摘要
水稻分蘖角度是水稻株型建成的重要性状之一,对水稻产量有着重要的贡献。目前水稻中可利用的分蘖角度调控基因主要有TAC1(Tiller Angle Control 1)和TIG1 (Tiller Inclided Growth 1),需进一步挖掘新的可用基因资源和分子标记以促进水稻理想株型育种。本研究中以大角度的野生稻为供体,小角度的栽培稻珍汕97为受体构建了BC3F2群体,在第54号家系中分蘖角度存在分离,利用QTL-seq技术进行水稻分蘖角度的QTL定位,在8号染色体上检测到一个QTL位点。通过对区间内已知基因的序列比对提出TIG1为候选基因。根据TIG1启动子-449 bp处C➝T的关键变异设计KASP功能性分子标记,并在定位群体和育成品种中进行了验证,证实利用该KASP标记可以准确地鉴定出TIG1位点的基因型。TIG1在粳稻中以大角度基因型TIG1占绝对优势,而在籼稻中61.40%的品种为小角度基因型tig1,38.40%的品种为大角度基因型TIG1,对水稻株型改良有着重要的潜在利用价值。该KASP标记的开发为水稻分蘖角度的分子标记辅助改良提供了新工具,有望加快水稻理想株型的育种进程。
近年来,随着世界人口的不断增加,人类对粮食的需求量也不断攀升。水稻是全球近50%人口的主要粮食,水稻产量的高低影响着世界粮食安全,高产成为水稻遗传育种长期以来的主要追求目标。株型是影响水稻产量的重要因素之一,分蘖角度对株型有着显著影响,因此通过优化分蘖角度培育具有理想株型的品种是作物在单位面积土地上实现高产的重要手
水稻分蘖角是分蘖和垂直线之间的夹角,主要取决于基生分蘖节的生长。当分蘖节的近轴生长大于其远轴生长时,分蘖角较大,反之,分蘖角较窄。自从水稻基因组测序的完成开发出大量DNA标记并应用到水稻QTL(Quantitative trait locus)定位之后,大大加速了水稻分蘖角度基因的定位和克隆。
近些年来,已经克隆了多个影响水稻分蘖角度的基因。这些基因可以根据其调控方式分为3种类
目前虽然已经克隆了多个水稻分蘖角度调控基因,并构建了水稻株型调控网络,但能在水稻育种中应用的基因很少。向地性途径和生长素途径的基因主要通过突变体克隆,其是否具有功能性的自然变异不清楚;明确具有功能性自然变异的基因仅有PROG1、TAC1和TIG1。其中PROG1在栽培稻中已经固定为无功能型,仅TAC1和TIG1在水稻栽培品种中具有明确的功能变异位点。遗传分析表明TIG1和TAC1对分蘖角度的调控具有加性互
功能性分子标记是进行分子标记辅助选择育种最为精准的工具。TIG1是2019年克隆的主效基因,在近等基因系中成熟期分蘖角度相差约30°,对水稻株型改良有着较大的应用前景,但目前尚缺乏TIG1的功能性标
本研究以普通野生稻(O. rufipogon Griff.)为供体,栽培稻珍汕97为受体构建BC3F2群体。野生稻表现为大分蘖角度(分蘖角度为33.1°),珍汕97表现为小分蘖角度(分蘖角度为4.6°)。其中第54号家系出现分蘖角度分离,将该家系种植500株以进行基因定位工作。4713份种质资源材料的TIG1基因型结果来自RiceVarMap2网站http://ricevarmap.ncpgr.cn/vars_info/?var=vg0820930849。选取20个种质资源进行KASP标记验证,包含10个粳稻,10个籼稻。在3,000 Rice Genomes Project中10个粳稻的品种编号:IRIS 313-10430、IRIS 313-9438、CX165、CX139、CX356、IRIS 313-9002、IRIS 313-8168、IRIS 313-8118、CX32、CX277;10个籼稻品种编号:IRIS 313-11245、CX50、IRIS 313-8914、IRIS 313-7815、IRIS 313-7816、CX270、IRIS 313-11622、IRIS 313-7807、IRIS 313-9822、CX347。
在54号家系中选取分蘖角度小于5°的30个单株构成小角度混合池,选取分蘖角度大于35°的30个单株构建大角度混合池。每个混合池中的个体均取等量叶片样品抽提DNA构成混池 DNA,运用二代测序法对两个混池DNA样品进行30×全基因组测序(建库测序由北京诺禾致源科技股份有限公司完成)。测序数据用fastp处理后使用SIMPLE Pipeline流程进行QTL定位分
将两个混池的测序数据对比到日本晴RGAP第7版参考基因组后(http://rice.uga.edu/index.shtml),在比对结果bam文件中提取出候选基因的序列,通过ClustalW网站进行序列比对,确定SNP位点的存在,并将比对的结果在ENDscript/ESPript网站中进行作图。
根据此前报导的TIG1功能性变异位点,在TIG1启动子-449 bp 处C➝T的突变为功能性变异位点之一。在SNP位点左侧设计上游分型引物F1(GACGTGTGTACAAGTGTAGTACTCC)和F2(GACGTGTGTACAAGTGTAGTACTCT)。在设计好的上游分型引物F1和F2的5′末端,分别加上FAM(GAAGGTGACCAAGTTCATGCT)、VIC(GAAGGTCGGAGTCAACGGATT)接头。再设计下游共同引物PR25(ATGAATATGAGCAAAAGTCTTACATTACG),其3′端避开A碱基。最终产物长度为83 bp。针对距TIG1基因约5.8 kb处的一个9 bp缺失设计InDel分子标记,扩增产物大小为108 bp/117 bp,该标记与TIG1启动子-449 bp处C➝T的突变位点紧密连锁,用于KASP分子标记结果的验证。引物由生工生物工程(上海)股份有限公司合成。
用十六烷基三甲基溴化铵(CTAB)法提取DNA,并将DNA的浓度调整为40~60 ng/μ
利用设计的InDel分子标记对提取的DNA进行PCR扩增。PCR反应体系为10.0 μL,包含7.14 μL ddH2O,1.0 μL10×Taq Buffer,0.2 μL dNTP Mix,0.3 μL 上游引物ZZp1,0.3 μL下游引物ZZp2,0.06 μL Taq DNA Polymerase(南京诺唯赞生物科技股份有限公司),1.0 μL DNA Template。PCR反应程序为:95 ℃预变性3 min,35个循环的扩增(95 ℃ 15 s,58 ℃ 30 s,72 ℃ 30 s),72 ℃ 5 min,25 ℃ 1 min降温至室温。通过4%的聚丙烯酰胺凝胶电泳来进行结果的查看。
野生稻(分蘖角度为33.1°)和珍汕97(分蘖角度为4.6°)分蘖角度差异显著,T检验P=2.83E-0.6<0.05(

图1 两亲本分蘖角度表型
Fig.1 Tiller angle phenotype of two parent
A图和B图左边为珍汕97,右边为野生稻
A and B show Zhenshan 97 on the left and Oryza rufipogon Griff. on the right

图2 水稻分蘖角QTL检测
Fig.2 QTL detection of rice tiller angle
从混合池基因组测序结果中提取TIG1基因序列,通过ClustalW网站比较大分蘖角度混合池与小分蘖角度混合池在TIG1基因处的序列差异,并在ENDscript/ESPript网站中作图。序列比较发现54号家系中存在TIG1基因的3个功能性SNP突变:-648 bp A➝G, -449 bp C➝T,-310 bp C➝T,与已报道TIG1的功能突变位点一致,因此推测TIG1为候选基因(

图3 54号家系中TIG1基因的3处功能性突变位点
Fig.3 Three functional mutation sites of TIG1 gene in line 54
图中3个突变位点-648 bp,-449 bp,-310 bp与已报道TIG1的功能突变位点一致
The three mutation sites in the figure are -648 bp, -449 bp and -310 bp, which are consistent with the functional mutation sites of TIG1 reported
对4713份种质资源的测序数据分析表明,TIG1基因的3个SNP位点紧密连锁,基本不存在分离。通过对3个突变位点前后的碱基序列分析,选择TIG1基因启动子区域-449 bp处的功能性突变位点C➝T设计KASP功能性分子标记,以SNP位点上下游序列为标准,设计一条反向通用引物PR25、两条等位基因特异引物PF23和PF24。根据8号染色体20936731 bp处的9 bp缺失,设计InDel分子标记,以缺失上下游序列为标准,设计正向特异性引物ZZp1和反向特异性引物ZZp2(
引物名称 Primer name | 序列(5′- 3′) Sequence(5′- 3′) | 产物大小(bp) Product size |
---|---|---|
PF23 | GAAGGTGACCAAGTTCATGCTGACGTGTGTACAAGTGTAGTACTCC | 83 |
PF24 | GAAGGTCGGAGTCAACGGATTGACGTGTGTACAAGTGTAGTACTCT | |
PR25 | ATGAATATGAGCAAAAGTCTTACATTACG | |
ZZp1 | ATGAATATGAGCAAAAGTCTTACATTACG |
117(大分蘖角度,TIG1) 108(小分蘖角度,tig1) |
ZZp2 | AATTCGCCGATGTGCTTTCTG |
PF23和PF24引物中下划线标识的序列分别为FAM荧光接头和VIC荧光接头
The underlined sequences in PF23 and PF24 primers are FAM fluorescent adaptor and VIC fluorescent adaptor, respectively
由测序结果得知C为大角度基因型,T为小角度基因型。利用KASP分子标记对亲本和BC3F2群体中54号家系随机46个单株的DNA样品进行基因分型(

图4 KASP分子标记在亲本和BC3F2群体46个单株的基因分型结果
Fig.4 Genotyping results of 46 individual plants of KASP molecular markers in parents and BC3F2 populations
图中每个圆点代表一个单株;蓝色表示该样品基因型为C/C;红色表示该样品基因型为T/T;绿色表示该样品基因型为C/T;下同
Each dot in the figure represents a single plant; Blue represents the sample genotype as C/C; Red represents the sample genotype as T/T; Green represents the sample genotype as C/T; The same as below
利用设计的InDel分子标记ZZp1和ZZp2对TIG1功能性KASP分子标记鉴定的亲本和46个单株的DNA样品进行基因分型验证,结果表明亲本中野生稻为大片段(TIG1,117 bp),珍汕97为小片段(tig1,108 bp),46个单株中12个单株显示为大片段(TIG1);9个单株显示为小片段(tig1);25个单株显示为杂合基因型(TIG1/tig1)(

图5 InDel分子标记在亲本和BC3F2群体54号家系46个单株的基因分型结果
Fig.5 Genotyping results of parents and 46 individual plants from line 54 of BC3F2 population by InDel molecular marker
P1为野生稻;P2为珍汕97;1~46分别对应KASP分子标记选取的BC3F2中的46个单株
P1 is wild rice; P2 is Zhenshan 97; 1-46 correspond to 46 individual plants in BC3F2 selected by KASP molecular marker respectively
编号 Number | KASP分型 KASP genotyping | InDel分型 InDel genotyping | 编号 Number | KASP分型 KASP genotyping | InDel分型 InDel genotyping | |
---|---|---|---|---|---|---|
野生稻 Wild rice | C/C | A | BC3F254-23 | C/C | A | |
珍汕97 Zhenshan 97 | T/T | B | BC3F254-24 | C/T | H | |
BC3F254-1 | C/T | H | BC3F254-25 | C/T | H | |
BC3F254-2 | C/T | H | BC3F254-26 | C/C | A | |
BC3F254-3 | C/T | H | BC3F254-27 | T/T | B | |
BC3F254-4 | T/T | B | BC3F254-28 | T/T | B | |
BC3F254-5 | T/T | B | BC3F254-29 | C/T | H | |
BC3F254-6 | C/T | H | BC3F254-30 | C/T | H | |
BC3F254-7 | C/T | H | BC3F254-31 | T/T | B | |
BC3F254-8 | C/C | A | BC3F254-32 | C/C | A | |
BC3F254-9 | C/T | H | BC3F254-33 | C/C | A | |
BC3F254-10 | C/C | A | BC3F254-34 | C/T | H | |
BC3F254-11 | C/C | A | BC3F254-35 | C/T | H | |
BC3F254-12 | C/C | A | BC3F254-36 | C/T | H | |
BC3F254-13 | C/C | A | BC3F254-37 | C/T | H | |
BC3F254-14 | C/T | H | BC3F254-38 | T/T | B | |
BC3F254-15 | C/T | H | BC3F254-39 | C/T | H | |
BC3F254-16 | T/T | B | BC3F254-40 | C/T | H | |
BC3F254-17 | C/T | H | BC3F254-41 | C/C | A | |
BC3F254-18 | C/T | H | BC3F254-42 | C/T | H | |
BC3F254-19 | T/T | B | BC3F254-43 | C/C | A | |
BC3F254-20 | C/C | A | BC3F254-44 | C/T | H | |
BC3F254-21 | C/T | H | BC3F254-45 | C/T | H | |
BC3F254-22 | T/T | B | BC3F254-46 | C/T | H |
A基因型代表大分蘖角度TIG1基因型;B基因型代表小分蘖角度tig1基因型;H基因型表示杂合基因型
Genotype A represents the big tiller angle TIG1 genotype; Genotype B represents the small tiller angle tig1 genotype; Genotype H represents heterozygosity genotype
根据RiceVarMap2对4713份种质资源的测序结果,将TIG1基因分为大角度基因型TIG1和小角度基因型tig1。在2759个籼稻品种中TIG1基因型频率占38.40%,tig1基因型频率占61.40%;在1512个粳稻品种中TIG1基因型频率占99.10%,tig1基因型频率占0.90%(
等位基因型 Alleles | 突变位点 Mutation sites | 数量 Number | 粳稻中的分布频率(%) Distribution frequency in Indica | 籼稻中的分布频率(%) Distribution frequency in Japonica | ||
---|---|---|---|---|---|---|
-648 bp | -449 bp | -310 bp | ||||
tig1 | G | T | T | 1731 | 0.90 | 61.40 |
TIG1 | A | C | C | 2982 | 99.10 | 38.40 |
4713份种质资源的测序结果来自于RiceVarMap2(http://ricevarmap.ncpgr.cn/vars_info/?var=vg0820930849)
The sequencing results of 4713 germplasm resources are from RiceVarMap2(http://ricevarmap.ncpgr.cn/vars_info/?var=vg0820930849)

图6 TIG1 KASP标记对部分水稻种质资源基因型鉴定的结果
Fig.6 Genotyping results of rice germplasm accessions by TIG1 KASP marker
品种编号 Variety number | KASP分型 KASP genotyping | 测序分型 Sequencing genotyping | 分蘖角度(°) Tiller angle | 亚种 Subspecies |
---|---|---|---|---|
IRIS 313-10430 | C/C | C/C | 7.72 | 粳稻 |
IRIS 313-9438 | C/C | C/C | 8.18 | 粳稻 |
CX165 | C/C | C/C | 8.22 | 粳稻 |
CX139 | C/C | C/C | 8.46 | 粳稻 |
CX356 | C/C | C/C | 8.48 | 粳稻 |
IRIS 313-9002 | C/C | C/C | 8.72 | 粳稻 |
IRIS 313-8168 | C/C | C/C | 9.42 | 粳稻 |
IRIS 313-8118 | C/C | C/C | 10.04 | 粳稻 |
CX32 | T/T | T/T | 4.86 | 粳稻 |
CX277 | T/T | T/T | 5.04 | 粳稻 |
IRIS 313-11245 | C/C | C/C | 9.16 | 籼稻 |
CX50 | C/C | C/C | 8.06 | 籼稻 |
IRIS 313-8914 | T/T | T/T | 4.80 | 籼稻 |
IRIS 313-7815 | T/T | T/T | 4.70 | 籼稻 |
IRIS 313-7816 | T/T | T/T | 4.68 | 籼稻 |
CX270 | T/T | T/T | 4.54 | 籼稻 |
IRIS 313-11622 | T/T | T/T | 4.46 | 籼稻 |
IRIS 313-7807 | T/T | T/T | 4.18 | 籼稻 |
IRIS 313-9822 | T/T | T/T | 4.08 | 籼稻 |
CX347 | T/T | T/T | 3.66 | 籼稻 |
种质资源测序结果来自RFGB-3K GROUP(https://www.rmbreeding.cn/pages/haplotype.php)
Germplasm resource sequencing results are from RFGB-3K GROUP(https://www.rmbreeding.cn/pages/haplotype.php)
KASP是一种基于荧光检测的基因分型技术,最初由英国的KBioscience公司所开发,针对SNP位点设计标记,具有容易、方便、准确等特
水稻分蘖角度是水稻株型的重要构成因素之一,影响着植株密度、光合效率、倒伏和抗病性,在决定水稻产量方面起着重要作用。水稻分蘖角度的调控是复杂的,其不仅涉及多个基因的控制,也受环境和激素的影
目前栽培稻中鉴定出水稻分蘖角度基因功能变异位点较少,仅有TIG1和TAC1。TAC1为2007年克隆的主效基因,位于9号染色体上,是粳稻和籼稻分蘖角度不同的关键调控因子,其第4内含子3ʹ端剪接位点的单碱基突变降低了tac1的水平,导致粳稻表现为紧凑的株型,并已开发出功能性分子标
参考文献
Wang L, Xu Y Y, Zhang C,Ma Q, Joo S H, Kim S K, Xu Z H, Chong K. OsLIC, a novel CCCH-type zinc fnger protein with transcription activation, mediates rice architecture via brassinos teroids signaling. PLoS ONE, 2008,3(10):e3521 [百度学术]
王文广,王永红. 作物株型与产量研究进展与展望. 中国科学, 2021,51(10):1366-1375 [百度学术]
Wang W G, Wang Y H. Crop plant architecture and grain yields. Science China, 2021, 51(10): 1366-1375 [百度学术]
蔡跃,肖宁,陈梓春,吴云雨,余玲,刘建菊,时薇,潘存红,李育红,周长海,季红娟,黄年生,张小祥,李爱宏.调控水稻分蘖角的分子机制研究进展. 植物遗传资源学报, 2023, 24(2): 332-339 [百度学术]
Cai Y, Xiao N, Chen Z C, Wu Y Y, Yu L, Liu J J, Shi W, Pan C H, Li Y H, Zhou C H, Ji H J, Huang N S, Zhang X X, Li A H. Research progress on molecular mechanisms regulating rice tiller angle. Journal of Plant Genetic Resources, 2023, 24(2): 332-339 [百度学术]
Wang W G, Gao H B, Liang Y, Li J Y, Wang Y H. Molecular basis underlying rice tiller angle:Current progress and future perspectives. Molecular Plant, 2022,15(1):125-137 [百度学术]
Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiology, 2013,161(1):317-329 [百度学术]
Okamura M, Hirose T, Hashida Y, Ohsugi R, Aoki N. Suppression of starch synthesis in rice stems splays tiller angle due to gravitropic insensitivity but does not affect yield. Functional Plant Biology, 2014,42(1):31-41 [百度学术]
Huang L Z, Wang W G, Zhang N, Cai Y Y, Liang Y, Meng X B, Yuan Y D, Li J Y, Wu D X, Wang Y H. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytologist, 2021,231(3):1073-1087 [百度学术]
Li P G, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Research, 2007,17(5):402-410 [百度学术]
Li Z, Liang Y, Yuan Y D, Wang L, Meng X B, Xiong G S, Zhou J, Cai Y Y, Han N P, Hua L K, Liu G F, Li J Y, Wang Y H.OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Molecular Plant, 2019,12(8):1143-1156 [百度学术]
Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S J, Smith M S, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell, 2018,30(7):1461-1475 [百度学术]
Hu Y, Li S L, Fan X W, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z .OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiology, 2020,184(3):1424-1437 [百度学术]
Xu M, Zhu L, Shou H X, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology, 2005,46(10):1674-1681 [百度学术]
Sun H W, Guo X L, Xu F G, Wu D X, Zhang X H, Lou M M, Luo F F, Xu G H, Zhang Y L. Overexpression of OsPIN2 regulates root growth and formation in response to phosphate deficiency in rice. International Journal of Molecular Sciences, 2019,20(20):5144 [百度学术]
Zhao L, Tan L B, Zhu Z F, Xiao L T, Xie D X, Sun C Q. PAY1 improves plant architecture and enhances grain yield in rice. Plant Journal, 2015,83(3):528-536 [百度学术]
Li H, Sun H Y, Jiang J H, Sun X Y, Tan L B, Sun C Q. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnology Journal, 2021,19(1):64-73 [百度学术]
Jin J, Huang W, Gao J P, Shi M, Zhu M Z, Luo D, Lin H X.Genetic control of rice plant architecture under domestication. Nature Genetics, 2008,40(11):1365-1369 [百度学术]
Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008,40(11):1360-1364 [百度学术]
Hu M, Lv S W, Wu W G. The domestication of plant architecture in African rice. Plant Journal, 2018,94(4):661-669 [百度学术]
Wu Y Z, Zhao S S, Li X R, Zhang B S, Jiang L Y, Tang Y Y, Zhao J, Ma X, Cai H W, Sun C Q, Tan L B. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nature Communications, 2018,9:4157 [百度学术]
Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. The Plant Journal, 2007, 52(5):891-898 [百度学术]
Dong H J, Zhao H, Xie W B, Han Z M, Li G W,Yao W, Bai X F, Hu Y, Guo Z L, Lu K, Yang L, Xing Y Z. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genetics, 2016,12(11):e1006412 [百度学术]
Zhang W F, Tan L B, Sun H Y. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Molecular Plant, 2019,12(8):1075-1089 [百度学术]
Wachsman G, Modliszewski J L, Valdes M, Benfey P N. A simple pipeline for mapping point mutations. Plant Physiology, 2017,174(3):1307-1313 [百度学术]
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4325 [百度学术]
Semagn K, Babu R, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR(KASP): Overview of the technology and its application incrop improvement. Molecular Breeding, 2014,33(1):1-14 [百度学术]
杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望. 生物技术通报, 2022,38(4):58-71 [百度学术]
Yang Q Q, Tang J Q, Zhang C Q, Gao J P, Liu Q Q. Application and prospect of KASP marker technology in main crops. Biotechnology Bulletin, 2022,38(4):58-71 [百度学术]
杨义强, 朱林峰, 李晓芳, 付杰, 黄道强, 邱先进, 周少川, 王重荣. 抗稻瘟病基因Pi2的基因特异性KASP标记开发与应用. 植物遗传资源学报, 2021,22(5):1314-1321 [百度学术]
Yang Y Q, Zhu L F, Li X F, Fu J, Huang D Q, Qiu X J, Zhou S C, Wang C R. Development and application of KASP marker specific for rice blast resistance Pi2 gene. Journal of Plant Genetic Resources, 2021,22(5):1314-1321 [百度学术]
穆艳鑫, 伊六喜, 高凤云, 赵小庆, 周宇, 贾霄云, 何江峰, 苏少锋, 斯钦巴特尔.胡麻亚麻酸亚油酸相关KASP标记的开发. 植物遗传资源学报, 2023,24(1):261-278 [百度学术]
Mu Y X, Yi L X, Gao F Y, Zhao X Q, Zhou Y, Jia X Y, He J F, Su S F, SiQin B. Development of KASP markers for linolenic and linoleic acid in flax. Journal of Plant Genetic Resources, 2023,24(1):261-278 [百度学术]
He Y, Li L Y, Jiang D G. Understanding the regulatory mechanisms of rice tiller angle, then and now. Plant Molecular Biology Reporter, 2021,39:640-647 [百度学术]
Gao J, Liang H, Huang J, Qing D, Wu H, Zhou W, Chen W, Pan Y, Dai G, Gao L, Deng G. Development of the PARMS marker of the TAC1 gene and its utilization in rice plant architecture breeding. Euphytica, 2021,217:3 [百度学术]