摘要
对乌头子根进行转录组测序,探讨调控乌头子根膨大的分子机制。选取乌头膨大过程的3个时间点即S1(1 d)、S2(31 d)、S3(61 d)进行转录组测序,筛选调控乌头子根膨大过程的相关差异表达基因,使用实时荧光定量聚合酶链式反应(qRT-PCR)进行验证。转录组测序组装获得73600条单基因(Unigenes);通过比较转录组分析,得到差异表达基因(DEGs)一共7555条。S2/S1(S2相对于S1)、S3/S2(S3相对于S2)、S3/S1(S3相对于S1)比较组中分别得到2560、2171、6320条DEGs。KEGG富集分析显示差异表达基因主要参与了淀粉和蔗糖代谢、植物激素信号转导、植物-病原体作用和苯丙烷生物合成等代谢途径;其中淀粉生物合成途径上调而木质素生物合成下调是膨大过程的主要事件。植物激素信号转导中生长素、脱落酸、细胞分裂素和赤霉素这些途径相关基因参与调控乌头子根膨大过程。筛选这些膨大相关途径的差异表达基因进行qRT-PCR,结果与转录组数据表达模式具有一致性。本研究首次探讨乌头子根膨大过程的动态转录变化,挖掘参与调控乌头子根膨大过程的相关候选基因,为进一步研究乌头子根发育调控分子机制提供线索。
乌头(Aconitum carmichaelii Debx.)为毛茛科常用药用植物,其母根加工作为川乌使用,其子根加工后作为附子使
试验材料采自四川省青川县房石镇(104°56′58.73″E,32°21′52.93″N,海拔1039 m)当地农民常年栽种的乌头种根,经成都中医药大学药学院王光志教授鉴定为乌头(Aconitum carmichaelii Debx.)。采收的种根于2020年11月18日栽培在成都中医大学药药用植物园内(103°48′18.96″E, 30°41′31.89″N, 海拔504 m)。
从2021年3月6日部分植株的子根伸出(1 d)到2021年8月4日(152 d)子根成熟期间,在1 d(膨大初期开始时间点)、31 d(膨大中期开始时间点)、61 d(膨大后期开始时间点)、121 d(膨大后期结束时间点)时间点分别取直径约为1~2 mm、>4 mm、>10 mm、≥20 mm的子根,分别命名为S1、S2、S3、S4。用灭菌水洗净样品,用灭菌刀去除子根上部芽点、根尖和侧根,液氮速冻,置于-80℃冰箱中备用。
样品用液氮研磨成粉末,取100 mg按照多糖多酚植物总RNA提取试剂盒(DP441,天根)说明书进行总RNA提取;提取后的总RNA通过Agilent 2100检测其纯度、浓度和完整性;按照NEB普通建库方式进行cDNA建库;利用illumina NovaSeq 6000测序平台进行测序。
对每条样品的cDNA文库上机测序后得到的原始读段(Raw reads)进行过滤,去除低质量、含接头和未知碱基N含量多的Reads,从而得到高质量读段(Clean reads)。利用Trinity将Clean reads进行从头组装,得到转录本(Transcript),然后使用Corset软件进行聚合去冗余,获得单基因(Unigene)。
利用BLAST软件将单基因序列与NR、NT、Pfam、KOG、Swiss-prot、KO、GO等7个数据库中的相似序列比较,设置Blast比对参数为E-value<1
用FPKM计算基因表达量。利用DESeq2 R软件筛选差异表达基因,筛选标准为错误发现率FDR(False discovery rate)<0.05且log2 fold change绝对值≥1。对筛选出的差异表达基因进行KEGG富集分析。从KEGG富集的相关通路中筛选与乌头子根膨大过程相关的差异表达基因。
总RNA提取同1.2.2,1 µg总RNA用于逆转录,方法按照RT Eas
引物名称 Primer name | 描述 Description | 基因名称 Gene name | 上游引物(5'-3') Forward primer(5'-3') | 下游引物(5'-3') Reverse primer(5'-3') |
---|---|---|---|---|
Cluster-5683.29966 | 肌动蛋白 | ACT | ACAGGACCAATCAATACTCAC | TGGCTTCCCTTAGCACAT |
Cluster-5683.36937 | 转录抑制响应1 | TIR1 | CCATACCACGACTTACACA | AATCTCCTTCACTCACTTCC |
Cluster-5683.15057 | 生长素响应因子 | SAUR | GCAGTATATGTAGGAGAGGGTGAG | CCGAGATGTGAGGTTGACGAA |
Cluster-5683.37263 | 生长素响应因子 | ARF | TTGTTTACACCGATCACG | TTCTGTCAATGCCTCTTC |
Cluster-5683.32278 | 细胞分裂素A类响应因子 | ARR-A | TTTGGAAGAAGGGGCAGAGG | GGATGACAGAGTTGACAGGGG |
Cluster-5683.17816 | ABA反应元件结合因子 | ABF | TGGCGGTATAGTCGGTGAAG | TGTAGCGGATTCTCTGTTCTTG |
Cluster-5683.10302 | 光敏色素相互作用因子4 | PIF4 | GTTAATCGGTCTATCGCCTCTG | ACTTGCTGCTTGGTGTATTCTC |
Cluster-5683.36484 | 1,4-α-葡聚糖分支酶 | GBE1 | CTTACCGAGCACATCTTGATTATC | TGACGAGCCATCCACATTG |
Cluster-5683.47197 | 淀粉合酶 | GLGA | GGAGCCAGCAACAACTTACG | CCAGACCATAACCACCTTCAATG |
Cluster-5683.34778 | 葡萄糖-1-磷酸腺苷酸转移酶 | GLGC | GGAGCACAACACATGGAATACT | CGTCCTTCTTCGTCAATCTTCA |
Cluster-5683.42210 | 苯丙氨酸解氨酶 | PAL | TAATGAGGCGAAGGTGGAGTT | TGCGTGGGTTGATTCAGTCT |
Cluster-5683.31175 | 肉桂醇脱氢酶 | CAD | ATCACACCCTCTCTTGCCATT | CGCCTATTCCACTTCCACCTA |
Cluster-5683.33017 | 细胞周期蛋白 | CYCD3 | CGCCTATTCCACTTCCACCTA | AGCACCTCATCATCTCCATCTTC |
Cluster-5683.30404 | KNOX1同源异型盒蛋1 | KNAT1 | CCTTCACATCCTCTTCATCT | CAGTCAGCCTGTTCACTAT |
通过质控,共产生56 Gb的有效数据,详见
样品名称 Sample | 原始读段 Raw_reads | 高质量读段 Clean_reads | 高质量读段碱基数 Clean_bases | 质量值大于20的碱基在 过滤数据中的占比(%) Q20 | 质量值大于30的碱基在 过滤数据中的占比(%) Q30 | GC含量(%) GC content |
---|---|---|---|---|---|---|
S1_1 | 20949881 | 20104026 | 6.0 | 96.97 | 91.98 | 45.71 |
S1_2 | 23080486 | 22107075 | 6.6 | 97.10 | 92.23 | 46.01 |
S1_3 | 21781232 | 20766359 | 6.2 | 97.19 | 92.45 | 46.03 |
S2_1 | 21741614 | 20851993 | 6.3 | 97.18 | 92.39 | 45.76 |
S2_2 | 22036972 | 21173324 | 6.4 | 97.22 | 92.55 | 46.27 |
S2_3 | 21639746 | 21258695 | 6.4 | 97.36 | 92.62 | 45.52 |
S3_1 | 22250881 | 21277173 | 6.4 | 97.07 | 92.16 | 45.78 |
S3_2 | 20212078 | 19164699 | 5.7 | 97.15 | 92.39 | 45.71 |
S3_3 | 20604735 | 19922852 | 6.0 | 97.01 | 92.09 | 45.77 |
S1、S2、S3表示1 d、31 d、61 d时间点的子根样品组,下同;_1、_2、_3表示各个组的3个生物学重复
S1, S2, S3 indicates the DR sample groups at 1 d、31 d、61 d time points, the same as below; _1, _2, _3 indicates the 3 biological replicates of each group

图1 单基因的功能注释
Fig.1 Functional annotation of unigenes
A:7个数据库的单基因功能注释,百分比为所在数据库注释基因占总基因数目的百分数;B:NR数据库的物种注释分布
A: Functional annotated unigenes diagram from 7 databases, percentage is the number of unigenes annotated in the database as a percentage of total numbers of unigenes; B: Distribution of species in NR databases
通过分析比较转录组数据,获得差异表达基因(DEGs,differential expression genes)共7555条;S2/S1(S2相对于S1)存在2560条差异表达基因,619条表达上调,1941条表达下调;S3/S1(S3相对于S1)存在6320条差异表达基因,2194条表达上调,4126条表达下调;S3/S2(S3相对于S2)存在2171条差异表达基因,1046条表达上调,1125条表达下调(
比较组 Group | 差异表达基因数 All DEGs | 上调差异表达基因数 Up DEGs | 下调差异表达基因数 Down DEGs |
---|---|---|---|
S2相对于S1S2/S1 | 2560 | 619 | 1941 |
S3相对于S1S3/S1 | 6320 | 2194 | 4126 |
S3相对于S2S3/S2 | 2171 | 1046 | 1125 |
S2/S1:S2 with respect to S1;S3/S1: S3 with respect to S1;S3/S2:S3 with respect to S2; DEGs: Differential expression genes; The same as below
S2/S1、S3/S1、S3/S2比较组的差异表达基因分别注释到87、110、95条代谢通路。

图2 KEGG富集结果
Fig.2 KEGG results
苯丙烷生物合成途径是合成木质素的重要部分,木质素参与植物细胞次生壁的形成。前人研究发现细胞木质化抑制甘薯块根的发

图3 乌头子根木质素生物合成途径
Fig.3 Biosynthetic pathway of lignin in DR
*表示校正后的P值< 0.05,具有显著差异,下同
* indicates a corrected P value < 0.05, indicating a significant difference, the same as below
KEGG分析富集到淀粉和蔗糖代谢通路。乌头子根储藏的主要营养物质是淀

图4 乌头子根淀粉合成途径
Fig.4 Biosynthetic pathway of starch in DR
KEGG分析富集到植物激素信号转导通路中(

图5 相关差异表达基因对乌头子根膨大过程的调控
Fig.5 Regulation of related DEGs on expansion process in DR
转录因子WOX和KNOX参与调节形成层发育和维管组织分化。有一条作用途径即CLE41/44-PXY/TDR-WOX4已受到广泛认
为验证转录组数据结果的可靠性,从KEGG富集通路中筛选出13条与子根膨大相关候选基因进行qRT-PCR验证(

图6 RNA-seq与qRT-PCR结果
Fig.6 RNA-seq and qRT-PCR results
A: 子根形态变化,S1(1 d)至S4(121 d)为取样时间点的子根形态,方框内为取样部位;B:RNA-seq与qRT-PCR结果比较
A: Morphological changes of DR, S1(1 d)to S4(121 d) are the morphology at the sampling time points from DR, inside the box is the sampling site; B: Comparison of RNA-seq and qRT-PCR results
KEGG功能富集显示乌头子根膨大过程不仅涉及蔗糖和淀粉合成和代谢、苯丙烷生物合成等初级代谢途径,还涉及植物激素信号转导。这些结果与在甘
S1为乌头子根膨大初期建立时间点即1 d。在该时间点,取根直径约为为1~2 mm,显微观察到乌头子根开始次生生长,次生形成层片段逐渐建成,薄壁细胞开始积累淀
S2是乌头子根膨大中期发生时间点即31 d,膨大中期的直径范围为4~10 mm。取根直径>4 mm,显微观察显示根内次生形成层成环,淀粉大量积累在韧皮部,韧皮部扩大,出现大量侧
S3是乌头子根膨大后期发生时间点即61 d,膨大后期的直径范围为10 mm以上。取根直径>10 mm,显微观察到次生形成层被推向外侧,木质部逐渐扩大,根内部次生形成层环呈圆形、多角形或分离形,淀粉继续积
近年来有研究报道脱落酸不仅通过调控同化物的卸载,从而促进淀粉合
在拟南芥中,KNAT1调控下胚轴次生分生组织木质部纤维的分
S4是乌头子根直径无显著变化时间点即121 d,取根直径≥20 mm,显微观察显示根内部次生形成层环依然呈圆形、多角形或分离形,木质部完成扩张。qRT-PCR结果显示大部分膨大相关候选基因的相对表达量在S4时上升,进一步验证这些基因与乌头子根膨大相关。
综上,本研究首次通过转录组测序挖掘与乌头子根膨大相关的候选基因,并经qRT-PCR获得乌头子根发育相关调控基因的相对基因表达量变化规律。但存在一些不足。(1)未测定S1至S4时间点植物激素、淀粉、木质素含量和相关酶变化等生理指标,为转录组数据提供进一步证据。(2)本研究对乌头子根膨大分子机制只是一个初步探索。乌头子根膨大具体机制还不够清晰,需更深层次调控机制的挖掘,如蛋白质组和代谢物组的进一步研究。
参考文献
国家药典委员会. 中华人民共和国药典2020年版一部. 北京: 中国医药科技出版社, 2020: 41, 201 [百度学术]
Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia 2020. Vol I. Beijing: China Medical Science Press, 2020: 41, 201 [百度学术]
Gao J, Liu R, Luo M, Wang G. The clonal growth in Aconitum carmichaelii Debx. Plant Signaling & Behavior, 2022, 17(1): 2083818 [百度学术]
Togari Y. A study of tuberous root formation in sweet potato. Bulletin of National Agricultural Experimental Station, Tokyo, 1950, 68: 1-96 [百度学术]
胡清如. 北乌头附子发育过程中的淀粉动态. 西北大学学报, 1992, 22(2): 204-208 [百度学术]
Hu Q R. Development and dynamic changes in the starch distribution of the monkshod-tuber of Aconitum kusnezoffii. Journal of Northwestern University, 1992, 22(2): 204-208 [百度学术]
Xia Y, Gao W, Jiang Q, Li X, Huang L, Xiao P. Comparison of the physicochemical and functional properties of Aconitum carmichaelii and Aconiti lateralis Preparata starches. Starch/Sta¨rke, 2011, 63: 765-770 [百度学术]
Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell, 2010, 22(8): 2618-2629 [百度学术]
Hirakawa Y, Kondo Y, Fukuda H. Regulation of vascular development by CLE peptide-receptor systems. Journal of Integrative Plant Biology, 2010, 52(1): 8-16 [百度学术]
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 15208-15213 [百度学术]
Kuznetsova K A, Dodueva I E, Pautov A A, Krylova E G, Lutova L A. Genetic control of storage root development. Russian Journal of Plant Physiology, 2020, 67(4): 589-605 [百度学术]
Etchells J P, Smit M E, Gaudinier A, Williams C J, Brady S M. A brief history of the TDIF-PXY signalling module: Balancing meristem identity and differentiation during vascular development. New Phytologist, 2016, 209(2): 474-484 [百度学术]
Scofield S, Dewitte W, Murray J A. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. The Plant Journal, 2007, 50(5): 767-781 [百度学术]
Firon N, Labonte D, Villordon A, Kfir Y, Solis J, Lapis E. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 2013, 14(1): 460 [百度学术]
周桦楠, 潘家荃, 刘冠求, 万博, 王凯, 于涛. 甘薯响应冷胁迫的转录组分析. 植物遗传资源学报, 2022, 23(4): 1202-1212 [百度学术]
Zhou H N, Pan J Q, Liu G Q, Wan B, Wang K, Yu T. Transcriptome analysis of sweetpotato under low temperature stress. Journal of Plant Genetic Resources. 2022, 23(4): 1202-1212 [百度学术]
Rüscher D, Corral J M, Carluccio A V, Klemens P A W, Gisel A, Stavolone L, Neuhaus H E, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. Journal of Experimental Botany, 2021, 72(10): 3688-3703 [百度学术]
Utsumi Y, Tanaka M, Utsumi C, Takahashi S, Matsui A, Fukushima A, Kobayashi M, Sasaki R, Oikawa A, Kusano M, Saito K, Kojima M, Sakakibara H, Sojikul P, Narangajavana J, Seki M. Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Plant Molecular Biology, 2022, 109(3): 249-269 [百度学术]
Ding Z, Fu L, Tie W, Yan Y, Wu C, Dai J, Zhang J, Hu W. Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava. Journal of Experimental Botany, 2020, 71(22): 7003-7017 [百度学术]
Wang S, Wang X, He Q, Liu X, Xu W, Li L, Gao J, Wang F. Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Reports, 2012, 31(8): 1437-1447 [百度学术]
Tang J R, Lu Y C, Gao Z J, Song W L, Wei K H, Zhao Y, Tang Q Y, Li X J, Chen J W, Zhang G H, Long G Q, Fan W, Yang S C. Comparative transcriptome analysis reveals a gene expression profile that contributes to rhizome swelling in Panax japonicus var. major. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2019, 154(4): 515-523 [百度学术]
Immanen J, Nieminen K, Smolander O P, Kojima M, Alonso Serra J, Koskinen P, Zhang J, Elo A, Mahonen A P, Street N, Bhalerao R P, Paulin L, Auvinen P, Sakakibara H, Helariutta Y. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology, 2016, 26(15): 1990-1997 [百度学术]
Randall R S, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee J Y, Kakimoto T, Blajecka K, Melnyk C W, Alcasabas A, Forzani C, Matsumoto-Kitano M, Mahonen A P, Bhalerao R, Dewitte W, Helariutta Y, Murray J A. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biology Open, 2015, 4(10): 1229-1236 [百度学术]
Liu H, Zhang H, Dong Y X, Hao Y J, Zhang X S. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. New Phytologist, 2018, 217(1): 219-232 [百度学术]
Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Research, 2009, 19(10): 1178-1190 [百度学术]
Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal, 2012, 71(4): 684-697 [百度学术]
Spartz A K, Lee S H, Wenger J P, Gonzalez N, Itoh H, Inze D, Peer W A, Murphy A S, Overvoorde P J, Gray W M. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. The Plant Journal, 2012, 70(6): 978-990 [百度学术]
Kong Y, Zhu Y, Gao C, She W, Lin W, Chen Y, Han N, Bian H, Zhu M, Wang J. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiology, 2013, 54(4): 609-621 [百度学术]
Sun J, Hui K, Guo Z, Li Y, Fan X. Cellulose and lignin contents are negatively correlated with starch accumulation, and their correlation characteristics vary across cassava varieties. Journal of Plant Growth Regulation, 2022, DOI:10.1007/s00344-022-10573-w [百度学术]
Singh V, Zemach H, Shabtai S, Aloni R, Yang J, Zhang P, Sergeeva L, Ligterink W, Firon N. Proximal and distal parts of sweetpotato adventitious roots display differences in root architecture, lignin, and starch metabolism and their developmental fates. Frontiers in Plant Science, 2020, 11: 609923 [百度学术]
Wang H, Yang J, Zhang M, Fan W, Firon N, Pattanaik S, Yuan L, Zhang P. Altered Phenylpropanoid metabolism in the maize Lc-Expressed sweet potato (Ipomoea batatas) affects storage root development. Scientific Reports, 2016, 6: 18645 [百度学术]
史春余, 王振林, 郭风法, 余松烈. 甘薯块根膨大过程中ATP酶活性、ATP和ABA含量的变化. 西北植物学报, 2002, 22(2): 315-320 [百度学术]
Shi C Y, Wang Z L, Guo F F, Yu S L. Changes of ATPase activity, ATP and ABA content in storage roots during storage root thickening of sweet potato. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 315-320 [百度学术]
Huang H H, Xie S D, Xiao Q L, Wei B, Zheng L J, Wang Y B, Cao Y, Zhang X G, Long T D, Li Y P, Hu Y F, Yu G W, Liu H M, Liu Y H, Huang Z, Zhang J J, Huang Y B. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Scientific Reports, 2016, 6: 27590 [百度学术]
Razem F A, Baron K, Hill R D. Turning on gibberellin and abscisic acid signaling. Current Opinion in Plant Biology, 2006, 9(5): 454-459 [百度学术]
Shu K, Zhou W, Chen F, Luo X, Yang W. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Frontiers in Plant Science, 2018, 9: 416 [百度学术]
Xu X, Lammeren A A M V, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 1998, 117: 575-584 [百度学术]
Chen P, Yang R, Bartels D, Dong T, Duan H. Roles of abscisic acid and gibberellins in stem/root tuber development. International Journal of Molecular Sciences, 2022, 23(9): 4955 [百度学术]
胡月清. GA3和ABA对马铃薯薯形的影响. 江苏农业科学, 2019, 47(18): 125-128 [百度学术]
Hu Y Q. Effect of GA3 and ABA on potato shape. Jiangsu Agricultural Science, 2019, 47(18): 125-128 [百度学术]
Smetana O, Makila R, Lyu M, Amiryousefi A, Sanchez Rodriguez F, Wu M F, Sole-Gil A, Leal Gavarron M, Siligato R, Miyashima S, Roszak P, Blomster T, Reed J W, Broholm S, Mahonen A P. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 2019, 565(7740): 485-489 [百度学术]
Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, Grunwald K, Wallner E S, Novikova D D, Levitsky V G, Agusti J, Sanchez P, Lohmann J U, Greb T. Spatial specificity of auxin responses coordinates wood formation. Nature Communications, 2018, 9(1): 875 [百度学术]
Ben-Targem M, Ripper D, Bayer M, Ragni L. Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. Journal of Experimental Botany, 2021, 72(10): 3647-3660 [百度学术]
Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, Hall H C, Helizon H, Jin X, Helariutta Y, Nilsson O, Polle A, Fischer U. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development, 2014, 141(22): 4311-4319 [百度学术]
Mele G, Ori N, Sato Y, Hake S. The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes & Development, 2003, 17(17): 2088-2093 [百度学术]
Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damen T, Joung J G, Yun J Y, Lee J H, Ragni L, Barbier De Reuille P, Ahnert S E, Lee J Y, Mahonen A P, Helariutta Y. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nature Plants, 2019, 5(10): 1033-1042 [百度学术]