摘要
灌浆速率是水稻重要而复杂的农艺性状之一,直接影响产量和品质。淮稻5号是由7208×武育粳3号杂交后代选育而成的粳稻优良品种,具有较高的灌浆速率,但其重要的分子特征尚不清楚。对淮稻5号和武育粳3号受精后14 d的种子提取RNA进行转录组分析。采用实时荧光定量PCR分析籽粒灌浆速率相关基因的表达水平,采用Sanger测序法分析淮稻5号和武育粳3号中已克隆的灌浆速率相关基因序列差异。在淮稻5号和武育粳3号之间检测到3230个上调基因和1171个下调基因。GO富集分析表明,这些基因主要参与淀粉和蔗糖生物合成、光合作用、碳同化、激素生物合成和信号转导途径。与武育粳3号相比,淮稻5号激活了较多参与淀粉和蔗糖生物合成的基因。共检测到63个激素相关差异表达基因,其中38个基因参与生长素途径,表明生长素在水稻籽粒灌浆过程中起着重要作用。一些已知的灌浆速率相关基因(GFR1、OsPFP1、OsPHO1;2、OsSWEET13、OsCIN2)在淮稻5号中显著上调。Sanger测序表明GFR
水稻是世界上最重要的粮食作物之一,提高水稻产量是保障全球粮食安全的重要目标。水稻产量主要由单株穗数、每穗粒数和粒重控
近年来,在水稻中发现并分离了许多与灌浆速率相关的基
淮稻5号是由7208×武育粳3号杂交选育的超级稻品种。相比武育粳3号,淮稻5号具有较高的灌浆速率。本研究拟利用转录组解析淮稻5号灌浆速率快的内在机理,鉴定其调控灌浆速率的基因。本研究对淮稻5号与武育粳3号灌浆速率进行鉴定,选取淮稻5号与武育粳3号灌浆速率差异最大的时期取样进行转录组测序,分析鉴定差异表达基因,以期解析淮稻5号灌浆速率的内在机制,为水稻高产优质分子设计育种奠定理论基础。
在成熟期分别随机选取淮稻5号与武育粳3号各10株进行农艺性状测定。人工统计测量株高、分蘖数、穗长、穗粒数和结实率。使用万深SC-G1型考种仪测量千粒重、粒长以及粒宽。取10个单株相应性状的平均值作为性状数值。采用t检验进行差异显著性分析。
随机选取5株生长整齐一致的淮稻5号和武育粳3号标记同一天开花的颖花,每株标记50粒颖花,在受精后第7、14、21、28和35 d从穗上收获。新鲜的籽粒样品在105 ℃高温干燥30 min,然后在85 ℃下干燥至恒重。对去壳的籽粒进行称重,根据Liu
使用江苏康为世纪RNApure植物试剂盒提取淮稻5号和武育粳3号的受精后14 d籽粒总RNA。然后,通过委托GENE DENOVO(中国广州)在Illumina测序平台(HiSeq2500)上构建cDNA文库测序,并通过FPKM(Fragments per kilobase of transcript per million reads mapped)评估基因表
用Trizol试剂从淮稻5号和武育粳3号受精后14 d籽粒中提取总RNA,并通过实时荧光定量PCR分析淀粉和糖生物合成相关基因、灌浆速率相关基因的表达水平。用于检测这些基因表达水平的引物参考Liu
使用Hi-DNAsecure植物试剂盒(Cat#DP350,北京天根生化)提取淮稻5号和武育粳3号的基因组DNA,并使用KOD DNA聚合酶进行PCR。PCR程序如下:在98 ℃下变性10 s,在55 ℃下退火30 s,在68 ℃下延伸2 min,33个循环。用于鉴定GFR1基因型引物见
引物名称 Primer name | 正向引物序列(5'→3′) Forward primer sequence (5'→3') | 反向引物序列(5'→3') Revers primer sequence (5'→3') |
---|---|---|
GFR1-1 | CTCGAGTTCAAGTTAAGACT | CTTACGGTTAATCGAGTATT |
GFR1-2 | ACTTTAAACTTTCTTCCCATGT | CGAGCCGCTTCACCTCCGAC |
GFR1-3 | CACGATTCGCCGGAATTCGA | CCCGCTTTTACCCAAACCAA |
GFR1-4 | CAGTTGGCAATTGTCACGAG | TCGAACATATCCAAGCCTCC |
GFR1-5 | AAATCACAAAGCTCGCGAATT | ATGTTAGCTGCGCAATCTGC |
GFR1-6 | GCAGATTGCGCAGCTAACAT | CGTGAAACGAGATAGGTCGT |
相比武育粳3号,淮稻5号株高显著增高,达到93.64 cm,提高约14%(

图1 淮稻5号与武育粳3号成熟期主要农艺性状比较
Fig.1 Comparison of main agronomic traits between HD5 and WYJ3 at maturity
数据表示为平均值±标准差(n=10);**代表在P<0.01水平上差异极显著;HD5和WYJ3分别代表淮稻5号与武育粳3号;下同
Data are expressed as mean ± SD (n = 10). ** represents extremely significant differences at P<0.01 level; HD5 and WYJ3 represent Huaidao 5 and Wuyujing 3 respectively; The same as below
为了明确淮稻5号与武育粳3号籽粒灌浆的差异,测定了淮稻5号与武育粳3号在受精后7、14、21、28、35 d 的籽粒灌浆速率。在受精后14 d淮稻5号籽粒充实度显著高于其父本武育粳3号(

图2 淮稻5号与武育粳3号籽粒灌浆速率
Fig.2 Grain filling rates of HD5 and WYJ3
A:不同灌浆期HD5和WYJ3糙米的表型。B:在受精后7、14、21、28和35 d时HD5和WYJ3的籽粒灌浆速率。数据表示为平均值±标准差(n=3)。*代表在P < 0.05水平上差异显著,下同
A:Phenotypes of HD5 and WYJ3 brown grains at different grain filling stages; B:Grain filling rates of HD5 and WYJ3 at 7, 14, 21, 28, and 35 days after fertilization. Data are expressed as mean ± SD (n = 3). * represent significant differences at P<0.05 levels, the same as below
为了探究淮稻5号与武育粳3号之间灌浆差异的分子机制,在受精14 d时对淮稻5号与武育粳3号籽粒进行转录组分析。从6个样本中获得了总计273,164,090个Clean reads,每个样本平均45,527,348个Clean reads。6个样本的测序质量值Q30平均值为92.27%,范围为91.96%~93.00%。上述测序数据表明转录组测序是成功可信的。
在淮稻5号与武育粳3号之间共鉴定了4401个差异表达基因。相较于武育粳3号,在淮稻5号中有3230个上调基因和1171个下调基因(

图3 受精后14 d的淮稻5号与武育粳3号籽粒转录组分析
Fig.3 Transcriptome analysis of HD5 and WYJ3 grains at 14 days after fertilization
A:差异表达基因的数目;B:差异表达基因火山图,WYJ3-vs-HD5代表淮稻5号相比武育粳3号;C:随机选取的5个上调和5个下调表达基因的转录组结果;D:5个上调和5个下调表达基因的表达水平分析
A: Number of up-regulated and down-regulated DEGs; B: Volcano plot of DEGs, WYJ3-vs-HD5 represents Huaidao 5 compared with Wuyujing 3; C: Transcriptome results of 5 up-regulated and 5 down-regulated genes randomly selected; D: The expression levels of 5 up-regulated and 5 down-regulated DEGs in HD5 and WYJ3
对差异表达基因进行GO富集分析,结果显示,相比武育粳3号,在淮稻5号中上调表达的基因主要富集在代谢过程、细胞、催化活性等GO条目;在淮稻5号中下调表达的基因主要富集在代谢过程、细胞部分、催化活性、结合等GO条目(

图4 差异表达基因GO富集分析
Fig.4 Go enrichment analysis of DEGs between HD5 and WYJ3
水稻等谷物灌浆过程涉及淀粉和糖的生物合成和积

图5 淀粉与糖代谢途径的差异表达基因
Fig.5 DEGs involved in starch and sugar metabolism between HD5 and WYJ3
A:淀粉和糖代谢相关基因的转录组分析。纵坐标显示HD5基因表达水平与WYJ3相比的对数值;B:通过3次生物学重复的qRT-PCR检测参与淀粉和糖生物合成的其他基因的表达水平
A:Transcriptome analysis of genes related to starch and sugar metabolism. The ordinate shows the log2 ratio of the expression levels in HD5 compared to WYJ3; B: The expression levels of other genes involved in starch and sugar biosynthesis through qRT-PCR with three biological repetitions
为了进一步分析淮稻5号和武育粳3号之间与淀粉和糖代谢相关基因的表达水平差异,利用qRT-PCR检测淀粉和糖代谢相关基因表达水平。如
生长素(IAA)、油菜素内酯(BR)、脱落酸(ABA)等激素在植物生长发育中起着重要作
基因 Gene | Log2 (HD5/WYJ3) | P值 P-value | 预测功能 Predicted functions |
---|---|---|---|
Os10g0479900(OsARF22) | 1.00 |
6.87×1 | 生长素响应因子22 |
Os04g0519700(OsARF10) | 1.78 |
6.06×1 | 生长素响应因子10 |
Os06g0714300(OsSAUR32) | -2.16 |
5.16×1 | 生长素响应蛋白SAUR32 |
Os01g0768333(OsSAUR2) | 11.16 |
1.43×1 | 生长素响应蛋白SAUR2 |
Os01g0856500(OsAUX1) | 1.01 |
1.03×1 | 类生长素转运蛋白 |
Os05g0447200(OsAUX3) | -1.12 |
1.26×1 | 类生长素转运蛋白 |
Os01g0785400(OsGH3.1) | -1.65 |
1.94×1 | 吲哚-3-乙酸酰胺合成酶 |
Os03g0162000(OsYUCCA8) | 1.19 |
4.27×1 | 吲哚-3-丙酮酸单加氧酶 |
Os01g0732700(OsYUCCA3) | 1.13 |
5.49×1 | 吲哚-3-丙酮酸单加氧酶 |
Os03g0693600(OsIAGLU) | 1.45 |
6.37×1 | 吲哚-3-乙酸β-葡萄糖基转移酶 |
Os08g0529000(OsPIN5c) | -2.03 |
3.32×1 | 生长素载体蛋白5c |
Os02g0743400(OsPIN1a) | 1.23 |
1.37×1 | 生长素载体蛋白1a |
Os02g0228900(OsIAA7) | 1.69 |
4.46×1 | 生长素响应蛋白 |
Os02g0723400(OsIAA8) | 2.61 |
1.66×1 | |
Os02g0805100(OsIAA9) | -1.12 |
1.21×1 | |
Os03g0633800(OsIAA12) | 4.58 |
6.02×1 | |
Os03g0742900(OsIAA13) | 1.82 |
1.80×1 | |
Os06g0166500(OsIAA20) | -1.75 |
2.08×1 | |
Os02g0693700(ABCB2) | 1.41 |
2.34×1 | ABC转运体B家族成员蛋白 |
Os01g0695800 | 2.63 |
1.76×1 | |
Os03g0280000 | 1.03 |
6.12×1 | |
Os03g0755100 | 1.19 |
1.23×1 | |
Os04g0209200 | 1.08 |
4.62×1 | ABC转运体C家族成员蛋白 |
Os06g0731200(OsABCG28) | 1.25 |
4.03×1 | ABC转运体G家族成员蛋白 |
Os09g0472100 | 1.32 |
1.23×1 | |
Os01g0177900(ABCG31) | 1.36 |
1.11×1 | |
Os04g0528300 | 1.38 |
7.49×1 | |
Os01g0609300 | 1.57 |
1.11×1 | |
Os05g0222200 | 1.59 |
7.77×1 | |
Os07g0522500(ABCG43) | 2.25 |
1.61×1 | |
Os01g0609200(OsABCG35) | 3.13 |
2.92×1 | |
Os04g0194500 | 3.19 |
5.22×1 | |
Os11g0587600 | 1.14 |
5.41×1 | |
Os07g0288700(OsABCG11) | 6.95 |
8.63×1 | |
Os01g0342750 | 2.37 |
4.88×1 | |
Os08g0384500 | 2.37 |
4.32×1 | |
Os11g0177400(OsABCG25) | -1.03 |
2.19×1 | |
Os09g0332700 | -1.52 |
5.09×1 |
为了进一步探讨淮稻5号和武育粳3号分子机制的差异,通过qRT-PCR检测了水稻已克隆的6个灌浆速率相关基因的转录水平。与预期一致,OsCIN2、GFR1、OsSWEET13、焦磷酸果糖6-磷酸1-磷酸转移酶OsPFP1和OsPHO1;2的表达水平在淮稻5号籽粒中显著高于武育粳3号(

图6 6个水稻籽粒灌浆相关基因的表达水平
Fig.6 The expression levels of 6 grain filling rate genes for HD5 and WYJ3
GFR1在淮稻5号中的表达水平高于武育粳3号(

图7 在淮稻5号与武育粳3号间鉴定基因GFR1变异
Fig.7 Identification of the GFR1 variation between HD5 and WYJ3
A:HD5、Ludao和WYJ3之间GFR1基因变异示意图。黑色框代表外显子;B:HD5和WYJ3的GFR1氨基酸序列比对;C:HD5和WYJ3的GFR1蛋白结构分析。红色箭头指示蛋白结构差异之处
A:Schematic of the GFR1 gene variation among HD5, Ludao and WYJ3. Black box represents exon; B: Amino acid sequence alignment of GFR1 of HD5 and WYJ3; C: Protein structural analysis of GFR1 of HD5 and WYJ3. Red arrows indicate differences in protein structure
谷物灌浆速率是一个重要的农艺性状,受遗传和环境因素控
在受精后14 d时,在淮稻5号和武育粳3号间共检测到4401个差异表达基因,其中66个基因参与淀粉、碳同化、糖代谢和光合作用。在这66个基因中,一些基因突变会导致水稻籽粒灌浆缺
植物激素调节植物生长和发育的多种过程,如粒型、胁迫反应、籽粒灌浆和株
GFR1的启动子序列在淮稻5号和武育粳3号之间无差异,而其编码区存在碱基缺失与替换,导致GFR1蛋白结构发生变异。GFR
参考文献
Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010, 61:421-442 [百度学术]
Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z.Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40:1370-1374 [百度学术]
Zhao Y F, Peng T, Sun H Z, Teotia S, Wen H L, Du Y X, Zhang J, Li J Z, Tang G L, Xue H W, Zhao Q Z. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal, 2019, 17:712-723 [百度学术]
陈孙禄, 詹成芳, 蒋红, 李琳涵, 张红生. 水稻籽粒灌浆速率的分子机制与遗传调控研究进展. 植物学报, 2021, 56:80-89 [百度学术]
Chen S L, Zhan C F, Jiang H, Li L H, Zhang H S. Advances in the molecular mechanism and genetic regulation of grain-filling rate in rice. Chinese Bulletin of Botany, 2021, 56:80-89 [百度学术]
贾小丽, 叶江华, 苗利国, 林红梅, 林文雄. 水稻籽粒灌浆速率的发育遗传机制研究. 热带作物学报, 2012, 33:622-626 [百度学术]
Jia X L, Ye J H, Miao L G, Lin H M, Lin W X. Developmental genetic mechanism research on grain-filling rate in rice. Chinese Journal of Tropical Crops, 2012, 33:622-626 [百度学术]
Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann K A, Pennell R I. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008, 20:2130-2145 [百度学术]
Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 2015, 47:1489-1493 [百度学术]
Yang J, Luo D, Yang B, Frommer W B, Eom J S. SWEET11 and 15 as key players in seed filling in rice. New Phytoloist, 2018, 218:604-615 [百度学术]
Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. Plant Science, 2021, 306:110851 [百度学术]
Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. Journal of Experimental Botany, 2021, 72:2947-2964 [百度学术]
Ma B, Zhang L, Gao Q, Wang J, Li X, Wang H, Liu Y, Lin H, Liu J, Wang X, Li Q, Deng Y, Tang W, Luan S, He Z. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nature Genetics, 2021, 53:906-915 [百度学术]
Liu E, Zeng S, Zhu S, Liu Y, Wu G, Zhao K, Liu X, Liu Q, Dong Z, Dang X, Xie H, Li D, Hu X, Hong D. Favorable alleles of GRAIN-FILLING RATE1 increase the grain-filling rate and yield of rice. Plant Physiology, 2019, 181:1207-1222 [百度学术]
Kong W, Sun T, Zhang C, Deng X, Li Y. Comparative transcriptome analysis reveals the mechanisms underlying differences in salt tolerance between indica and japonica rice at seedling stage. Frontiers in Plant Science, 2021, 12:725436 [百度学术]
Sun H, Peng T, Zhao Y, Du Y, Zhang J, Li J, Xin Z, Zhao Q. Dynamic analysis of gene expression in rice superior and inferior grains by RNA-Seq. PLoS ONE, 2015, 10:e0137168 [百度学术]
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28:511-515 [百度学术]
孔飞. 水稻dull突变体w54的基因图位克隆和温度敏感型黄叶突变体yl2(t)的表型分析与基因定位.南京: 南京农业大学, 2016 [百度学术]
Kong F. Gene map-based cloning of a rice dull mutant w54 and phenotypic analysis and gene mapping of a thermo-sensitive yellow leaf mutant yl2(t). Nanjing: Nanjing Agricultural University, 2016 [百度学术]
Shaw B P, Sekhar S, Panda B B, Sahu G, Chandra T, Parida A K. Biochemical and molecular processes contributing to grain filling and yield in rice. Plant Physiology and Biochemistry, 2022, 179:120-133 [百度学术]
Durbak A, Yao H, McSteen P. Hormone signaling in plant development. Current Opinion Plant Biology, 2012, 15:92-96 [百度学术]
Wang G Q, Li H X, Feng L, Chen M X, Meng S, Ye N H, Zhang J.Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying. Journal of Experimental Botany, 2019, 70:1597-1611 [百度学术]
叶菀,齐智伟,李晓静,饶玉春.各种植物激素对水稻籽粒灌浆的影响及其机制.安徽农业科学, 2013, 41:9-11 [百度学术]
Ye W, Qi Z W, Li X J, Rao Y C. Influence and mechanism of each kind of plant hormones on rice grain filling. Journal of Anhui Agricultural Science, 2013, 41:9-11 [百度学术]
Hu L, Tu B, Yang W, Yuan H, Li J, Guo L, Zheng L, Chen W, Zhu X, Wang Y, Qin P, Ma B, Li S. Mitochondria-associated pyruvate kinase complexes regulate grain filling in rice. Plant Physiology, 2020, 183:1073-1087 [百度学术]
Kretzschmar T, Pelayo M A, Trijatmiko K R, Gabunada L F, Alam R, Jimenez R, Mendioro M S, Slamet-Loedin I H, Sreenivasulu N, Bailey-Serres J, Ismail A M, Mackill D J, Septiningsih E M. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants, 2015, 1:15124 [百度学术]
高振楠,郝媛媛,李春寿,黄福灯,赵向前,田志宏.水稻调控淀粉合成基因的研究进展.植物遗传资源学报, 2023, 24(1):61-74 [百度学术]
Gao Z N, Hao Y Y, Li C S, Huang F D, Zhao X Q, Tian Z H.Study on genes regulating starch synthesis in rice. Journal of Plant Genetic Resources, 2023, 24(1):61-74 [百度学术]
Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature, 2009, 459:1071-1078 [百度学术]
Durbak A, Yao H, McSteen P. Hormone signaling in plant development. Current Opinion Plant Biology, 2012, 15:92-96 [百度学术]
Blázquez M A, Nelson D C, Weijers D. Evolution of plant hormone response pathways. Annual Review of Plant Biology, 2020, 71:327-353 [百度学术]
Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiology and Biochemistry, 2009, 47:195-204 [百度学术]
Zhu G, Ye N, Yang J, Peng X, Zhang J. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. Journal of Experimental Botany, 2011, 62:3907-3916 [百度学术]
Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C. DWARF AND LOW-TILLE RING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell, 2012, 24:2562-2577 [百度学术]
Khew C Y, Teo C J, Chan W S, Wong H L, Namasivayam P, Ho C L. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice. Journal of Plant Physiology, 2015, 182:23-32 [百度学术]
Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Molecular Plant, 2018, 11:736-749 [百度学术]
Qiao J, Jiang H, Lin Y, Shang L, Wang M, Li D, Fu X, Geisler M, Qi Y, Gao Z, Qian Q. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Molecular Plant, 2021, 14:1683-1698 [百度学术]