2025年6月5日 9:16 星期四
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

植物叶缘锯齿调控的研究进展  PDF

    郑健 1
    ✉
    潘继红 1
    余卫霖 1
    宋云连 1
    毕珏 1
    凌铭蔚 1
    王跃全 1
    高贤玉 1
    张惠云 1,2
    罗心平 1
    ✉
1. 云南省农业科学院热带亚热带经济作物研究所,保山 678000; 2. 元阳强村农业科技有限公司,云南元阳 662400

最近更新:2023-06-13

DOI:10.13430/j.cnki.jpgr.20221220002

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN 引
分享给微信好友或者朋友圈
目录contents
摘要
关键词
1 调控机制
1.1 植物激素和调控因子
1.2 环境因子
2 遗传机制
3 总结与展望
参考文献

摘要

叶片是植物重要的营养器官,叶缘锯齿(裂刻)在生产实践中有多种优势,叶缘锯齿调控研究对作物育种、生产实践具有指导意义。本文梳理了叶缘锯齿形成的调控机制,植物激素、基因表达、miRNA等协同作用调控叶缘锯齿形成。生长素(Auxin)在叶缘的不平衡积累能促进锯齿产生,细胞分裂素(CK,cytokinins)依赖Auxin在叶缘的积累促进叶形复杂度,而赤霉素(GA,gibberellin)负调控叶形复杂度。归纳了植物激素与基因参与叶缘锯齿形成的3条主要作用通路:TCP-CUC-PIN1-Auxin、KNOX-GA/CK、LMI1-CK。miR164、miR319、polycomb group表观遗传修饰和α-1,2糖基转移酶等也参与叶缘锯齿形成。研究表明环境因子温度和光强通过KNOX-GA通路调控叶片发育,高温和低光强均能降低叶形复杂度。不同植物控制叶缘锯齿性状的遗传机制存在较大差异。叶缘锯齿相关基因发掘以经济作物研究较多,未来果树育种应着手推进赏食兼用研究。

关键词

叶片发育; 叶缘锯齿; 植物激素; 调控机制; 遗传机制

叶片是植物进行光合作用、蒸腾作用和吸收作用的重要场所,可辅助植物营养和土壤养分情况诊断,且叶片形态特征也是植物分类的重要依据。叶片类型简单分为单叶和复叶2大类,叶缘锯齿(裂刻)很大程度上丰富了叶形的多样性,不论单叶或复叶,叶缘可分为全缘、锯齿和裂刻,裂刻可视为锯齿的极端型。复叶可以有不同的数量和排列的小叶,多为羽状和掌状[

参考文献 1
百度学术    
1],复叶可视为是单叶叶缘深裂的极端类型(图1)。

图1  自然界叶形多样性[

参考文献 1
百度学术    
1]

Fig.1  The range of leaf shapes found in nature[

参考文献 1
百度学术    
1]

叶缘锯齿是植物对环境的一种适应,在实际生产中具有多种优势[

参考文献 2-3
2-3]:辅助区分品种,同时观赏价值高[
参考文献 4-5
4-5];更强的空间延展,竞争光源优势,净光合效率高,利于密植[
参考文献 6-7
6-7];影响比叶面积,提高通风透气性[
参考文献 8
百度学术    
8];抵御高温,增强耐旱性[
参考文献 9
百度学术    
9];抵抗水分胁迫[
参考文献 10
百度学术    
10]和冷害胁迫[
参考文献 11
百度学术    
11]。甜瓜(Cucumis melo L.)裂叶型表现出对原叶型更强的白粉病抗性,占用土地空间小,适合密植,提高单位面积产量[
参考文献 12
百度学术    
12]。鸡脚叶棉(Gossypium hirsutum L.)叶片裂刻深、裂片狭窄,通风透光性好,创造不利虫害生长环境。鸡脚叶棉具有早熟,生殖生长优势强,单株结铃数高、籽棉质量高,形态、生态和生理生化抗性相叠加等优点[
参考文献 13
百度学术    
13]。叶缘形态变化研究对深刻认识植物环境适应性、作物遗传改良、指导农业生产具有重要实践价值,众多影响因子被发现鉴定,本文对叶缘锯齿的调控机制(环境因子、植物激素、调控因子)和遗传机制相关研究成果进行了综述,系统梳理复杂的调控网络,为叶缘锯齿在作物育种和生产实践的应用研究提供参考。

1 调控机制

植物叶形发育存在多种调控机制,植物激素、调控因子、环境因子之间形成了复杂的调节网络,协同作用叶缘锯齿形成。

1.1 植物激素和调控因子

基于前人研究基础,本文归纳了植物激素与基因参与叶缘锯齿形成的3条主要作用通路:TCP-CUC-PIN1-Auxin、KNOX-GA/CK、LMI1-like(RCO)- CK。此外,miR164、miR319、PcG表观遗传修饰、α-1,2糖基转移酶等也参与叶缘锯齿形成(图2)。

图2  叶缘形态发育调控网络图

Fig.2  Leaf margin morphological development regulation network

1.1.1 TCP-CUC-PIN1-Auxin通路

叶缘锯齿位置与生长素(Auxin)高度聚集点有直接关联,生长素聚集点细胞生长快形成叶缘锯齿尖端,生长素浓度低的位置形成叶缘凹陷[

参考文献 14
百度学术    
14]。生长素输入转运基因家族AUX1/LAX参与生长素由细胞外向细胞内运输过程,拟南芥(Arabidopsis thaliana (Linn.) Heynh.)aux1lax1lax2三缺突变体由于生长素转运紊乱导致叶缘裂刻减少[
参考文献 15
百度学术    
15]。生长素在叶缘的梯度分布由生长素极性运输蛋白PIN1(PIN-FORMED1)调控[
参考文献 16-17
16-17],苜蓿(Medicago truncatula Gaertn.)PIN1同源基因SLM1(SMOOTH LEAF MARGIN1)突变体叶缘锯齿减少,SLM1功能缺失导致生长素在叶缘弥漫性分布,表明PIN1在保持苜蓿叶缘锯齿发挥作用[
参考文献 18
百度学术    
18]。双特异性磷酸酶IBR5(INDOLE-3-BUTYRIC ACID RESPONSE5)通过负调控PIN1表达影响叶缘锯齿发育,IBR5功能缺失突变体由于增加细胞面积表现出明显的锯齿叶形[
参考文献 19
百度学术    
19]。转录因子NAM(NO APICAL MERISTEM)/CUC(CUP-SHAPED COTYLEDON1)是叶缘锯齿发育调控的重要节点,调控PIN1的极性定位,拟南芥、番茄(Solanum lycopersicum L.)和菊科蓍草(Achillea alpina L.)等植物的NAM/CUC基因表达下调,叶缘锯齿程度减少[
参考文献 16
百度学术    
16,
参考文献 20-22
20-22
]。叶绿体翻译起始因子SVR9/IF3(SUPPRESSOR OF VARIEGATION9)通过抑制CUC2表达活性,打破叶缘生长素的稳态平衡调控叶缘发育[
参考文献 23
百度学术    
23]。拟南芥中介导囊泡运输解聚过程的关键蛋白AtNSF(N-ethylmaleimide-sensitive factor)通过抑制CUC2介导的反馈回路调控PIN1运输的生长素聚集影响叶片的锯齿发育,AtNSF的缺陷引起拟南芥叶缘锯齿增多[
参考文献 24-25
24-25]。近期研究发现拟南芥B3家族NGAs(NGATHA-LIKEs)亚家族转录因子通过抑制CUC2的转录负调控叶缘锯齿的形成,超表达拟南芥3个转录因子NGAL1-3都能够降低叶缘锯齿程度,功能缺失三突变体ngaltri表现为叶缘锯齿加剧[
参考文献 26
百度学术    
26]。

番茄CIN-clade TCP(TEOSINTE BRANCHED1/CYCLOIDEA/PCF)类同源基因LA(LANCEOLATE)活性加强,使复叶变成单叶,TCP转录因子的活性调控对于植物叶片形态和大小的形成至关重要[

参考文献 27
百度学术    
27]。拟南芥TCP4可以分别与CUC2和CUC3互作,抑制CUC2-CUC3二聚体形成,降低叶缘锯齿程度[
参考文献 28
百度学术    
28]。TCPs直接激活miR164、AS1和生长素抑制基因IAA3/SHY2(INDOLE-3-ACETIC ACID3/SHORT HYPOCOTYL2)、SAUR(SMALL AUXIN UP RNA)协同抑制CUCs表达[
参考文献 29
百度学术    
29]。拟南芥TCP5通过激活KNAT3(ClassⅡ KNOX)和BEL-like基因SAW1表达从而抑制叶缘锯齿产生[
参考文献 30
百度学术    
30]。拟南芥超表达TCP转录抑制子TIE1(TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1)突变体产生叶缘锯齿表型,研究发现TIE1通过招募共抑制因子TPL/TPRs在蛋白水平上抑制TCPs转录因子的活性,从而调控叶片发育[
参考文献 31
百度学术    
31],与TIE1相互作用的含有RING结构域的E3泛素连接酶TEAR1(TIE1-ASSOCIATED RING-TYPE E3 LIGASE1),降低TEAR1及其同源基因的表达可使突变体叶片出现边缘过度生长和叶锯齿增多等表型[
参考文献 32
百度学术    
32]。

1.1.2 KNOX-GA/CK通路

赤霉素(GA,gibberellin)被认为负调控叶形复杂度,番茄发育的叶片外源施加赤霉素后叶形简单化且叶缘光滑,细胞分裂素(CK,cytokinins)可以抑制赤霉素对叶形调控,但不依赖赤霉素通路而能直接影响叶形发育[

参考文献 33-34
33-34]。同源异性盒基因KNOX1(ClassⅠKNOX:STM/BP/KNAT1/KNAT2/KNAT6)是调控叶片激素平衡的关键因子,分别正调控细胞分裂素和负调控赤霉素的生物合成,保持叶缘赤霉素含量在较低水平,同时可以激活细胞分裂素合成基因IPT7(ISOPENTENYL TRANSFERSASE7),番茄超表达AtIPT7产生复杂的叶缘形态[
参考文献 35
百度学术    
35]。超表达细胞分裂素降解基因CKX3(CYTOKININOXIDASE3)使番茄叶片中细胞分裂素含量降低,降低叶片复杂度和叶缘锯齿度,同时研究发现细胞分裂素依赖生长素在叶缘实际积累来调控锯齿形成[
参考文献 36
百度学术    
36]。拟南芥不同叶形品种的KNOX1同源基因STM的表达分析显示STM表达量与叶缘锯齿程度正相关,推测单叶品种拟南芥叶片STM的缺失表达可能是正向遗传选择结果[
参考文献 37
百度学术    
37]。拟南芥中超表达鹅掌楸(Liriodendron chinense L.)KNOX1同源基因显著提高锯齿程度,表明KNOX1基因家族具有正向调控植物叶片复杂度的作用[
参考文献 38
百度学术    
38]。莴苣(Lactuca sativ L.)上调表达KNOX基因家族转录因子LsKN1,由生长素、赤霉素和叶片背腹性等多条通路调控叶形使羽状缺刻转变为掌状裂刻,掌状裂刻亲本中LsKN1外显子存在CACTA转座子插入,显著提高了该基因的表达量。LsKN1上调LsCUC2和LsCUC3表达,LsKN1也能结合LsPID启动子促进生长素生物合成,抑制赤霉素生物合成促进掌状裂刻形成[
参考文献 39
百度学术    
39]。KNOX2(ClassⅡKNOX: KNAT3/KNAT4/KNAT5/KNAT7)与KNOX1有相反的功能作用,激活或抑制KNOX2的基因功能分别产生叶缘光滑或锯齿表型[
参考文献 40
百度学术    
40]。

拟南芥AS1(ASYMMETRIC LEAVES1)和AS2是叶片发育的重要调控因子,通过AS1-Auxin通路和AS蛋白家族直接或间接抑制KNOX1表达,促进叶片发育[

参考文献 41-43
41-43]。AS1-AS2和RDR6-SGS3-AGO7通路间的遗传互作协同调控KNOX1表达影响叶缘锯齿发育[
参考文献 44
百度学术    
44]。拟南芥BLH(BEL1-LIKE HOMEODOMAIN)同源基因saw1saw2双突变体的叶缘裂刻明显加深,研究表明BLH蛋白通过抑制KNOX1表达调控叶缘发育[
参考文献 45
百度学术    
45],进一步研究分析了SAW1的表达模式,发现SAW1只在叶片近轴端和叶表皮下部表达,不参与Auxin-PIN1-CUC2的叶缘调控模式,因为PIN1在叶表皮上部表达[
参考文献 16
百度学术    
16],推测SAWs可能参与TCP-NGA通路[
参考文献 46
百度学术    
46],或与KNOX2相似功能作用抑制叶缘锯齿形成[
参考文献 47
百度学术    
47]。

1.1.3 LMI1-like(RCO)-CK通路

RCO(REDUCED COMPLEXITY)基因是LMI1(LATE MERISTEM IDENTITY1)串联复制的一部分,小叶的产生需要RCO调控,而拟南芥基因组缺失RCO基因,因此拟南芥叶形表现为单叶,RCO转基因拟南芥叶缘出现锯齿[

参考文献 48
百度学术    
48],拟南芥近源植物复叶碎米荠(Cardamine hirsute L.)RCO基因是自己的靶基因,通过低亲和连接位点转录抑制自身表达以及调控多种参与细胞分裂素生物合成与降解的基因,表明RCO-CK通路是复杂叶形成的条件之一[
参考文献 49
百度学术    
49]。LMI1的修饰是陆地棉(G. hirsutum)产生不同叶片类型的原因,VIGS沉默裂叶棉okra的LMI1基因叶形裂刻程度恢复到正常[
参考文献 50
百度学术    
50]。白菜(Brassica rapa L.)的3个LMI1-likes基因在拟南芥中异源表达都能产生叶缘锯齿表型[
参考文献 51
百度学术    
51]。研究人员构思了一种使单叶拟南芥向复叶碎米荠的叶形转变方式,例如使拟南芥叶片超表达STM和RCO基因,STM基因使叶缘的叶脉伸长促进小叶形成,RCO基因抑制叶缘局部成熟促进叶形复杂化,使单叶形成复叶[
参考文献 52
百度学术    
52]。

1.1.4 miRNA和PcG表观遗传修饰

研究表明拟南芥miRNA也参与调控叶缘锯齿产生,生长素通过激活miR164负调控CUC2表达,miR164a功能缺失突变体叶缘深裂,而超表达miR164植株叶缘光滑[

参考文献 16
百度学术    
16,
参考文献 20
百度学术    
20
]。研究发现拟南芥HD-Zip I亚家族成员AtHB1(Arabidopsis thaliana HomeoBox1)在叶缘光滑/锯齿转变存在功能作用,AtHB1通过结合MIR164编码位点直接抑制MIR164表达进而增强CUC2表达水平,使AtHB1过表达植株叶缘锯齿化,反之抑制AtHB1表达叶缘光滑[
参考文献 53
百度学术    
53]。拟南芥miR319A和miR319B单基因突变植株叶缘锯齿程度减弱,双突变体产生叶缘光滑的叶形,miR319突变会增强cuc突变体锯齿程度,转录因子TCPs是miR319的靶基因,miR319负调控TCPs降低叶缘锯齿程度[
参考文献 54-55
54-55]。赤霉素通过抑制番茄miR319表达一定程度上调控TCPs活性[
参考文献 56
百度学术    
56]。近期研究发现超表达miR319的杨树(Populus alba×Populus glandulosa)突变体产生矮化和叶缘裂刻表型[
参考文献 57
百度学术    
57]。

此外表观遗传调节机制对拟南芥叶缘发育也有调节作用,PcG(Polycomb group)通过在CUC2位点引入H3K27me3标记,从而抑制CUC2的表达参与叶缘锯齿发育的调控过程[

参考文献 58
百度学术    
58]。除了CUC2,PcG的靶基因还包括miR164A,PIN1和DPA4(PcG TARGET IN THE APEX4) [
参考文献 59-60
59-60]。拟南芥DPA4通过PcG通路不依赖miR164调控,直接负调控CUC2表达抑制叶缘锯齿形成[
参考文献 61
百度学术    
61]。

1.1.5 ALG10,α-1,2糖基转移酶

基于羽衣甘蓝(Brassica oleracea L. var. acephala)叶缘差异的F2遗传分离群体,通过全基因组重测序与染色体精细定位,发掘到了叶缘差异性状关键候选基因BoALG10,该基因编码α-1,2糖基转移酶[

参考文献 62
百度学术    
62]。通过互补转化、基因敲除等研究验证了BoALG10具有维持羽衣甘蓝叶缘光滑性状的功能[
参考文献 63
百度学术    
63]。ALG10变异造成N-糖基化缺陷,此前研究显示AtALG10调控拟南芥产生更为短小的叶形[
参考文献 64
百度学术    
64],而羽衣甘蓝则产生锯齿叶形。

1.2 环境因子

研究推测环境温度和光强通过KNOX-GA通路调控水生蔊菜(Rorippa aquatica (Eaton)E.J.Palmer & Steyerm)叶形。相较于低温,更高的环境温度诱导产生简单叶,15 ℃条件下形成羽状叶,30 ℃时形成叶缘光滑的单叶,而20 ℃和25 ℃时产生复叶。内源植物激素测定、基因表达共同验证了25 ℃下叶原基中具生物学活性的赤霉素分子GA4含量和合成基因表达量均高于20 ℃条件,外源赤霉素处理简化了叶形复杂度[

参考文献 65
百度学术    
65]。KNOX1基因调控赤霉素生物合成以及KNOX1蛋白直接调控GA20OX基因表达[
参考文献 66
百度学术    
66],进一步研究发现水生蔊菜KNOX1同源基因RaSTM和RaBP在20 ℃时表达量高于25 ℃[
参考文献 65
百度学术    
65]。另一研究推测叶片可能起温度感应器的作用,水生蔊菜叶片在单叶控温装置30 ℃恒温处理下的叶形复杂度较20 ℃处理条件降低[
参考文献 67
百度学术    
67]。

光强调控水生蔊菜叶形改变表现为90 μmol/(m2·s)高光强下产生叶缘复杂的裂叶,15 μmol/(m2·s)低光强下形成叶缘光滑的单叶。RNA-seq揭示了光强处理对叶片形成作用与冷处理一致,高光强处理下RaSTM表达量显著高于低光强条件[

参考文献 65
百度学术    
65]。

2 遗传机制

植物控制叶缘锯齿性状的遗传机制存在较大差异,多数研究认为叶缘裂刻有无属质量性状,而锯齿程度(数目)属数量性状。十字花科类作物研究较多,研究认为白菜锯齿性状由1对主效核基因和细胞质修饰基因控制[

参考文献 68-69
68-69],另有研究认为是受一对显性基因控制的质量性状[
参考文献 70-71
70-71]、锯齿数目受微效基因影响[
参考文献 72
百度学术    
72],也有研究认为是由2对主基因加性效应和多基因显性效应控制[
参考文献 73
百度学术    
73],同时存在基因gDNA拷贝数差异影响裂叶性状[
参考文献 74
百度学术    
74]。甘蓝型油菜(Brassica napus L.)叶缘锯齿性状表现为质量性状,主要受1对显性基因控制[
参考文献 75-77
75-77],也有研究认为受单显性基因控制[
参考文献 78
百度学术    
78]以及受1对隐性基因控制[
参考文献 79-80
79-80],可能是分离群体和调控基因的差异。羽衣甘蓝裂叶性状由细胞核内1对等位基因控制,裂叶对全叶为不完全显性,且裂叶性状还受微效多基因影响[
参考文献 62
百度学术    
62]。芥菜(Brassica juncea L.)裂叶性状由1对不完全显性基因控制[
参考文献 6
百度学术    
6,
参考文献 81
百度学术    
81
]。莴苣、西瓜(Citrullus lanatus L.)裂叶性状为单基因显性性状[
参考文献 82-83
82-83],甜瓜为单基因隐性性状[
参考文献 84
百度学术    
84]。棉花和绿豆(Vigna radiata L.)为不完全显性基因控制[
参考文献 85-87
85-87](表1)。桦木科桦树(Betula pendula Roth.)裂叶是受2对基因属叠加效应控制的隐性性状,基因型为ddbb[
参考文献 88
百度学术    
88]。

表1  基于文献分析的植物控制叶缘锯齿性状的遗传机制
Table 1  Genetic mechanism of plant controlling leaf margin serrated traits based on literature analysis

物种

Species

杂交群体

Hybrid population

分离比例

Segregation ratio

遗传类型

Genetic types

候选基因

Candidate gene

基因功能

Descriptions

基因命名

Gene name

遗传差异

Genetic diversity

参考文献

References

芥菜 Mustard

(B. junket)

裂叶LL×锯齿叶LSL F2≈3∶1;BC1≈1∶1 不完全显性基因 BjuA040054 HD-Zip I BjRCO — [
参考文献 6
百度学术    
6
]

甘蓝型油菜Rapeseed

(B. napus)

锯齿叶Zhongshuang 9(Z9)×裂叶Tongling huaye(HY) F2≈1∶2∶1;BC1F2≈1∶2∶1 不完全显性基因 BnLLA10 HD-Zip I BnLMI1 启动子区域2624 bp片段插入 [
参考文献 75
百度学术    
75
]

甘蓝型油菜Rapeseed

(B. napus)

圆叶Zheyou 50×裂叶Yuye 87 BC1≈1∶2∶1;F1≈1∶1 不完全显性基因 Bra009510同源基因 HD-Zip I LOBED-LEAF 1 (BnLL1) — [
参考文献 76
百度学术    
76
]

甘蓝型油菜 Rapeseed

(B. napus)

圆叶2205(P1)×裂叶1423(P2) F2≈3∶1;BC1P1≈1∶1;BC1P2≈1∶0 单隐性基因 BnHB2205(裂叶);BnHB1423(圆叶) HD-Zip I — 8个氨基酸差异 [
参考文献 79
百度学术    
79
]

羽衣甘蓝Ornamental kale

(B. oleracea)

羽状叶F0819×圆叶S0835 F2≈1∶2∶1;BC1≈1∶1 不完全显性基因 Bo9g184610 alpha-1,2-glucosyltransferase BoFL(BoALG10) 3个SNP差异 [
参考文献 62
百度学术    
62
]

羽衣甘蓝Ornamental kale

(B. oleracea)

裂叶18Q2513(P1)×非裂叶18Q2515(P2) F2≈3∶1;BC1P1≈1∶1;BC1P2≈1∶0 单显性基因 BoLl-1(Bo9g181710) HD-Zip I BoLMI1a 启动子区域1737 bp缺失,92 bp插入,1个SNP差异 [
参考文献 78
百度学术    
78
]

白菜

Chinese cabbage

(B. rapa)

裂叶13XS199H×叶全缘13XS198B F2≈1∶2∶1 不完全显性基因 Bra009510 HD-Zip I BrcLL1 圆叶材料1个拷贝,裂叶材料2个拷贝,BrcLL1-a和BrLL1-b,BrLL1-b内含子有245 bp缺失 [
参考文献 71
百度学术    
71
,
参考文献 74
百度学术    
74
]

物种

Species

杂交群体

Hybrid population

分离比例

Segregation ratio

遗传类型

Genetic types

候选基因

Candidate gene

基因功能

Descriptions

基因命名

Gene name

遗传差异

Genetic diversity

参考文献

References

西瓜Watermelon

(C. lanatus)

'Lingxiu' F2∶3自交系 F3∶4≈3∶1 显性等位基因 ORF22(Cla018360) HD-Zip I ClLL1 InDel/在LZ motif 24 bp缺失 [
参考文献 83
百度学术    
83
]

甜瓜Melon

(C. melo)

圆叶浅裂Y8×掌状裂叶BM7;圆叶Jiashi×掌状裂叶BM7 F2≈3∶1;BC1≈1∶1 单隐性基因 MELO3C010784 ANT palmately lobed leaf (pll) — [
参考文献 84
百度学术    
84
]

陆地棉

Upland cotton

(G. hirsutum L.)

正常叶NC11-2100×鸡脚叶NC05AZ21 F1≈1∶2∶1 不完全显性基因 Gorai.002G244000 HD-Zip I Late Meristem Identity1-D1b (GhLMI1-D1b) InDel/第3外显子8 bp缺失 [
参考文献 85-86
85-86
]

莴苣 Lettuce

(L. sativa)

圆叶PI491070×裂叶PI536760 F2≈3∶1 单显性基因 LG3316063 HD-Zip I Lslobed SNP/1个碱基(G/T)差异 [
参考文献 82
百度学术    
82
]

绿豆Mungbean

(V. radiata)

圆叶Sulu×裂叶AL127 F1≈1∶2∶1 不完全显性基因 Vradi03g04470 A20/AN1 lobed leaflflet margins (LMA) — [
参考文献 87
百度学术    
87
]

—指文献中未有相关信息

— means no relevant information in the literature

3 总结与展望

叶片是植物重要的营养器官,叶缘形态不仅是植物多样性的体现,也是植物对环境的一种适应。叶缘锯齿在生产实践中有多种优势,如提高观赏性、增强抗逆性、适合密植,单位面积产量高等。叶缘锯齿调控研究对作物育种、生产实践具有指导意义,本文梳理了叶缘锯齿形成的调控机制,植物激素、基因表达、miRNA和表观遗传调节机制等协同作用调控叶缘锯齿形成,生长素在叶缘的不平衡积累能促进锯齿产生,细胞分裂素依赖生长素在叶缘的积累促进叶形复杂度,而赤霉素负调控叶形复杂度。归纳了植物激素与基因参与叶缘锯齿形成的3条主要作用通路:TCP-CUC-PIN1-Auxin、KNOX-GA/CK、LMI1-like(RCO)-CK。miR164、miR319、PcG表观遗传修饰和α-1,2糖基转移酶等也参与叶缘锯齿形成。研究表明环境因子温度和光强通过KNOX-GA通路调控水生蔊菜叶形,高温和低光强均能降低叶形复杂度。不同植物控制叶缘锯齿性状的遗传机制存在较大差异,多数研究认为叶缘裂刻有无属质量性状,而锯齿程度(数目)属数量性状。

现有研究表明生长素、赤霉素和细胞分裂素参与叶缘锯齿发育,而其他植物激素脱落酸、油菜素内酯、乙烯等研究较少报道;叶缘锯齿候选基因的QTL位点研究已有相关报道[

参考文献 89
百度学术    
89],据报道甘蓝型油菜的叶缘锯齿与耐盐性状连锁[
参考文献 79
百度学术    
79],但其性状与其他农艺性状的连锁关系研究较少;未来叶缘锯齿基因参与的生物或非生物胁迫调控机制也值得深入研究,为培育环境适应型作物提供参考。

叶缘锯齿相关基因发掘以拟南芥、羽衣甘蓝、棉花等研究较多,而果树开展此类研究较少。传统果树种植业在经济社会的快速发展的背景下陷入发展瓶颈,果树的观赏价值将成为产业发展的一个新增长点[

参考文献 90
百度学术    
90]。近期研究报道了桃(Prunus persica (L.) Batsch)的PpLMI1外显子中插入了一个hAT超家族(mMoshan)转座元件,产生与白粉病抗性相关的花外蜜腺的缺失或球形表型,说明PpLMI1调控桃叶缘形态结构主要与花外蜜腺缺失有关,而对叶缘锯齿表型不明显[
参考文献 91
百度学术    
91]。柑橘类橘枳叶形存在差异,三出复叶的枳(Citrus trifoliata L.)在-20 ℃不死亡,而单身复叶的橘在-6~-7 ℃就会冻死。三出复叶的枳和单叶的柠檬(Citrus limon (L.) Burm. F.)叶片各发育时期转录组数据显示KNOX基因家族成员CiKN1和CiKN6表达差异明显,CiKN1和CiKN6存在蛋白互作,抑制CimiR164a表达,通过miR164a-CUC2通路调控叶片发育[
参考文献 92
百度学术    
92]。未来,果树育种研究除了开展果实品质育种和抗性育种外,也应着手推进观赏性果树育种研究,发掘叶形发育相关基因为赏食兼用果树育种奠定基础,促成“城中有果园,果园在城中”的生态家园环境。

参考文献

1

Kessler S, Sinha N. Shaping up: The genetic control of leaf shape. Current Opinion in Plant Biology, 2004, 7(1): 65-72 [百度学术] 

2

Kidner C A, Umbreen S. Why is leaf shape so variable. International Journal of Plant Developmental Biology, 2010, 4(1): 64-75 [百度学术] 

3

Nicotra A B, Leigh A, Boyce C K, Jones C S, Niklas K J, Royer D L, Tsukaya H. The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 2011, 38(7): 535-552 [百度学术] 

4

王江民, 陈发棣, 房伟民, 陈素梅, 管志勇, 唐海艳. 基于叶形特征的切花菊品种鉴别. 植物学报, 2013, 48(6): 608-615 [百度学术] 

Wang J M, Chen F D, Fang W M, Chen S M, Guan Z Y, Tang H Y. Differentiation of cut chrysanthemum cultivars based on multiple foliar morphological parameters. Chinese Bulletin of Botany, 2013, 48(6): 608-615 [百度学术] 

5

祝朋芳, 冯馨, 程明明, 潘志超. 羽衣甘蓝裂叶相关性状遗传分析. 西北植物学报, 2016, 36(2): 288-295 [百度学术] 

Zhu P F, Feng X, Cheng M M, Pan Z C. Genetic analysis of feathered-leaved related traits in Brassica oleracea var. acephala. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 288-295 [百度学术] 

6

Heng S, Huang H, Cui M, Liu M, Lv Q, Hu P, Ren S, Li X, Fu T, Wan Z. Rapid identification of the BjRCO gene associated with lobed leaves in Brassica juncea via bulked segregant RNA-seq. Molecular Breeding, 2020, 40(4): 42 [百度学术] 

7

Semchenko M, Zobel K. The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria (Asteraceae). Annals of Botany, 2007, 100(1): 83-90 [百度学术] 

8

Ackerly D, Knight C, Weiss S, Barton K, Starmer K. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 2002, 130(3): 449-457 [百度学术] 

9

Vogel S. Leaves in the lowest and highest winds: Temperature, force and shape. New Phytologist, 2009, 183(1): 13-26 [百度学术] 

10

Sisó S, Camarero J J, Gil-Pelegrín E. Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: A new interpretation of leaf lobation. Trees, 2001, 15(6): 341-345 [百度学术] 

11

Peppe D J, Royer D L, Cariglino B, Oliver S Y, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams J M, Correa E, Currano E D, Erickson J M, Hinojosa L F, Hoganson J W, Iglesias A, Jaramillo C A, Johnson K R, Jordan G J, Kraft N J, Lovelock E C, Lusk C H, Niinemets U, Penuelas J, Rapson G, Wing S L, Wright I J. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytologist, 2011, 190(3): 724-739 [百度学术] 

12

高兴旺, 王贤磊, 宁雪飞, 张自强, 卢浩, 李冠. 甜瓜掌状裂叶基因pll的精细定位. 北方园艺, 2015(6): 98-102 [百度学术] 

Gao X W, Wang X L, Ning X F, Zhang Z Q, Lu H, Li G. Fine mapping of palmately lobed leaf gene pll in melon. Northern Horticulture, 2015(6): 98-102 [百度学术] 

13

张雪林, 韩世杰, 彭凡嘉, 周德桂, 巩养仓. 鸡脚叶陆地棉育种研究进展. 中国棉花, 2016, 43(10): 17-20 [百度学术] 

Zhang X L, Han S J, Peng F J, Zhou D G, Gong Y C. Breeding progress in Okra-leaf in upland cotton. China Cotton, 2016, 43(10): 17-20 [百度学术] 

14

Kawamura E, Horiguchi G, Tsukaya H. Mechanisms of leaf tooth formation in Arabidopsis. The Plant Journal, 2010, 62(3): 429-441 [百度学术] 

15

Kasprzewska A, Carter R, Swarup R, Bennett M, Monk N, Hobbs J K, Fleming A. Auxin influx importers modulate serration along the leaf margin. The Plant Journal, 2015, 83(4): 705-718 [百度学术] 

16

Bilsborough G D, Runions A, Barkoulas M, Jenkins H W, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proceedings of the National Academy of Sciences, 2011, 108(8): 3424-3429 [百度学术] 

17

Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N. Auxin patterns Solanum lycopersicum leaf morphogenesis. Development, 2009, 136(17): 2997-3006 [百度学术] 

18

Zhou C, Han L, Hou C, Metelli A, Qi L, Tadege M, Mysore K S, Wang Z. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development. The Plant Cell, 2012, 23(6): 2106-2124 [百度学术] 

19

Kong X, Huang G, Xiong Y, Zhao C, Wang J, Song X, Giri J, Zuo K. IBR5 regulates leaf serrations development via modulation of the expression of PIN1. International Journal of Molecular Sciences, 2019, 20(18): 4429 [百度学术] 

20

Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. The Plant Cell, 2006, 18(11): 2929-2945 [百度学术] 

21

Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez J P, Zinder M, Samach A, Eshed Y, Ori N. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development, 2009, 136(5): 823-832 [百度学术] 

22

Sha S, Chen D, Liu M, Li K, Jiang C, Wang D, Guo Y. To be serrate or pinnate: Diverse leaf forms of yarrows (Achillea) are linked to differential expression patterns of NAM genes. Annals of Botany, 2018, 121(2): 255-266 [百度学术] 

23

Zheng M, Liu X, Liang S, Fu S, Qi Y, Zhao J, Shao J, An L, Yu F. Chloroplast translation initiation factors regulate leaf variegation and development. Plant Physiology, 2016, 172(2): 1117-1130 [百度学术] 

24

Tang L P, Yang Y, Wang H, Li L, Liu L, Liu Y, Yuan J, Zhao X Y, Palme K, Su Y H, Li X. AtNSF regulates leaf serration by modulating intracellular trafficking of PIN1 in Arabidopsis thaliana. Journal of Integrative Plant Biology, 2021, 63(4): 737-755 [百度学术] 

25

杨溢. 拟南芥NSF调控叶边缘锯齿发育的分子机理研究. 泰安:山东农业大学, 2022 [百度学术] 

Yang Y. Molecular mechanism of Arabidopsis NSF in regulating leaf serration development. Taian: Shandong Agricultural University, 2022 [百度学术] 

26

Shao J, Meng J, Wang F, Shou B, Chen Y, Xue H, Zhao J, Qi Y, An L, Yu F, Liu X. NGATHA-LIKEs Control leaf margin development by repressing CUP-SHAPED COTYLEDON2 transcription. Plant Physiology, 2020, 184(1): 345-358 [百度学术] 

27

Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 2007, 39(6): 787-791 [百度学术] 

28

Rubio-Somoza I, Zhou C, Confraria A, Martinho C, von Born P, Baena-Gonzalez E, Wang J, Weigel D. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes. Current Biology, 2014, 24(22): 2714-2719 [百度学术] 

29

Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. The Plant Cell, 2010, 22(11): 3574-3588 [百度学术] 

30

Yu H, Zhang L, Wang W, Tian P, Wang W, Wang K, Gao Z, Liu S, Zhang Y, Irish V F, Huang T. TCP5 controls leaf margin development by regulating the KNOX and BEL-like transcription factors in Arabidopsis. Journal of Experimental Botany, 2021, 5(72): 1809-1821 [百度学术] 

31

Tao Q, Guo D, Wei B, Zhang F, Pang C, Jiang H, Zhang J, Wei T, Gu H, Qu L, Qin G. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. The Plant Cell, 2013, 25(2): 421-437 [百度学术] 

32

Zhang J, Wei B, Yuan R, Wang J, Ding M, Chen Z, Yu H, Qin G. The Arabidopsis RING-Type E3 Ligase TEAR1 controls leaf development by targeting the TIE1 transcriptional repressor for degradation. The Plant Cell, 2017, 29(2): 243-259 [百度学术] 

33

Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Current Biology, 2002, 12(18): 1557-1565 [百度学术] 

34

Fleishon S, Shani E, Ori N, Weiss D. Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytologist, 2011, 190(3): 609-617 [百度学术] 

35

Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology, 2005, 15(17): 1566-1571 [百度学术] 

36

Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N. Cytokinin regulates compound leaf development in tomato. The Plant Cell, 2010, 22(10): 3206-3217 [百度学术] 

37

Piazza P, Bailey C D, Cartolano M, Krieger J, Cao J, Ossowski S, Schneeberger K, He F, de Meaux J, Hall N, MacLeod N, Filatov D, Hay A, Tsiantis M. Arabidopsis thaliana leaf form evolved via loss of KNOX expression in leaves in association with a selective sweep. Current Biology, 2010, 20(24): 2223-2228 [百度学术] 

38

Ma J, Mei G, Liu H, Li H. Overexpression of a novel LcKNOX transcription factor from Liriodendron chinense induces lobed leaves in Arabidopsis thaliana. Forests, 2020, 11(1): 33 [百度学术] 

39

Wang M, Lavelle D, Yu C, Zhang W, Chen J, Wang X, Michelmore R W, Kuang H. The upregulated LsKN1 gene transforms pinnately to palmately lobed leaves through auxin, gibberellin, and leaf dorsiventrality pathways in lettuce. Plant Biotechnology Journal, 2022, 20(9): 1756-1769 [百度学术] 

40

Furumizu C, Alvarez J P, Sakakibara K, Bowman J L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genetics, 2015, 11(2): e1004980 [百度学术] 

41

Hay A. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development, 2006, 133(20): 3955-3961 [百度学术] 

42

Li Z, Li B, Liu J, Guo Z, Liu Y, Li Y, Shen W, Huang Y, Huang H, Zhang Y, Dong A. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis. Journal of Integrative Plant Biology, 2016, 58(12): 959-970 [百度学术] 

43

Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wiley Interdisciplinary Reviews-Developmental Biology, 2015, 4(6): 655-671 [百度学术] 

44

Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig R S, Huang H. Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis. Plant and Cell Physiology, 2006, 47(7): 853-863 [百度学术] 

45

Kumar R, Kushalappa K, Godt D, Pidkowich M S, Pastorelli S, Hepworth S R, Haughn G W. The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. The Plant Cell, 2007, 19(9): 2719-2735 [百度学术] 

46

Alvarez J P, Furumizu C, Efroni I, Eshed Y, Bowman J L. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife, 2016, 5 :e15023 [百度学术] 

47

Jeon H, Byrne M E. SAW homeodomain transcription factors regulate initiation of leaf margin serrations. Journal of Experimental Botany, 2021, 72(5): 1738-1747 [百度学术] 

48

Vlad D, Kierzkowski D, Rast M I, Vuolo F, Dello Ioio R, Galinha C, Gan X, Hajheidari M, Hay A, Smith R S, Huijser P, Bailey C D, Tsiantis M. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 2014, 343(6172): 780-783 [百度学术] 

49

Hajheidari M, Wang Y, Bhatia N, Vuolo F, Franco-Zorrilla J M, Karady M, Mentink R A, Wu A, Oluwatobi B R, Müller B, Dello Ioio R, Laurent S, Ljung K, Huijser P, Gan X, Tsiantis M. Autoregulation of RCO by low-affinity binding modulates cytokinin action and shapes leaf diversity. Current Biology, 2019, 29(24): 4183-4192 [百度学术] 

50

Andres R J, Coneva V, Frank M H, Tuttle J R, Samayoa L F, Han S, Kaur B, Zhu L, Fang H, Bowman D T, Rojas-Pierce M, Haigler C H, Jones D C, Holland J B, Chitwood D H, Kuraparthy V. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of upland cotton (Gossypium hirsutum L.). Proceedings of the National Academy of Sciences, 2017, 114(1): E57-E66 [百度学术] 

51

Ni X, Liu H, Huang J, Zhao J. LMI1-like genes involved in leaf margin development of Brassica napus. Genetica, 2017, 145(3): 269-274 [百度学术] 

52

Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska A, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith R S, Tsiantis M. A growth-based framework for leaf shape development and diversity. Cell (Cambridge), 2019, 177(6): 1405-1418 [百度学术] 

53

Miguel V N, Manavella P A, Chan R L, Capella M A. The AtHB1 transcription factor controls the miR164-CUC2 regulatory node to modulate leaf development. Plant and Cell Physiology, 2020, 61(3):659-670 [百度学术] 

54

Palatnik J F, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington J C, Weigel D. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Developmental Cell, 2007(13): 115-125 [百度学术] 

55

Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology, 2017, 175(2): 874-885 [百度学术] 

56

Yanai O, Shani E, Russ D, Ori N. Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal, 2011, 68(4): 571-582 [百度学术] 

57

Cheng Y, Wang L, Abbas M, Huang X, Li Q. MicroRNA319-mediated gene regulatory network impacts leaf development and morphogenesis in poplar. Forestry Research, 2021, 1: 4 [百度学术] 

58

李晓屿. Polycomb group在拟南芥叶缘发育中的生物学功能研究. 哈尔滨:东北林业大学, 2019 [百度学术] 

Li X Y. The role of polycomb group in regulation of leaf margin development in Arabidopsis. Harbin:Northeast Forestry University, 2019 [百度学术] 

59

Zhang X, Clarenz O, Cokus S, Bernatavichute Y V, Pellegrini M, Goodrich J, Jacobsen S E. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biology, 2007, 5(5): e129 [百度学术] 

60

Lafos M, Kroll P, Hohenstatt M L, Thorpe F L, Clarenz O, Schubert D. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genetics, 2011, 7(4): e1002040 [百度学术] 

61

Engelhorn J, Reimer J J, Leuz I, Gobel U, Huettel B, Farrona S, Turck F. DEVELOPMENT-RELATED PcG TARGET IN THE APEX 4 controls leaf margin architecture in Arabidopsis thaliana. Development, 2012, 139(14): 2566-2575 [百度学术] 

62

Feng X, Li X, Yang X, Zhu P. Fine mapping and identification of the leaf shape gene BoFL in ornamental kale. Theoretical and Applied Genetics, 2020, 133(4): 1303-1312 [百度学术] 

63

Feng X, Yang X, Zhong M, Li X, Zhu P. BoALG10, an alpha-1,2 glycosyltransferase, plays an essential role in maintaining leaf margin shape in ornamental kale. Horticulture Research, 2022, 9: uhac137 [百度学术] 

64

Farid A, Pabst M, Schoberer J, Altmann F, Glössl J, Strasser R. Arabidopsis thaliana alpha1,2‐glucosyltransferase (ALG10) is required for efficient N‐glycosylation and leaf growth. The Plant Journal, 2011, 68(2): 314-325 [百度学术] 

65

Nakayama H, Nakayama N, Seiki S, Kojima M, Sakakibara H, Sinha N, Kimura S. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American Lake Cress. The Plant Cell, 2015, 26(12): 4733-4748 [百度学术] 

66

Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Current Biology, 2002, 12(18): 1557-1565 [百度学术] 

67

Nakayama H, Kimura S. Leaves may function as temperature sensors in the heterophylly of Rorippa aquatica (Brassicaceae). Plant Signaling & Behavior, 2015, 10(12): e1091909 [百度学术] 

68

Song K, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theoretical and Applied Genetics, 1995, 90(1): 1-10 [百度学术] 

69

曾国平,曹寿椿. 不结球白菜主要经济性状遗传规律的研究Ⅰ、11个质量性状的遗传分析. 南京农业大学学报, 1996(3): 26-29 [百度学术] 

Zeng G P, Cao S C. Genetic studies on some important characters of non-heading Chinese cabbage Ⅰ. genetic analysis of 11 qualitative traits. Journal of Nanjing Agricultural University, 1996(3): 26-29 [百度学术] 

70

刘静. 萝卜败蕾的细胞形态学和小白菜裂叶性状分子标记研究. 杨凌:西北农林科技大学, 2008 [百度学术] 

Liu J. Studies on the cytomorphology of abortion floral bud in radish and molecular marker for dehiscent leaf in no-heading Chinese cabbage. Yangling: Northwest Agriculture and Forestry Technology University, 2008 [百度学术] 

71

富春元. 不结球白菜叶缘裂刻突变体的生理特性分析和基因精细定位. 杨凌:西北农林科技大学, 2014 [百度学术] 

Fu C Y. Physiological characteristics and fine mapping of a lobed-leaf mutant in non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Yangling: Northwest Agriculture and Forestry Technology University, 2014 [百度学术] 

72

仪泽会. 白菜SSR和InDel标记的开发及叶缘裂刻突变体的基因定位. 杨凌:西北农林科技大学, 2012 [百度学术] 

Yi Z H. Developing SSR and InDel markers and mapping of lobed leaf mutant in non-heading Chinese cabbage. Yangling: Northwest Agriculture and Forestry Technology University, 2012 [百度学术] 

73

王玉刚, 李萌, 吕晓雯, 张翠庭, 屈巍巍, 冯辉. 白菜叶裂数性状主基因+多基因遗传分析. 西北植物学报, 2012, 32(2): 252-256 [百度学术] 

Wang Y G, Li M, Lü X W, Zhang C T, Qu W W, Feng H. Genetic analysis of leaf lobes in Brassica rapa using mixed major gene plus polygene model. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(2): 252-256 [百度学术] 

74

鱼昭君. 白菜裂叶基因BrcLL1的克隆与功能初步分析. 杨凌:西北农林科技大学, 2016 [百度学术] 

Yu Z J. Clone and preliminary functional analysis of a lobed-leaf gene BrcLL1 in Chinese cabbage (Brassica rapa ssp. chinensis). Yangling: Northwest Agriculture and Forestry Technology University, 2016 [百度学术] 

75

Hu L, Zhang H, Yang Q, Meng Q, Han S, Nwafor C C, Khan M H U, Fan C, Zhou Y. Promoter variations in a homeobox gene, BnA10.LMI1, determine lobed leaves in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2018, 131(12): 2699-2708 [百度学术] 

76

Ni X, Huang J, Ali B, Zhou W, Zhao J. Genetic analysis and fine mapping of the LOBED-LEAF 1 (BnLL1) gene in rapeseed (Brassica napus L.). Euphytica, 2015, 204(1): 29-38 [百度学术] 

77

涂玉琴, 张洋, 辛佳佳, 涂伟凤, 汤洁, 戴兴临. 基于SLAF-seq技术鉴定甘蓝型油菜叶缘裂刻性状候选基因. 植物遗传资源学报, 2019, 20(2): 426-435 [百度学术] 

Tu Y Q, Zhang Y, Xin J J, Tu W F, Tang J, Dai X L. Identification of candidate genes for lobed-leaf trait in Brassica napus L. by SLAF-seq method. Journal of Plant Genetic Resources, 2019, 20(2): 426-435 [百度学术] 

78

Zhang B, Chen W, Li X, Ren W, Chen L, Han F, Fang Z, Yang L, Zhuang M, Lv H, Wang Y, Zhang Y. Map-based cloning and promoter variation analysis of the lobed leaf gene BoLMI1a in ornamental kale (Brassica oleracea L. var. acephala). BMC Plant Biology, 2021, 21(1):456 [百度学术] 

79

Zhang Y, Xu A, Lang L, Wang Y, Liu X, Liang F, Zhang B, Qin M, Dalelhan J, Huang Z. Genetic mapping of a lobed-leaf gene associated with salt tolerance in Brassica napus L.. Plant Science, 2018, 269: 75-84 [百度学术] 

80

文雁成, 鲁丽萍, 张书芬, 王建平, 朱家成, 何俊平, 赵磊, 曹金华. 利用十字花科种间杂交创造甘蓝型油菜种质资源的研究. 河南农业科学, 2014, 43(6): 30-34 [百度学术] 

Wen Y C, Lu L P, Zhang S F, Wang J P, Zhu J C, He J P, Zhao L, Cao J H. Novel germplasm creation in Brassica napes by cruciferous interspecific hybridization. Journal of Henan Agricultural Sciences, 2014, 43(6): 30-34 [百度学术] 

81

余晨, 袁贞贞, 沙爱华, 万正杰. 叶用芥菜叶缘裂刻性状的遗传与相关基因表达分析. 北方园艺, 2019(6): 12-17 [百度学术] 

Yu C, Yuan Z Z, Sha A H, Wan Z J. Genetic and related gene expression analysis of leaf marginal traits in Brassica juncea. Northern Horticulture, 2019(6): 12-17 [百度学术] 

82

袁焕然,潘江鹏,陈炯炯. 莴苣叶裂性状的遗传定位. 园艺学报, 2017, 44(8): 1496-1504 [百度学术] 

Yuan H R, Pan J P, Chen J J. Genetic analysis and mapping of genes controlling lettuce lobed leaf. Acta Horticulturae Sinica, 2017, 44(8): 1496-1504 [百度学术] 

83

Wei C, Chen X, Wang Z, Liu Q, Li H, Zhang Y, Ma J, Yang J, Zhang X. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS ONE, 2017, 12(7): e180741 [百度学术] 

84

Gao X, Ning X, Wang Y, Wang X, Yan W, Zhang Z, Li G. Fine mapping of a gene that confers palmately lobed leaf (pll) in melon (Cucumis melo L.). Euphytica, 2014, 200(3): 337-347 [百度学术] 

85

Andres R J, Bowman D T, Kaur B, Kuraparthy V. Mapping and genomic targeting of the major leaf shape gene (L) in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2014, 127(1): 167-177 [百度学术] 

86

Andres R J, Coneva V, Frank M, Tuttle J R, Sang-Won H, Samayoa L F, Kaur B, Zhu L, Fang H, Bowman D T, Rojas-Pierce M, Haigler C H, Jones D C, Holland J B, Chitwood D H, Kuraparthy V. Modifications to a LATE MERISTEM IDENTITY-1 gene are responsible for the major leaf shapes of upland cotton (Gossypium hirsutum L.). Proceedings of the National Academy of Sciences, 2017, 114(1):E57-E66 [百度学术] 

87

Jiao K, Li X, Guo W, Yuan X, Cui X, Chen X. Genome re-sequencing of two accessions and fine mapping the locus of lobed leaflet margins in mungbean. Molecular Breeding, 2016, 36(9): 1-12 [百度学术] 

88

田世龙, 马庆, 王阳, 林昕, 杨蕴力, 葛梦妍, 顾宸瑞, 刘桂丰. 紫叶桦与裂叶桦杂交子代的种子活力及叶片性状分离. 林业科学研究, 2019, 32(3): 40-48 [百度学术] 

Tian S L, Ma Q, Wang Y, Lin X, Yang Y L, Ge M Y, Gu C R, Liu G F. Segregation of seed vigor and leaf traits in hybrid progenies of Betula pendula 'Purple Rain' and Betula pendula 'Dplecprlicp'. Forest Research, 2019, 32(3): 40-48 [百度学术] 

89

石璐, 吕小龙, 张明方. 植物叶缘形态研究进展. 分子植物育种, 2022,URL:http://kns.cnki.net/kcms/detail/46.1068.S.20220406.1707.008.html. [百度学术] 

Shi L, Lü X L, Zhang M F. Advances in research on morphology of plant leaf edges. Molecular Plant Breeding, 2022,URL:http://kns.cnki.net/kcms/detail/46.1068.S.20220406.1707.008.html [百度学术] 

90

朱彬彬, 陶良如, 孔德政. 果树的观赏利用价值及其应用分析. 中国果树, 2020(2): 117-121 [百度学术] 

Zhu B B, Tao L R, Kong D Z. Analysis on ornamental value and application of fruit trees. China Fruits, 2020(2): 117-121 [百度学术] 

91

Lambert P, Confolent C, Heurtevin L, Dlalah N, Signoret V, Quilot-Turion B, Pascal T. Insertion of a mMoshan transposable element in PpLMI1, is associated with the absence or globose phenotype of extrafloral nectaries in peach [Prunus persica (L.) Batsch.] .Horticulture Research, 2022, 9: uhab044 [百度学术] 

92

Zeng R F, Fu L M, Deng L, Liu M F, Gan Z M, Zhou H, Hu S F, Hu C G, Zhang J Z. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. The Plant Journal, 2022, 110(3): 828-848 [百度学术] 

copyright © 2018-2020

您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!