摘要
叶色突变体是研究色素代谢和叶绿体发育机制的重要种质资源。为解析甘蓝型油菜温度敏感型白叶突变体形成的分子机制,本研究对两个甘蓝型油菜人工合成种姊妹系绿叶株系G7097和白叶株系W7105进行了生理指标测定和转录组分析。在冬季低温条件下,W7105白叶的叶绿素和类胡萝卜素含量显著减少,叶绿体发育异常。与绿叶相比,白叶的净光合速率(Pn)显著降低,细胞间CO2浓度(Ci)显著升高。在3个不同发育时期摘取G7097和W7105叶片进行转录组测序,共检测到1532个与叶色相关的差异表达基因(DEGs),包括540个上调的差异表达基因和992个下调的差异表达基因。GO和KEGG富集分析结果显示,W7105白化叶片中上调的差异表达基因显著富集在蛋白酶体、翻译过程、碳水化合物和能量代谢途径;而下调的差异表达基因则与叶绿体、光合作用和电子传递链显著相关。参与叶绿素和类胡萝卜素生物合成的多个基因在W7105白叶中下调表达,证实白化叶片中叶绿素和类胡萝卜素代谢也受到了影响。研究结果为进一步定位和克隆甘蓝型油菜叶片白化关键基因以及阐述油菜白叶形成的分子机制提供了一定参考。
叶绿素缺乏突变体是研究叶绿素代谢、叶绿体发育和光合作用机制的理想遗传资源。在很多物种中都有报道,如水
通过对植物白叶突变体的研究,研究者们已经发现了许多影响叶绿体发育的重要基因。叶绿体是半自主细胞器,大约有3000种核编码的蛋白质通过叶绿体包膜中的TOC/TIC蛋白运输复合体被转运进入叶绿
温度敏感型白叶突变体是叶色突变体中的一种特殊类型,它在特定的环境条件或发育阶段下表现白叶,其他条件下保持比较正常的表型,因此能保证突变体可以正常结实并得以保存。通过对温度敏感型叶绿素缺乏突变体的研究,一些低温条件下质体发育和植物生长所需的相关基因已经被克隆。例如,水稻WLP1基因编码1个50S核糖体L13蛋白,该基因受低温诱导表达,wlp1突变体在23 ℃低温条件下叶绿体结构异常,表现出白叶和白
目前,已报道的甘蓝型油菜叶色突变体主要是黄化表
本研究以人工合成甘蓝型油菜绿叶株系G7097和白叶株系W7105为材料。G7097和W7105是由白菜型油菜和白叶羽衣甘蓝远缘杂交获得的1个绿叶甘蓝型油菜人工合成种,再经连续10代自交而分离出的两个叶色不同的稳定株系。这两个株系于2018年10月4日播种于华中农业大学校内油菜试验基地。2018年10-11月,油菜苗生长前期气温较高,日最高温度可达26 ℃,从12月6日开始,日最低温度降低到0 ℃,此后,日最低温度在-6~7 ℃之间,日最高温度为0~16 ℃,油菜在此阶段经历春化过程。至2月18日以后,日最低温度上升到0°以上,此后温度持续升高,至2月28日,日均温上升到10 ℃以上。
切取初花期G7097和W7105薹茎段叶片0.2 g放置于离心管,加入10 mL 80%的丙酮溶液,室温避光放置24 h后用玻璃棒捣碎,放置24 h,期间多次混匀,直至叶片完全变白为止。之后在5000 r/min下离心l0 min,用紫外可见分光光度计分别测定663 nm、646 nm和470 nm波长下的吸光值。每个材料设置3个生物学重复。按Lightenthale
初花期选取绿叶株系G7097和白叶株系W7105基部最后一片完全展开叶,放置在LI-6800光合作用测量仪的叶室处进行测定。仪器参数设置为:二氧化碳浓度为400 μmL/mol,温度为20 ℃,湿度为50%,光强为1500 μmol/(
以G7097的绿叶,W7105叶片边缘绿色部分以及W7105叶片白色部分为材料,将其切成小块,然后把小块固定在戊二醛固定液(2.5%)中,按照Yi
在植株的3个不同发育时期,切取绿叶株系G7097和白叶株系W7105的心叶或薹茎段新叶的部分叶片,提取RNA。3个时期分别为:苗期(7~8叶期)简称A时期,此时G7097和W7105叶片均为绿色;现蕾期(9~11叶期)简称B时期,此时G7097为绿叶,而W7105长出的新叶为白绿相间的斑驳叶片;初花期简称C时期,此时G7097仍为绿叶,而W7105全株叶片全部为白色,只在叶缘一周有少量绿色叶肉组织。每个样品设置3个生物学重复,每个重复由3个植株的叶片等量混合而成。田间取样后,迅速置于液氮中保存,利用植物总RNA快速提取试剂盒(百泰克)进行RNA提取,采用Illumina Truseq RNA试剂盒进行mRNA纯化。
RNA样品送交武汉古奥基因科技有限公司进行cDNA文库构建,并利用Illumina Novaseq 6000测序仪对2个株系3个时期3次重复的18个样品进行测序。测序所得的Raw reads经过质量处理(去除短片段和低质量片段)后得到高质量Clean reads。利用Hisat2软件将Clean reads与甘蓝型油菜参考基因组(https://www.genoscope.cns.fr/brassicanapus/)进行序列比
cDNA第一链的合成按照北京全式金生物技术有限公司TransScript One-Step gDNA Remover and cDNA Synthesis SuperMix试剂盒说明书进行。利用Primer5.0在基因的CDS上设计特异引物用于qRT-PCR分析(
引物名称 Primer name | 基因功能描述 Gene description | 正向引物(5'-3') Forward primer (5'-3') | 反向引物(5'-3') Reverse primer (5'-3') |
---|---|---|---|
BnaC01g33900D | 肌动蛋白2 | GCAAGTGATCACCATCGGTGCT | AGTGGTTCCACCACTGAGCACG |
BnaA01g14420D | 镁-原卟啉Ⅸ甲基转移酶 | TAGACGTGCTCATACATTACCC | CTACATTGGAACTGCTTCGATG |
BnaA01g19280D | 叶绿素合酶 | TTGTAGCATCGTCTAGCCTAAG | AAGACATTCAAACAGAAACGGG |
BnaC08g05120D | 叶绿素a加氧酶 | GAAACTGTACGAAGATGCCATC | TTTGCAAAAGTAGACGTGTGAG |
BnaA10g08760D | 叶绿素a加氧酶 | AACCATGGGTCATCTTTAGAGG | GCATCTTCGTACACTTTCCATC |
BnaC04g40260D | 脱落酸8'-羟化酶 | GTGACTCCAATTTGAGCCAAAG | CAAAAGAAAAGGGGCCAAATTG |
BnaC03g08260D | 15-顺式八氢番茄红素/全反式八氢番茄红素合酶 | GTTGGTGAAGATGCAAGAAGAG | TCTTAAGCTGCAGTCTCATGAA |
BnaA07g00410D | GOLDEN2-LIKE1转录因子 | CCGTCACATCACATGGTATACA | TCTTTTGACGGATGTAAGTCCA |
BnaC02g42890D | 光系统I反应中心亚基 | CAAACGCTCTTGACTTTCTGAA | CCAAACCCACTTTCTGGTTTAG |
BnaCnng46590D | 光系统II放氧增强蛋白2 | GACTGTCTCCGACAATAAGGAT | TACCTTGTCTTGACCCTCAATC |
BnaCnng26710D | 质体蓝素 | AGTTCACAATAGCGAAAGGAGA | CAGTAGAAGCTGTAAGTCCCAG |
BnaA09g13970D | 铁氧化还原蛋白 | CGGCTTATCCTACTTCTGATGT | GCAGCATGTTAATGGAGCTTTT |
BnaCnng11890D | 铁氧化还原蛋白 | AAAGTTGTGTCTGGTTCTGTTG | CAAGTGAGAACAAACCCTTCAG |
BnaA01g23160D | 铁氧化还原蛋白 | TCCTCTCAAGCACACAAAAATG | AACTTGACCTTGTATGTAGCCA |
BnaA04g19020D | 蛋白酶体调节亚基N2 | CAAAAGCGTGCTCTATACTGAC | CTCGTCATCTGCTCAATCAAAG |
BnaA06g37370D | 26S蛋白酶体调节亚基N10 | AAGGCTCAAAAAGAACAGTGTC | GGCTACCATCGTTGTTATTGAC |
BnaC04g43310D | 26S蛋白酶体调节亚基N2 | GCTGCCTTCTCCTGATTATTTG | GAACTGTTTCTACAATGCGTGT |
BnaA08g13550D | 26S蛋白酶体调节亚基T2 | ATCAAGGACTATCTGCTGATGG | CGAAACAATCGCATGATTCTCA |
BnaA01g32030D | 细胞分裂周期蛋白48 | GATGAGATTGACTCCATTGCAC | CAAACCTTCTCAAAGCTGGATC |
连续3年田间表型调查发现,人工合成甘蓝型油菜绿叶株系G7097在整个生长期叶片表现为绿色,而白叶株系W7105叶片在苗期表现为正常的绿色,从现蕾期开始,新生叶片为白色叶片或白绿相间的杂色叶片,在初花期,老叶脱落后,全株叶片表现为白色,只在叶缘有少量绿色部分(

图1 人工合成甘蓝型油菜绿叶株系G7097和白叶株系W7105不同发育时期田间表型
Fig.1 Phenotype of resynthesized B. napus green-leaf line G7097 and white-leaf line W7105 at different developmental stages in the field
A~C: G7097在苗期(A时期)、现蕾期(B时期)和初花期(C时期)的田间表型,比例尺为2 cm;D~F: W7105在A、B和C 3个时期的田间表型,比例尺为2 cm;G~I: W7105在A、B和C 3个时期的单个叶片,比例尺为1.5 cm
A-C: Phenotype of G7097 at the seedling (stage A), bud (stage B) and early flowering stages (stage C), bar=2 cm; D-F: Phenotype of W7105 at stage A, B and C, bar=2 cm; G-I: One leaf of W7105 at stage A, B and C, bar=1.5 cm
在初花期测定G7097绿叶和W7105白叶的光合特性(

图2 甘蓝型油菜绿叶株系G7097和白叶株系W7105光合色素和光合作用参数比较
Fig.2 Comparison of photosynthetic pigments and photosynthetic parameters in leaves of B. napus green-leaf line G7097 and white-leaf line W7105
A~D: G7097和W7105初花期叶片中叶绿素和类胡萝卜素含量;E~H: G7097和W7105初花期叶片蒸腾速率、净光合速率、细胞间CO2浓度和气孔导度的比较;**表示在0.01水平上显著差异(t检验)
A-D: Chlorophyll and carotenoid accumulation in leaves of G7097 and W7105 at the early flowering stage; E-H: Comparisons of transpiration rate, net photosynthetic rate, intercellular CO2 concentration and stomatal conductance of G7097 and W7105 leaves at the early flowering stage; ** indicate significant differences at 0.01 level using student's t-test
利用透射电镜观察比较G7097和W7105初花期叶片中叶绿体的超微结构,结果表明:G7097绿叶的叶绿体基粒由典型的囊状结构堆叠而成,叶绿体内含有较大的淀粉颗粒和少量的质体小球(

图3 G7097和W7105叶片叶绿体超微结构观察
Fig.3 Chloroplast ultrastructure of leaves from G7097 and W7105
A、 B: G7097绿叶中叶绿体超微结构;C、 D: W7105叶片边缘绿色部分叶绿体超微结构;E、 F: W7105叶片白色部分叶绿体超微结构;CH:叶绿体;CW:细胞壁;ST:基质类囊体;GT:基粒类囊体;SG:淀粉粒;P:质体小球。A、 C、 E:标尺为5 µm; B、 D、 F:标尺为1 µm
A, B: Chloroplast ultrastructure in the green leaves of G7097. C, D: Chloroplast ultrastructure in the green parts of W7105 leaves. E, F: Chloroplast ultrastructure in the white parts of W7105 leaves. CH: Chloroplasts; CW: Cell wall; ST: Stroma thylakoids; GT: Grana thylakoids; SG: Starch grains; P: Plastoglobulus; A, C, E: Scale bars represent 5 µm; B, D, F: Scale bars represent 1 µm
对来源于两个株系3个发育时期叶片的18个RNA文库分别进行双端测序,共获得了116.68 Gb的原始数据。对原始数据进行质控后,从G7097和W7105每个样本中获得38,355,726~52,938,436个Clean Reads。每个样本中有79.44%~82.65%的Clean Reads比对到甘蓝型油菜参考基因组。G7097和W7105每个发育时期的3个生物重复之间相关性良好(详见https://doi.org/10.13430/j.cnki.jpgr. 20221215002,附


图4 差异表达基因的qRT-PCR验证
Fig.4 Validation of DEGs by qRT-PCR
GA、GB和GC分别表示G7097苗期、蕾期和初花期的绿叶;WA、WB和WC分别表示W7105苗期绿叶、蕾期斑驳白叶和初花期白叶;下同
GA, GB and GC represents G7097 green leaves at seedling, bud and flowering stages, respectively; WA, WB and WC represents W7105 green leaves at seedling stage, variegated leaves at bud stage and albino leaves at flowering stage, respectively; The same as below
在3个不同发育时期的叶片中,共检测到62300~65279个基因表达。根据差异表达基因筛选标准,筛选同一株系不同发育时期和不同株系相同发育时期的差异表达基因,在9个比较组合(G7097苗期绿叶与G7097蕾期绿叶相比(GA-vs-GB)、G7097苗期绿叶与G7097初花期绿叶相比(GA-vs-GC)、G7097蕾期绿叶与G7097初花期绿叶相比(GB-vs-GC)、W7105苗期绿叶与W7105蕾期斑驳白叶相比(WA-vs-WB)、W7105苗期绿叶与W7105初花期白叶相比(WA-vs-WC)、W7105蕾期斑驳白叶与W7105初花期白叶相比(WB-vs-WC)、G7097苗期绿叶与W7105苗期绿叶相比(GA-vs-WA)、G7097蕾期绿叶与W7105蕾期斑驳白叶相比(GB-vs-WB)、G7097初花期绿叶与W7105初花期白叶相比(GC-vs-WC)中共筛选出34549个差异表达基因。为获得与叶色表型有关的差异表达基因,对所有的差异表达基因作如下筛选(

图5 基于G7097和W7105 3个发育时期的叶片差异表达基因韦恩图
Fig.5 Distribution of differentially expressed genes (DEGs) based on leaf-color changes of two B. napus inbred lines at three stages
A:Venn图表示与叶色白化相关的比较组合间的差异表达基因数量;B:Venn图表示与叶色白化可能无关的比较组合间的差异表达基因数量;WA-vs-WC表示WA与WC相比;WA-vs-WB表示WA与WB相比;GC-vs-WC表示GC与WC相比;GB-vs-WB表示GB与WB相比;WB-vs-WC表示WB与WC相比;GA-vs-GB表示GA与GB相比;GB-vs-GC表示GB与GC相比;GA-vs-WA表示GA与WA相比;GA-vs-GC表示GA与GC相比;Venn图中的数字表示差异表达基因的数量
A: Venn diagram indicating the number of DEGs between comparative combinations associated with leaf color; B: Venn diagram indicating the number of DEGs between comparative combinations irrelevant with leaf color. WA-vs-WC represents comparison between WA and WC; WA-vs-WB represents comparison between WA and WB; GC-vs-WC represents comparison between GC and WC; GB-vs-WB represents comparison between GB and WB; WB-vs-WC represents comparison between WB and WC; GA-vs-GB represents comparison between GA and GB; GB-vs-GC represents comparison between GB and GC; GA-vs-WA represents comparison between GA and WA; GA-vs-GC represents comparison between GA and GC; The numbers in the Venn diagram represent the number of DEGs
对540个上调的差异表达基因进行GO分类和富集(

图6 甘蓝型油菜白叶表型相关差异表达基因的GO分类富集分析(前10)
Fig.6 Statistics of the top 10 enriched GO terms of DEGs related to albino leaf color
A: 上调差异表达基因的GO富集分析;B: 下调差异表达基因的GO富集分析;BP:生物过程;CC:细胞组分;MF:分子功能
A: GO enrichment of up-regulated DEGs; B: GO enrichment of down-regulated DEGs; BP: Biological process; CC: Cellular component; MF: Molecular function

图7 甘蓝型油菜白叶表型相关差异表达基因的KEGG富集分析
Fig.7 KEGG enrichment of up- and down-regulated DEGs related to albino leaf color
综上所述,白叶中上调差异表达基因主要涉及蛋白酶体、翻译过程、碳水化合物和能量代谢,而下调差异表达基因大多涉及叶绿体形成、光合作用和电子传递链。结果表明,W7105白叶表型的形成可能与这些细胞组分和代谢途径内基因表达的变化有关。
对与白叶性状相关的1532个差异表达基因进行KEGG富集分析,结果显示被富集到叶绿素代谢途径差异表达基因有9个(

图8 参与叶绿素代谢和类胡萝卜素生物合成(A)、光合作用途径(B)、叶绿体逆向信号和质量控制(C)以及翻译过程(D)的差异表达基因在G7097和W7105中的表达量热图
Fig.8 Heatmaps of differentially expressed genes involved in chlorophyll metabolism and carotenoid biosynthesis (A), photosynthesis pathway (B), chloroplast retrograde signaling and quality control (C) and translation processes (D) between G7097 and W7105
与白叶表型可能相关的1532个差异表达基因中,有15个位于光合作用通路(
GOLDEN2-LIKE1(GLK1)转录因子参与核质逆向信号转导,调控光合作用相关核基因(PhANGs)的表
与翻译过程相关差异表达基因中,16个与氨酰-tRNA合成(ko00970)有关和20个与核糖体生物发生(ko03008)有关,它们均在白叶中显著上调表达(
近年来,叶绿素代谢路径的研究取得较大进展,已发现在高等植物中至少有15种酶(27个基因)参与了从谷氨酰-tRNA到Chl a和Chl b的生物合
植物中叶绿体数量的减少以及缺陷的叶绿体发育会影响叶绿素等光合色素的合成,从而改变叶片的颜色。与叶色表型一致的是,拟南芥wtg1突变体的白化叶片具有白色体,而淡绿色叶片具有叶绿体发育前体,绿色叶片则具有成熟的叶绿
转录组结果表明,W7105白化叶中叶绿体的异常发育可能是受到了冷胁迫下ROS积累的影响。在W7105初花期的白叶中,泛素-蛋白酶体系统(UPS)的主要成分CDC48(BnaA01g32030D)和大量编码26S蛋白酶体亚基基因的过量表达表明由ROS介导的UPS可能加剧了白化叶中叶绿体蛋白的降解,其中缺陷的叶绿体发育可能与叶绿体蛋白的异常降解有
甘蓝型油菜自交系W7105在大田环境下于蕾期开始生长白化叶片,白化表型受低温影响。白叶中异常的叶绿体超微结构同时伴随着叶绿素、类胡萝卜素含量的显著降低。转录组分析结果表明白叶株系W7105中大量叶绿体蛋白编码基因的下调表达是导致叶绿体发育出现异常的原因,而异常的叶绿体结构又进一步影响了正常的色素积累和叶片光合作用能力,最终形成了甘蓝型油菜叶片的白化现象。
参考文献
Hayashi-Tsugane M, Takahara H, Ahmed N, Himi E, Takagi K, Iida S, Tsugane K, Maekawa M. A mutable albino allele in rice reveals that formation of thylakoid membranes requires the SNOW-WHITE LEAF1 gene. Plant and Cell Physiology, 2014, 55: 3-15 [百度学术]
Yu B, Gruber M Y, Khachatourians G G, Zhou R, Epp D J, Hegedus D D, Parkin I A, Welsch R, Hannoufa A. Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. Journal of Experimental Botany, 2012, 63: 5189-5202 [百度学术]
Sandhu D, Atkinson T, Noll A, Johnson C, Espinosa K, Boelter J, Abel S, Dhatt B K, Barta T, Singsaas E, Sepsenwol S, Goggi A S, Palmer R G. Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function. Plant Science, 2016, 252: 76-87 [百度学术]
Gao M, Hu L, Li Y, Weng Y. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theoretical and Applied Genetics, 2016, 129: 1961-1973 [百度学术]
Zhao M H, Li X, Zhang X X, Zhang H, Zhao X Y. Mutation mechanism of leaf color in plants: A review. Forests, 2020, 11: 851 [百度学术]
Glick R E, Sears B B. Genetically programmed chloroplast dedifferentiation as a consequence of plastome-genome incompatibility in Oenothera. Plant Physiology, 1994, 106: 367-373 [百度学术]
Chen L J, Li H M. Stable megadalton TOC-TIC supercomplexes as major mediators of protein import into chloroplasts. Plant Journal, 2017, 92: 178-188 [百度学术]
Bauer J, Chen K, Hiltbunner A, Wehrli E, Eugster M, Schnell D, Kessler F. The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature, 2000, 403: 203-207 [百度学术]
Kohler D, Montandon C, Hause G, Majovsky P, Kessler F, Baginsky S, Agne B. Characterization of chloroplast protein import without Tic56, a component of the 1-megadalton translocon at the inner envelope membrane of chloroplasts. Plant Physiology, 2015, 167: 972-990 [百度学术]
Hedtke B, Börner T, Weihe A. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science, 1997, 277: 809-811 [百度学术]
Weihe A, Börner T. Transcription and the architecture of promoters in chloroplasts. Trends in Plant Science, 1999, 4: 169-170 [百度学术]
Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S, Melzer M, Petersen K, Lein W, Bornke F. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: Evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell, 2010, 22: 1498-1515 [百度学术]
Wimmelbacher M, Bornke F. Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65: 2405-2413 [百度学术]
Lv Y, Shao G, Qiu J, Jiao G, Sheng Z, Xie L, Wu Y, Tang S, Wei X, Hu P. White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. Journal of Experimental Botany, 2017, 68: 5147-5160 [百度学术]
Song J, Wei X, Shao G, Sheng Z, Chen D, Liu C, Jiao G, Xie L, Tang S, Hu P. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Molecular Biology, 2014, 84: 301-314 [百度学术]
Wang W J, Zheng K L, Gong X D, Xu J L, Huang J R, Lin D Z, Dong Y J. The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. Plant Science, 2017, 259: 1-11 [百度学术]
Waters M T, Wang P, Korkaric M, Capper R G, Saunders N J, Langdale J A. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell, 2009, 21: 1109-1128 [百度学术]
Woodson J D. Chloroplast quality control-balancing energy production and stress. New Phytologist, 2016, 212: 36-41 [百度学术]
Woodson J D. Chloroplast stress signals: Regulation of cellular degradation and chloroplast turnover. Current Opinion in Plant Biology, 2019, 52: 30-37 [百度学术]
Zhu L X, Yang Z H, Zeng X H, Gao J, Liu J, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Molecular Biology, 2017, 93:579-592 [百度学术]
江莹芬, 吴新杰, 费维新, 李强生, 荣松柏, 初明光, 陈凤祥. 甘蓝型油菜角果特异白化种质的遗传和生理特性. 植物遗传资源学报, 2020, 21 (1): 113-120 [百度学术]
Jiang Y F, Wu X J, Fei W X, Li Q S, Rong S B, Chu M G, Chen F X. Genetic and physiological characteristics of Brassica napus germplasm resources showing albino silique. Journal of Plant Genetic Resources, 2020, 21 (1): 113-120 [百度学术]
Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 1987, 148C: 350-382 [百度学术]
Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Tu J, Fu T. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant Journal, 2010, 63: 925-938 [百度学术]
Sahraeian S M E, Mohiyuddin M, Sebra R, Tilgner H, Afshar P T, Au K F, Bani Asadi N, Gerstein M B, Wong W H, Snyder M P, Schadt E, Lam H Y K. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nature Communication, 2017, 8: 59 [百度学术]
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 2016, 11: 1650-1667 [百度学术]
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15: 550 [百度学术]
Jones P, Binns D, Chang H Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn A F, Sangrador-Vegas A, Scheremetjew M, Yong S Y, Lopez R, Hunter S. InterProScan 5: Genome-scale protein function classification. Bioinformatics, 2014, 30: 1236-1240 [百度学术]
Yu G, Wang L G, Han Y, He Q Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics-A Journal of Integrative Biology, 2012, 16: 284-287 [百度学术]
Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M, Fan Y, Ma J, Sun W, Qu C, Liu L, Li N, Liang Y, Wang R, Qian W, Tang Z, Xu X, Lei B, Zhang K, Li J. qPrimerDB: A thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Research, 2018, 46: D1229-D1236 [百度学术]
Li M, Lee K P, Liu T, Dogra V, Duan J, Li M, Xing W, Kim C. Antagonistic modules regulate photosynthesis-associated nuclear genes via GOLDEN2-LIKE transcription factors. Plant Physiology, 2022, 188: 2308-2324 [百度学术]
Ling Q, Broad W, Trösch R, Töpel M, Demiral Sert T, Lymperopoulos P, Baldwin A, Jarvis R P. Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science, 2019, 363: eaav4467 [百度学术]
Beale S I. Green genes gleaned. Trends in Plant Science, 2005, 10: 309-312 [百度学术]
Shalygo N, Czarnecki O, Peter E, Grimm B. Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Molecular Biology, 2009, 71: 425-436 [百度学术]
Yamasato A, Nagata N, Tanaka R, Tanaka A. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll B accumulation in Arabidopsis. Plant Cell, 2005, 17: 1585-1597 [百度学术]
Oster U, Tanaka R, Tanaka A, Rüdiger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant Journal, 2000, 21: 305-310 [百度学术]
Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology, 2005, 57: 805-818 [百度学术]
Ruiz-Sola M A, Rodriguez-Concepcion M. Carotenoid biosynthesis in Arabidopsis: A colorful pathway. Arabidopsis Book, 2012, 10: e0158 [百度学术]
Rodriguez-Villalon A, Gas E, Rodriguez-Concepcion M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant Journal, 2009, 60: 424-435 [百度学术]
Zhang L, Ma G, Kato M, Yamawaki K, Takagi T, Kiriiwa Y, Ikoma Y, Matsumoto H, Yoshioka T, Nesumi H. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro. Journal of Experimental Botany, 2012, 63: 871-886 [百度学术]
Ma F, Hu Y, Ju Y, Jiang Q, Cheng Z, Zhang Q, Sodmergen. A novel tetratricopeptide repeat protein, WHITE TO GREEN1, is required for early chloroplast development and affects RNA editing in chloroplasts. Journal of Experimental Botany, 2017, 68: 5829-5843 [百度学术]
Zhou S, Hu Z, Zhu M, Zhang B, Deng L, Pan Y, Chen G. Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named “White Dove”. Plant Growth Regulation, 2013, 71: 281-294 [百度学术]
Wu H, Shi N, An X, Liu C, Fu H, Cao L, Feng Y, Sun D, Zhang L. Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. International Journal of Molecular Sciences, 2018, 19: 1594 [百度学术]
Yang X, Li Y, Qi M, Liu Y, Li T. Targeted control of chloroplast quality to improve plant acclimation: From protein import to degradation. Frontiers in Plant Science, 2019, 10: 958 [百度学术]
Begue H, Mounier A, Rosnoblet C, Wendehenne D. Toward the understanding of the role of CDC48, a major component of the protein quality control, in plant immunity. Plant Science, 2019, 279: 34-44 [百度学术]
Rottet S, Besagni C, Kessler F. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2015, 1847: 889-899 [百度学术]
Hall L N, Rossini L, Cribb L, Langdale J A. GOLDEN 2: A novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell, 1998, 10: 925-936 [百度学术]
Tokumaru M, Adachi F, Toda M, Ito-Inaba Y, Yazu F, Hirosawa Y, Sakakibara Y, Suiko M, Kakizaki T, InabaT, Ubiquitin-proteasome dependent regulation of the GOLDEN2-LIKE 1 transcription factor in response to plastid signals. Plant Physiology, 2017, 173(1): 524-535 [百度学术]
Gang H, Li R, Zhao Y, Liu G, Chen S, Jiang J. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development. Journal of Experimental Botany, 2019, 70: 3125-3138 [百度学术]