摘要
MYB是植物体内数量较多的一类转录因子,其家族成员在水稻全生育期各个阶段和多种逆境胁迫中发挥重要的调控作用,例如参与根系发育、细胞发育、次生细胞壁合成、分蘖的发生和伸长、花器官分化和发育、穗部形态建成、种子发育、各种激素代谢、次生代谢物的合成与代谢及生物和非生物胁迫响应等过程的调控。本综述介绍了MYB转录因子家族的分类和不同亚群的蛋白结构,总结了MYB家族成员在水稻地下部和地上部的生长发育、激素信号方面的最新研究进展,重点阐述了MYB家族成员对水稻在干旱、高温、低温、高盐、紫外线损伤等非生物胁迫条件下的调控作用,并探讨了MYB基因对水稻在真菌、病菌等生物胁迫中起到的防御作用。最后纵观对水稻MYB转录因子的最新研究进展,总结了三点不足,同时就未来对于MYB转录因子的研究提出了三个方向上的展望。
转录因子在动植物体内扮演着重要角色,特别在高等植物体中对植物的生长发育、逆境胁迫、损伤防御起着非常重要的调控作用。一个完整的转录因子通常包含DNA结合域、转录调节域、寡聚位点和核定位域,一般情况下转录因子不会单独发挥作用,而是与顺式元件相互作用,通过特定结构域与下游基因的启动子序列结合来提高或抑制基因的表达,以起到对植物生理生化过程乃至整个生命活动的调控作用。
MYB(v-myb avain myeloblastosis viral oncogene homolog)转录因子家族是植物体中成员较多的转录调节因子家族之一,参与植物体内多种生理生化过程,包括生长发
近10年来,在水稻(Oryza sativa L.)中发现了大量的MYB转录因子,对其研究已属于前沿热门研究之一。综述水稻中已研究MYB基因的蛋白结构、家族分类有助于同源性和进化性阐明,对其生物学功能和调控机制的全面阐述也有助于新成员功能的进一步揭示。
MYB蛋白都拥有高度保守的DNA结合结构域(MYB domain)。MYB结构域通常由1到4个不完全重复序列(R)组成,每个重复序列具有约52个氨基酸残基(

图1 植物MYB转录因子结构与亚群分布
Fig.1 Structure and distribution of MYB transcription factors in plants
MYB蛋白亚群,取决于其拥有的MYB重复序列的数量(R)。展示了(R)结构域的一级和二级结构,H: 螺旋;T: 旋转;W: 色氨酸;(X): 氨基酸
The MYB protein subgroup depends on the number of MYB repeats (R) it has. It shows the primary and secondary structure of (R) domain, H: spiral; T: Turning; W: Tryptophan; (X) : Amino acids
MYB基因因具有高度保守的MYB结构域而得称。MYB家族成员根据其拥有的保守结构域数量分为4个亚群:即1R、R2R3、3R和4
研究者已从水
已知MYB家族成员是水稻生长协同调控网络中的关键因素,尤其是R2R3亚群,其亚群成员在控制发育、代谢和对生物与非生物胁迫反应中充当重要角
地下部主要指的是水稻的须根系,由大量密集的不定根组成,由于主根停止生长或死亡,不定根是水稻的主要根组织。这些不定根不仅为植株提供结构支撑,还为水稻吸收养分、感知土壤条件,如水分、空气和重金属等提供必要条
前人研究表明MYB转录因子参与水稻根系发育的调控过程。已有研究发现R2R3-MYB基因OsMYB2P-1通过外界磷酸盐诱导而改变基因表达量来调控根系结
以上研究表明,MYB转录因子在水稻根系结构调控中起到了关键作用,解析这些MYB的功能,可以更全面的了解水稻根系发育过程,为进一步调控水稻根系发育和水稻株型的遗传改良提供新的思路和方向。
MYB转录因子广泛的参与了水稻地上部生长发育的各个过程,包括细胞发
水稻中MYB转录因子OsMPH1参与了细胞发育调控,过表达OsMPH1通过增加节间细胞长度来提高株
水稻中MYB转录因子MFS2基因调控花器官和小穗分化过程,在mfs2突变体植株中花鞘分化受到严重干扰,出现了退化现象,最终导致花器官数量发生变化。同时研究者验证了MFS2是通过与水稻TPL/TPR蛋白形成抑制复合物来调控水稻花器官和小穗分生组织的发育过
由上可见,MYB转录因子在水稻地上部发育过程中发挥着重要的调控作用。已报道的MYB基因参与调控水稻细胞发育、形态建成等方面,水稻基因组内其他未报道的MYB基因是否参与了生长发育调控还未知,值得进一步探究。
研究表明MYB转录因子参与水稻赤霉
已有研究证实了水稻中的OsGAMyb是糊粉层细胞中α-淀粉酶的调控因子,同时参与赤霉素代谢途
植物体内各种激素之间呈复杂的协同或拮抗网络来调节生命活动,MYB基因已被验证参与赤霉素、油菜素甾醇、水杨酸和茉莉酸的代谢途径,MYB基因是否参与其他激素代谢途径,以及它们是否存在更深层次的调控网络,这些科学问题需要未来进一步揭示。
在植物中,苯丙素途径产生多种化合物,如二苯乙烯、木质素和类黄
MYB转录因子已被证实参与次生化合物的合成与代谢过程,如OsMYB30基因在被褐飞虱侵袭后表达显著上调,促进木质素的生物合成和积累,增加水稻对褐飞虱的抗
自然条件下,高盐、高温、低温、冷冻、干旱和各种病菌胁迫等各种不利的因素对植物的生长、发育和代谢有非常严重的影响。在植物体内,不同的胁迫会引起不同的反应,这些反应是由不同的基因通过不同的表达水平来实现,而转录因子就是植物体内这样一类基因,它由胁迫诱导,通过调控不同下游基因的表达来响应胁

图2 水稻在非生物和生物胁迫中的感知和调控
Fig.2 Perception and regulation of rice under abiotic and biotic stresses
外界不利环境导致的胁迫分为非生物胁迫和生物胁迫。非生物胁迫包括高盐、高温、低温、冷冻、干旱等;生物胁迫一般是各种真菌和病菌侵染,例如稻瘟病菌、水稻黄单胞菌等。水稻受到外界胁迫后,MYB基因能响应胁迫,通过调控下游基因表达,让水稻植株在胁迫条件下保持生存能力。
全球变暖加速气温的上升,导致世界各地发生极端高温天气的概率增加,而对植物而言,高温是一个非常不利的环境因素,对植物造成严重的损害。长时间暴露在高温环境下,植物就会死亡,所以高温是限制植物生长发育和生产的主要非生物胁迫之一。植物为应对高温胁迫进化出了一套复杂的应对机制,近年来植物对高温胁迫的响应和自身调控是国内外研究的热点。高温对于水稻来说,是限制产量的主要胁迫,MYB转录因子在应对水稻热胁迫过程中起着关键的调控作
脱落酸是植物体内的逆境激素,在高温的条件下,它使植物气孔关闭来降低水分蒸腾而抵挡高温胁迫。水稻中OsMYB48-1基因由高温或干旱诱导表达之后,通过脱落酸生物合成来增强对不利环境的耐受
低温会损伤水稻根系,使水稻不能正常生长发育。发芽期遇到低温会造成种子发芽不良;秧苗期遇到低温会造成水稻烂秧,幼苗生长缓慢;灌浆期遇到低温造成灌浆障碍,最终都会造成水稻减产。冷害、冻害使植物体内水分结晶化,直接损伤植株造成植株死亡。
最近研究证实了MYB转录因子OsMYBS3基因通过降低对脱落酸的敏感性来增加水稻对低温、冷冻的耐受性,同时R2R3-MYB的OsMYB2基因也被证明与水稻的耐寒性和脱水性有
干旱也是影响植物生长发育的主要环境胁迫因子。植物对干旱胁迫的反应是最复杂的生物过程之一,涉及到生理、细胞和分子水平的变化。研究表明,由众多不同基因组成的复杂网络参与植物对干旱胁迫的响
盐害是中国北方盐碱化地区制约作物产量的主要胁迫之一,盐胁迫会导致植株体内N
N
R2R3-MYB转录因子的几个成员参与调节苯丙类途径,苯丙类途径产生各种次级代谢化合物,参与植物的非生物胁迫反应。在植物产生的各种次生代谢产物中,槐酸酯和黄酮类化合物是吸收紫外线的关键防晒化合物,能避免植物受到紫外线辐射后造成的有害影响。在紫外线照射下,植物产生更高水平的紫外线吸收化合物,防止紫外线辐射损伤核酸、蛋白质和脂
植物遭受紫外线辐射会造成损伤,而黄酮类化合物和酚类物质能增强植物对紫外线辐射的耐受性。近年来的研究表明,MYB转录因子在吸收紫外线的次生代谢产物的生物合成中起着重要作用。MYB4加上R2R3亚群中的7个成员,抑制编码肉桂酸4-羟化酶的基因转录,参与羟基肉桂酸酯的生物合成,MYB4突变体由于羟基肉桂酸酯积累水平的增加,表现出紫外线耐受能力,而MYB4过表达使紫外线吸收化合物水平降低,导致紫外线抵抗能力大大降低。另一个R2R3-MYB基因MYB7被证实参与吸收紫外线的苯丙类化合物的积累,MYB7突变体表现出几种类黄酮生物合成基因的诱导。在紫外线胁迫下,MYB4在自身转录抑制的同时,也抑制MYB7的表达,这与MYB4突变体中黄酮类化合物含量的降低是一致的,表明MYB7抑制黄酮类化合物的生物合成,MYB4和MYB7都有维持植物吸收紫外线化合物积累平衡的功
生物胁迫是指对植物生存与发育不利的各种生物因素的总称,通常是由感染和竞争所引起,如病害、虫害、杂草危害等。病害对水稻生长发育影响最大,典型的有稻瘟病、条纹叶枯病等。近几年来对MYB蛋白的研究不断加深,研究发现MYB基因参与对生物胁迫的响应。过表达OsMYB21基因能显著降低水稻对白叶枯病的抗性,通过基因编辑引起OsMYB21启动子中2 bp的差异,证实OsMYB21在水稻抗白叶枯病中起负调控作
OsMYB30基因参与Bsr-d1介导的稻瘟病抗性。OsMYB30的表达在病菌侵染后或Bsr-d1敲除/下调时被诱导,OsMYB30结合并激活4-香豆酸辅酶A连接酶基因的启动子(Os4CL3和Os4CL5),导致木质素亚基G和S的积累,表皮附近的厚壁组织细胞增厚,抑制稻瘟病在感染早期的渗
基因名称 Name | MYB蛋白亚群 MYB protein subgroup | 基因ID Gene ID | 基因功能 Function | 参考文献 Reference |
---|---|---|---|---|
OsMYB2P-1/OsMYB61 | R2R3-MYB | LOC_Os05g04820 | 调控根系结构、调控次生壁生物合成和纤维素合成 |
[ |
OsTCL1 | 3R-MYB | LOC_Os01g43180 | 影响根系毛状体和根毛的形成 |
[ |
OsTCL2 | 3R-MYB | LOC_Os01g43220 | 影响根系毛状体和根毛的形成 |
[ |
OsMPH1 | 1R-MYB | LOC_Os06g45890 | 通过伸长节间细胞长度来提高株高 |
[ |
OsMYB46 | R2R3-MYB | LOC_Os12g33070 | 调控次生壁生物合成 |
[ |
OsMYB103L | R2R3-MYB | LOC_Os08g05520 | 调控纤维素和次生壁的合成影响叶片形状 |
[ |
RLM1 | R2R3-MYB | LOC_Os05g46610 | 促进次生细胞壁形成 |
[ |
RAX | R2R3-MYB | — | 调控水稻分蘖芽生长 |
[ |
OsGAmyb | R2R3-MYB | LOC_Os01g59660 | 参与糊粉层细胞中赤霉素代谢,正向调控水稻分蘖 |
[ |
MFS2/MOF1 | 1R-MYB | LOC_Os04g47890 | 调控水稻花器官和小穗分化 |
[ |
BM1/OsMYB80 | R2R3-MYB | LOC_Os04g39470 | 调控花粉发育 |
[ |
CSA | R2R3-MYB | LOC_Os01g16810 | 调控水稻花药中糖分配 |
[ |
CSA2 | R2R3-MYB | LOC_Os05g41166 | 调控水稻花药中糖分配 |
[ |
TaMYB72 | — | — | 使水稻开花时间缩短 |
[ |
RGN1 | R2R3-MYB | LOC_Os01g49160 | 控制穗粒数和塑造穗型 |
[ |
OsMYBAS1 | R2R3-MYB | LOC_Os01g74410 | 不同深度播种条件下影响种子发育 |
[ |
OsMYBS1 | 1R-MYB | LOC_Os01g34060 | 参与了赤霉素和糖饥饿信号诱导之后体内淀粉酶的调控、诱导赤霉素合成 |
[ |
基因名称 Name |
MYB蛋白亚群 MYB protein subgroup |
基因ID Gene ID |
基因功能 Function |
参考文献 Reference |
OsMYBS2 | 1R-MYB | — | 参与了赤霉素和糖饥饿信号诱导之后体内淀粉酶的调控、诱导赤霉素合成 |
[ |
OsMYBS3 | 1R-MYB | — | 参与了赤霉素和糖饥饿信号诱导之后体内淀粉酶的调控、诱导赤霉素合成 |
[ |
OsGAMYBL2 | R2R3-MYB | — | 负调控水稻植株内油菜素甾醇激素水平和赤霉素信号 |
[ |
OsMYB30 | R2R3-MYB | LOC_Os09g26170 | 促进水稻水杨酸的积累、促进木质素的生物合成和积累提高水稻对褐飞虱的抗性;使厚壁细胞增厚阻止真菌对水稻叶片的渗透 |
[ |
OsJAMyb/OsMYB21 | R2R3-MYB | LOC_Os11g45740 | 增强体内茉莉酸信号通路,促进茉莉酸的积累,过表达能显著降低水稻对白叶枯病的抗性 |
[ |
OsMYB108/GzMYB-7D1 | — | — | 正调控花青素合成 |
[ |
OsMYB3 | R2R3-MYB | LOC_Os03g29614 | 正调控花青素合成 |
[ |
OsC1 | R2R3-MYB | LOC_Os06g10350 | 正调控花青素合成 |
[ |
OsMYB48-1 | R2R3-MYB | LOC_Os01g74410 | 增强水稻对高温、干旱的耐受性 |
[ |
OsMYB55 | R2R3-MYB | LOC_Os05g48010 | 增加氨基酸的代谢提高水稻对高温的耐性 |
[ |
OsMYB2 | R2R3-MYB | LOC_Os3g20090 | 提高植株中脯氨酸和水溶性糖的含量以及抗氧化酶的活性,增强水稻的耐旱性、耐寒性和盐胁迫耐受性 |
[ |
OsMYB4 | R2R3-MYB | LOC_Os01g50110 | 增加脯氨酸水平来提高了植株的耐寒性和抗冻性 |
[ |
OsMYB3R-2 | 3R-MYB | LOC_Os01g62410 | 通过调控细胞周期参与了冷信号的调控通路 |
[ |
OsMYB6 | 1R-MYB | LOC_Os04g58020 | 正向调控水稻对干旱和盐胁迫的耐受性 |
[ |
OsMYB26 | R2R3-MYB | LOC_Os01g51260 | 直接与OsLEA3的启动子结合负调控水稻耐旱性 |
[ |
OsMYB84 | R2R3-MYB | LOC_Os03g56090 | 通过脱落酸通路,提高水稻的耐盐性,减少细胞损伤 |
[ |
OsMYB91 | 1R-MYB | LOC_Os12g38400 | 通过脱落酸信号通路,增强水稻对盐胁迫的抗性 |
[ |
OsMYBc | 1R-MYB | LOC_Os09g12770 |
通过调控N |
[ |
OsMYB110 | R2R3-MYB | LOC_Os10g33810 | 激活石草酸和肉桂酸通路中编码酶的基因,引起阿魏酸的积累,增强对稻瘟病菌和水稻黄单胞菌的抗性 |
[ |
/:表示同一基因的不同名称或同源基因;—:未知
/:Different names or homologous genes representing the same gene;—:Unknown
MYB作为植物体内较大的转录因子家族,其家族成员在植物全生育期各个阶段和多个逆境胁迫中发挥重要的调控作用。最近发现它们还参与植物体内信号转导网络。植物中发现第一个MYB基因起,迄今大量MYB家族基因被发现及功能验证,证实该家族在植物中发挥关键作用。纵观对水稻中MYB家族的研究,发现其中还有三点不足:第一,相较于拟南芥,水稻中MYB基因的挖掘稍显不足,其中一些家族成员的功能在模式植物中被验证,但其同源基因或同源物在水稻中研究较少。第二,MYB基因的研究在水稻、玉米、小麦等不同作物之间相对独立,鲜有对不同作物MYB转录因子之间同源性和进化性的研究。第三,对于水稻中MYB转录因子的调控通路研究较少,鲜有对水稻中MYB基因上下游调控网络研究的报道。
对于植物的研究已经上升到分子生物学层面,但MYB基因的功能尚未完全解析。今后在MYB家族的研究中有三个方向应作为主要任务:第一,现今根据MYB结构域数量进行的家族分类较为粗略,缺少对其功能的简述,在对其功能加深了解后,应基于不同家族成员功能性上的不同而作出功能性分类,在结构性分类和功能性分类结合的基础上,以更快了解已知MYB基因,同时预测未知MYB基因。第二,需要进一步探究MYB基因参与生理调控的分子机制,挖掘MYB基因调控的上下游网络和与其他转录因子或其他基因的相互作用。第三,研究者应将MYB基因的功能验证与实际育种应用结合,使其应用于生产实践。
参考文献
Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science, 2005, 10(2): 63-70 [百度学术]
Roy S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior, 2016, 11(1): e1117723 [百度学术]
Seo M S, Kim J S. Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae. Molecules, 2017, 22(9): 1549 [百度学术]
Ma D, Constabel C P. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science, 2019, 24(3): 275-289 [百度学术]
Klempnauer K H, Gonda T J, Bishop J M. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: The architecture of a transduced oncogene. Cell, 1982, 31(2): 453-463 [百度学术]
Weston K. Myb proteins in life, death and differentiation. Current Opinion in Genetics & Development, 1998, 8(1): 76-81 [百度学术]
Lipsick J S. One billion years of Myb. Oncogene, 1996, 13(2): 223-235 [百度学术]
Paz A J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto‐oncogene products and with structural similarities to transcriptional activators. The EMBO Journal, 1987, 6(12): 3553-3558 [百度学术]
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110 [百度学术]
Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y, Hirata Z, Sarai A, Ishii S, Nishimura Y. Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb. Nature Structural Biology, 1995, 2(4): 309-320 [百度学术]
Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses:An overview. Physiology and Molecular Biology of Plants, 2013, 19(3): 307-321 [百度学术]
Xie Z, Lee E K, Lucas J R, Morohashi K, Li D, Murray J A H, Sack F D, Grotewold E. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. The Plant Cell, 2010, 22(7): 2306-2321 [百度学术]
Cominelli E, Tonelli C. A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Research, 2009, 19(11): 1231-1232 [百度学术]
Zhao Y, Xing L, Wang X, Hou Y , Gao J, Wang P, Duan C, Zhu X, Zhu J. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling, 2014, 7(328): ra53-ra53 [百度学术]
Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology, 2007, 143(4): 1739-1751 [百度学术]
Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. The Plant Cell, 2011, 23(3): 1138-1152 [百度学术]
Katiyar A, Smita S, Lenka S, Rajwanshi R, Chinnusamy V, Bansal K. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13(1): 544 [百度学术]
Komaki S, Sugimoto K. Control of the plant cell cycle by developmental and environmental cues. Plant and Cell Physiology, 2012, 53(6): 953-964 [百度学术]
向征. 水稻MYB家族转录因子OsMYB112的功能研究. 重庆: 重庆大学,2016 [百度学术]
Xiang Z. Functional study on rice MYB family transcription factor OsMYB112. Chongqing: Chongqing University,2016 [百度学术]
冯盼盼, 陈鹏, 洪文杰, 赵小英, 刘选明. 拟南芥 MYB 转录因子家族研究进展. 生命科学研究, 2016, 20(6): 555-560 [百度学术]
Feng P P, Chen P, Hong W J, Zhao X Y, Liu X M. Research progress of Arabidopsis MYB transcription factor family. Life Science Research, 2016, 20(6): 555-560 [百度学术]
陈守坤. 小麦亲缘物种二穗短柄草热胁迫下转录组分析和 MYB 基因家族分析. 咸阳:西北农林科技大学, 2018 [百度学术]
Chen S K. Transcriptome analysis and MYB gene family analysis under heat stress of wheat related species Brachysandra biconica. Xianyang:Northwest Agricultural and Forestry University, 2018 [百度学术]
居利香, 雷欣, 赵成志, 舒黄英, 汪志伟, 成善汉. 辣椒 MYB 基因家族的鉴定及与辣味关系分析. 园艺学报, 2020, 47(5): 875-892 [百度学术]
Ju L X, Lei X, Zhao C Z, Shu H Y, Wang Z W, Cheng S H. Identification of pepper MYB gene family and analysis of its relationship with spicy taste. Journal of Horticulture, 2020, 47(5): 875-892 [百度学术]
王晓珊, 葛晨辉, 康亚妮, 王全华, 徐晨曦. 菠菜转录因子MYB基因家族的鉴定及表达分析. 上海师范大学学报:自然科学版,2020, 49(6):677-691 [百度学术]
Wang X S, Ge C H, Kang Y N, Wang Q H, Xu C X. Identification and expression analysis of spinach transcription factor MYB gene family. Journal of Shanghai Normal University: Natural Science Edition, 2020, 49(6):677-691 [百度学术]
Muthuramalingam P, Jeyasri R, Selvaraj A, Shin H, Chen J T, Satish L, Wu Q, Ramesh M. Global integrated genomic and transcriptomic analyses of MYB transcription factor superfamily in C3 model plant Oryza sativa (L.) unravel potential candidates involved in abiotic stress signaling. Frontiers in Genetics, 2022, 13: 946834 [百度学术]
Du H, Zhang L, Liu L, Tang X, Yang W, Wu Y, Huang Y, Tang Y. Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow), 2009, 74(1): 1-11 [百度学术]
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10): 573-581 [百度学术]
Meng F, Xiang D, Zhu J, Li Y, Mao C. Molecular mechanisms of root development in rice. Rice, 2019, 12(1): 1 [百度学术]
Dai X, Wang Y, Yang A, Zhang W. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiology, 2012, 159(1): 169-183 [百度学术]
Zheng K, Tian H, Hu Q, Guo H Y, Yang L, Cai L, Wang X T, Liu B, Wang S. Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation. Scientific Reports, 2016, 6(1): 19254 [百度学术]
Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Müller I, Voss U, Jürgens G, Ito M. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development (Cambridge, England), 2007, 134(6): 1101-1110 [百度学术]
Zhang Y, Yu C, Lin J, Liu J, Liu B, Wang J, Huang A, Li H, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE, 2017, 12(7): e0180825 [百度学术]
Wang R, Yang X, Guo S, Wang Z, Zhang Z, Fang Z. MiR319-targeted OsTCP21 and OsGAmyb regulate tillering and grain yield in rice. Journal of Integrative Plant Biology, 2021, 63(7): 1260-1272 [百度学术]
Li Y, Zeng X, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H, Xiong M, Yang F, Yuan X, He G. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiology, 2020, 184(2): 988-1003 [百度学术]
Ren D, Rao Y, Yu H, Xu Q, Cui Y, Xia S, Yu X, Liu H, Hu H, Xue D, Zeng D, Hu J, Zhang G, Gao Z, Zhu L, Zhang Q, Shen L, Guo L, Qian Q. MORE FLORET1 encodes a MYB transcription factor that regulates spikelet development in rice. Plant Physiology, 2020, 184(1): 251-265 [百度学术]
Wang X, Wu R, Shen T, Li Z, Li C, Wu B, Jiang H, Zhao G. An R2R3-MYB transcription factor OsMYBAS1 promotes seed germination under different sowing depths in transgenic rice. Plants, 2022, 11(1): 139 [百度学术]
Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biology, 2014, 14(1): 158 [百度学术]
Chen Z, Teng S, Liu D, Chang Y, Zhang L, Cui X, Wu J, Ai P, Sun X, Lu T, Zhang Z. RLM1, encoding an R2R3 MYB transcription factor, regulates the development of secondary cell wall in rice. Frontiers in Plant Science, 2022, 13: 905111 [百度学术]
Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. The Plant Cell, 2006, 18(3): 598-611 [百度学术]
Xiang X, Sun L, Yu P, Yang Z, Zhang P, Zhang Y, Wu W, Chen D, Zhan X, Khan R M, Abbas A, Cheng S, Cao L. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theoretical and Applied Genetics, 2021, 134(2): 453-471 [百度学术]
Wang D, Li J, Sun L, Hu Y, Yu J, Wang C, Zhang F, Hou H, Liang W, Zhang D. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning. New Phytologist, 2021, 231(4): 1612-1629 [百度学术]
Zhang L, Liu G, Jia J, Zhao G Y, Xia C, Zhang L, Li F, Zhang Q, Dong C, Gao S, Han L, Guo X, Zhang X, Wu J, Liu X, Kong X. The wheat MYB‐related transcription factor TaMYB72 promotes flowering in rice. Journal of Integrative Plant Biology, 2016, 58(8): 701-704 [百度学术]
Li G, Zhang H, Li J, Zhang Z, Li Z. Genetic control of panicle architecture in rice. The Crop Journal, 2021, 9(3): 590-597 [百度学术]
Gocal G F, Sheldon C C, Gubler F, Moritz T, Bagnall D J, MacMillan C P, Li S F, Parish R W, Dennis E S, Weigel D, King R W. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiology, 2001, 127(4): 1682-1693 [百度学术]
Gao J, Chen H, Yang H, He Y, Tian Z, Li J. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development. New Phytologist, 2018, 220(2): 488-501 [百度学术]
He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z, Yang C, Qiu Z, Liu D, Wen P, Huang J, Fan D, Xiao S, Xin Y, Chen X, Jiang L, Wang H, Yuan L, Wan J. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proceedings of the National Academy of Sciences, 2020, 117(1): 271-277 [百度学术]
Yang Z, Huang Y, Yang J, Yao S, Zhao K, Wang D, Qin Q, Bian Z, Li Y, Lan Y, Zhou T, Wang H,Liu C, Wang W M, Qi Y, Xu Z, Li Y. Jasmonate signaling enhances RNA silencing and antiviral defense in rice. Cell Host & Microbe, 2020, 28(1): 89-103 [百度学术]
Lu C, Ho T, Ho S, Yu S. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of α-amylase gene expression. The Plant Cell, 2002, 14(8): 1963-1980 [百度学术]
Chen L, Hu B, Qin Y, Hu G, Zhao J. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiology and Biochemistry, 2019, 136: 178-187 [百度学术]
Lepiniec L, Debeaujon I, Routaboul J M, Antoine B, Lucille P, Nathalie N, Michel C. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 2006, 57(1): 405-430 [百度学术]
Geng P, Zhang S, Liu J, Zhao C, Wu J, Cao Y, Fu C, Han X, He H, Zhao Q. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiology, 2020, 182(3): 1272-1283 [百度学术]
Luo J, Huang W, Yan J, Fang Z, Ren M. The GzMYB-7D1 gene of Guizimai No. 1 wheat is essential for seed anthocyanins accumulation and yield regulation. Plant Science, 2022, 320: 111293 [百度学术]
Zheng J, Wu H, Zhao M, Yang Z N, Zhou Z H, Guo Y M, Lin Y J, Chen H. OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice. Molecular Breeding, 2021, 41(8): 51 [百度学术]
Upadhyaya G, Das A, Ray S. A rice R2R3-MYB (OsC1) transcriptional regulator improves oxidative stress tolerance by modulating anthocyanin biosynthesis. Physiologia Plantarum, 2021, 173(4): 2334-2349 [百度学术]
Deeba F, Sultana T, Javaid B, Mahmood T, Naqvi S M S. Molecular characterization of a MYB protein from Oryza sativa for its role in abiotic stress tolerance. Brazilian Archives of Biology and Technology, 2017, 60: e17160352 [百度学术]
Zhao J, Lu Z, Wang L, Jin B. Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences, 2020, 22(1): 117 [百度学术]
Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE, 2014, 9(3): e92913 [百度学术]
El-Kereamy A, Bi Y, Ranathunge K, Beatty P H, Good A G, Rothstein S J. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS ONE, 2012, 7(12): e52030 [百度学术]
Yang A, Dai X, Zhang W. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012, 63(7): 2541-2556 [百度学术]
Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal, 2004, 37(1): 115-127 [百度学术]
Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiology, 2009, 150(1): 244-256 [百度学术]
Xiong L, Schumaker K S, Zhu J. Cell signaling during cold, drought, and salt stress. The Plant Cell, 2002, 14(1): S165-S183 [百度学术]
Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q, Jia C, Li Z, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Frontiers in Plant Science, 2019, 10: 168 [百度学术]
Chen Y, Shen J, Zhang L, Qi H, Yang L, Wang H, Wang J, Wang Y, Du H, Tao Z, Zhao T, Deng P, Shu Q, Qian Q, Yu H, Song S. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice. Molecular Plant, 2021, 14(8): 1297-1311 [百度学术]
Yokotani N, Ichikawa T, Kondou Y, Iwabuchi M, Matsui M, Hirochika H, Oda K. Role of the rice transcription factor JAmyb in abiotic stress response. Journal of Plant Research, 2013, 126(1): 131-139 [百度学术]
吕波, 张文政, 李春雨, 明凤. MYB家族转录因子OsMYB84通过ABA信号通路参与盐胁迫响应. 复旦学报: 自然科学版,2015, 54(5): 591-600 [百度学术]
Lv B, Zhang W Z, Li C Y, Ming F. The MYB family transcription factor OsMYB84 participates in salt stress response through ABA signal pathway. Journal of Fudan University: Natural Science Edition, 2015, 54(5): 591-600 [百度学术]
Zhu N, Cheng S, Liu X, Du H, Dai M Q, Zhou D X, Yang W J, Zhao Y. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Science, 2015, 236: 146-156 [百度学术]
Xiao L, Shi Y, Wang R, Feng Y, Wang L, Zhang H, Shi X, Jing G, Deng P, Song T, Jing W, Zhang W. The transcription factor OsMYBc and an E3 ligase regulate expression of a
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal, 2000, 19(22): 6150-6161 [百度学术]
Li W, Wang K, Chern M, Liu Y, Zhu Z, Liu J, Zhu X, Yin J, Ran L, Xiong J, He K, Xu L, He M, Wang J, Liu J, Bi Y, Qing H, Li M, Hu K, Song L, Wang L, Qi T, Hou Q, Chen W, Li Y, Wang W, Chen X. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves. New Phytologist, 2020, 226(6): 1850-1863 [百度学术]
Kishi K M, Seo Si, Takahashi A, Hirochika H. The MAMP-responsive MYB transcription factors MYB30, MYB55 and MYB110 activate the HCAA synthesis pathway and enhance immunity in rice. Plant and Cell Physiology, 2018, 59(5): 903-915 [百度学术]