽侠, 程须珍, 王素华, 刘岩. 绿豆几个表型性状的遗传特性. 作物学报, 2013, 39 (7): 1172-1178 [百度学术]
Wang L X, Cheng X Z, Wang S H, Liu Y. Inheritance of several traits in mungbean (Vigna radiata). Acta Agronomica Sinica, 2013, 39 (7): 1172-1178 [百度学术]
贾龙,王洁,王素华,陈红霖,程须珍,杜吉到,王丽侠.绿豆11个农艺性状相关基因的QTL定位. 植物遗传资源报, 2022, 23 (2):442-449 [百度学术]
Jia L,Wang J,Wang S H,Chen H L,Cheng X Z,Du J D,Wang L X.Identification of QTL associating with eleven agronomic traits in mungbean(Vigna radiata L.). Journal of Plant Genetic Resources, 2022, 23 (2):442-449 [百度学术]
于冰,陈孟迪,王宇光.植物三螺旋Trihelix转录因子家族与环境相互作用的研究进展.植物遗传资源学报, 2019, 20 (5):1134-1140 [百度学术]
Yu B,Chen M D,Wang Y G. Advances of plant trihelix transcription factor family interacting with environmental factors. Journal of Plant Genetic Resources, 2019, 20 (5):1134-1140 [百度学术]
Frank S, Hollmann J, Mulisch M, Matros A, Carrión C C, Mock H P, Hensel G, Krupinska K. Barley cysteine protease PAP14 plays a role in degradation of chloroplast proteins. Journal of Experimenial Botany, 2019, 70(21):6057-6069 [百度学术]
Ke Y J, Zheng Q D, Yao Y H, Ou Y, Chen J Y, Wang M J, Lai H P, Yan L, Liu Z J, Ai Y. Genome-wide identification of the MYB gene family in Cymbidium ensifolium and its expression analysis in different flower colors. International Journal of Molecular Sciences, 2021, 22 (24): 13245 [百度学术]