摘要
叶片是植物重要的营养器官,叶缘锯齿(裂刻)在生产实践中有多种优势,叶缘锯齿调控研究对作物育种、生产实践具有指导意义。本文梳理了叶缘锯齿形成的调控机制,植物激素、基因表达、miRNA等协同作用调控叶缘锯齿形成。生长素(Auxin)在叶缘的不平衡积累能促进锯齿产生,细胞分裂素(CK,cytokinins)依赖Auxin在叶缘的积累促进叶形复杂度,而赤霉素(GA,gibberellin)负调控叶形复杂度。归纳了植物激素与基因参与叶缘锯齿形成的3条主要作用通路:TCP-CUC-PIN1-Auxin、KNOX-GA/CK、LMI1-CK。miR164、miR319、polycomb group表观遗传修饰和α-1,2糖基转移酶等也参与叶缘锯齿形成。研究表明环境因子温度和光强通过KNOX-GA通路调控叶片发育,高温和低光强均能降低叶形复杂度。不同植物控制叶缘锯齿性状的遗传机制存在较大差异。叶缘锯齿相关基因发掘以经济作物研究较多,未来果树育种应着手推进赏食兼用研究。
叶片是植物进行光合作用、蒸腾作用和吸收作用的重要场所,可辅助植物营养和土壤养分情况诊断,且叶片形态特征也是植物分类的重要依据。叶片类型简单分为单叶和复叶2大类,叶缘锯齿(裂刻)很大程度上丰富了叶形的多样性,不论单叶或复叶,叶缘可分为全缘、锯齿和裂刻,裂刻可视为锯齿的极端型。复叶可以有不同的数量和排列的小叶,多为羽状和掌

图1 自然界叶形多样
Fig.1 The range of leaf shapes found in natur
叶缘锯齿是植物对环境的一种适应,在实际生产中具有多种优
植物叶形发育存在多种调控机制,植物激素、调控因子、环境因子之间形成了复杂的调节网络,协同作用叶缘锯齿形成。
基于前人研究基础,本文归纳了植物激素与基因参与叶缘锯齿形成的3条主要作用通路:TCP-CUC-PIN1-Auxin、KNOX-GA/CK、LMI1-like(RCO)- CK。此外,miR164、miR319、PcG表观遗传修饰、α-1,2糖基转移酶等也参与叶缘锯齿形成(

图2 叶缘形态发育调控网络图
Fig.2 Leaf margin morphological development regulation network
叶缘锯齿位置与生长素(Auxin)高度聚集点有直接关联,生长素聚集点细胞生长快形成叶缘锯齿尖端,生长素浓度低的位置形成叶缘凹
番茄CIN-clade TCP(TEOSINTE BRANCHED1/CYCLOIDEA/PCF)类同源基因LA(LANCEOLATE)活性加强,使复叶变成单叶,TCP转录因子的活性调控对于植物叶片形态和大小的形成至关重
赤霉素(GA,gibberellin)被认为负调控叶形复杂度,番茄发育的叶片外源施加赤霉素后叶形简单化且叶缘光滑,细胞分裂素(CK,cytokinins)可以抑制赤霉素对叶形调控,但不依赖赤霉素通路而能直接影响叶形发
拟南芥AS1(ASYMMETRIC LEAVES1)和AS2是叶片发育的重要调控因子,通过AS1-Auxin通路和AS蛋白家族直接或间接抑制KNOX1表达,促进叶片发
RCO(REDUCED COMPLEXITY)基因是LMI1(LATE MERISTEM IDENTITY1)串联复制的一部分,小叶的产生需要RCO调控,而拟南芥基因组缺失RCO基因,因此拟南芥叶形表现为单叶,RCO转基因拟南芥叶缘出现锯
研究表明拟南芥miRNA也参与调控叶缘锯齿产生,生长素通过激活miR164负调控CUC2表达,miR164a功能缺失突变体叶缘深裂,而超表达miR164植株叶缘光
此外表观遗传调节机制对拟南芥叶缘发育也有调节作用,PcG(Polycomb group)通过在CUC2位点引入H3K27me3标记,从而抑制CUC2的表达参与叶缘锯齿发育的调控过
研究推测环境温度和光强通过KNOX-GA通路调控水生蔊菜(Rorippa aquatica (Eaton)E.J.Palmer & Steyerm)叶形。相较于低温,更高的环境温度诱导产生简单叶,15 ℃条件下形成羽状叶,30 ℃时形成叶缘光滑的单叶,而20 ℃和25 ℃时产生复叶。内源植物激素测定、基因表达共同验证了25 ℃下叶原基中具生物学活性的赤霉素分子GA4含量和合成基因表达量均高于20 ℃条件,外源赤霉素处理简化了叶形复杂
光强调控水生蔊菜叶形改变表现为90 μmol/(
植物控制叶缘锯齿性状的遗传机制存在较大差异,多数研究认为叶缘裂刻有无属质量性状,而锯齿程度(数目)属数量性状。十字花科类作物研究较多,研究认为白菜锯齿性状由1对主效核基因和细胞质修饰基因控
物种 Species | 杂交群体 Hybrid population | 分离比例 Segregation ratio | 遗传类型 Genetic types | 候选基因 Candidate gene | 基因功能 Descriptions | 基因命名 Gene name | 遗传差异 Genetic diversity | 参考文献 References |
---|---|---|---|---|---|---|---|---|
芥菜 Mustard (B. junket) | 裂叶LL×锯齿叶LSL | F2≈3∶1;BC1≈1∶1 | 不完全显性基因 | BjuA040054 | HD-Zip I | BjRCO | — |
[ |
甘蓝型油菜Rapeseed (B. napus) | 锯齿叶Zhongshuang 9(Z9)×裂叶Tongling huaye(HY) | F2≈1∶2∶1;BC1F2≈1∶2∶1 | 不完全显性基因 | BnLLA10 | HD-Zip I | BnLMI1 | 启动子区域2624 bp片段插入 |
[ |
甘蓝型油菜Rapeseed (B. napus) | 圆叶Zheyou 50×裂叶Yuye 87 | BC1≈1∶2∶1;F1≈1∶1 | 不完全显性基因 | Bra009510同源基因 | HD-Zip I | LOBED-LEAF 1 (BnLL1) | — |
[ |
甘蓝型油菜 Rapeseed (B. napus) | 圆叶2205(P1)×裂叶1423(P2) | F2≈3∶1;BC1P1≈1∶1;BC1P2≈1∶0 | 单隐性基因 | BnHB2205(裂叶);BnHB1423(圆叶) | HD-Zip I | — | 8个氨基酸差异 |
[ |
羽衣甘蓝Ornamental kale (B. oleracea) | 羽状叶F0819×圆叶S0835 | F2≈1∶2∶1;BC1≈1∶1 | 不完全显性基因 | Bo9g184610 | alpha-1,2-glucosyltransferase | BoFL(BoALG10) | 3个SNP差异 |
[ |
羽衣甘蓝Ornamental kale (B. oleracea) | 裂叶18Q2513(P1)×非裂叶18Q2515(P2) | F2≈3∶1;BC1P1≈1∶1;BC1P2≈1∶0 | 单显性基因 | BoLl-1(Bo9g181710) | HD-Zip I | BoLMI1a | 启动子区域1737 bp缺失,92 bp插入,1个SNP差异 |
[ |
白菜 Chinese cabbage (B. rapa) | 裂叶13XS199H×叶全缘13XS198B | F2≈1∶2∶1 | 不完全显性基因 | Bra009510 | HD-Zip I | BrcLL1 | 圆叶材料1个拷贝,裂叶材料2个拷贝,BrcLL1-a和BrLL1-b,BrLL1-b内含子有245 bp缺失 |
[ |
物种 Species |
杂交群体 Hybrid population |
分离比例 Segregation ratio |
遗传类型 Genetic types |
候选基因 Candidate gene |
基因功能 Descriptions |
基因命名 Gene name |
遗传差异 Genetic diversity |
参考文献 References |
西瓜Watermelon (C. lanatus) | 'Lingxiu' F2∶3自交系 | F3∶4≈3∶1 | 显性等位基因 | ORF22(Cla018360) | HD-Zip I | ClLL1 | InDel/在LZ motif 24 bp缺失 |
[ |
甜瓜Melon (C. melo) | 圆叶浅裂Y8×掌状裂叶BM7;圆叶Jiashi×掌状裂叶BM7 | F2≈3∶1;BC1≈1∶1 | 单隐性基因 | MELO3C010784 | ANT | palmately lobed leaf (pll) | — |
[ |
陆地棉 Upland cotton (G. hirsutum L.) | 正常叶NC11-2100×鸡脚叶NC05AZ21 | F1≈1∶2∶1 | 不完全显性基因 | Gorai.002G244000 | HD-Zip I | Late Meristem Identity1-D1b (GhLMI1-D1b) | InDel/第3外显子8 bp缺失 |
[ |
莴苣 Lettuce (L. sativa) | 圆叶PI491070×裂叶PI536760 | F2≈3∶1 | 单显性基因 | LG3316063 | HD-Zip I | Lslobed | SNP/1个碱基(G/T)差异 |
[ |
绿豆Mungbean (V. radiata) | 圆叶Sulu×裂叶AL127 | F1≈1∶2∶1 | 不完全显性基因 | Vradi03g04470 | A20/AN1 | lobed leaflflet margins (LMA) | — |
[ |
—指文献中未有相关信息
— means no relevant information in the literature
叶片是植物重要的营养器官,叶缘形态不仅是植物多样性的体现,也是植物对环境的一种适应。叶缘锯齿在生产实践中有多种优势,如提高观赏性、增强抗逆性、适合密植,单位面积产量高等。叶缘锯齿调控研究对作物育种、生产实践具有指导意义,本文梳理了叶缘锯齿形成的调控机制,植物激素、基因表达、miRNA和表观遗传调节机制等协同作用调控叶缘锯齿形成,生长素在叶缘的不平衡积累能促进锯齿产生,细胞分裂素依赖生长素在叶缘的积累促进叶形复杂度,而赤霉素负调控叶形复杂度。归纳了植物激素与基因参与叶缘锯齿形成的3条主要作用通路:TCP-CUC-PIN1-Auxin、KNOX-GA/CK、LMI1-like(RCO)-CK。miR164、miR319、PcG表观遗传修饰和α-1,2糖基转移酶等也参与叶缘锯齿形成。研究表明环境因子温度和光强通过KNOX-GA通路调控水生蔊菜叶形,高温和低光强均能降低叶形复杂度。不同植物控制叶缘锯齿性状的遗传机制存在较大差异,多数研究认为叶缘裂刻有无属质量性状,而锯齿程度(数目)属数量性状。
现有研究表明生长素、赤霉素和细胞分裂素参与叶缘锯齿发育,而其他植物激素脱落酸、油菜素内酯、乙烯等研究较少报道;叶缘锯齿候选基因的QTL位点研究已有相关报
叶缘锯齿相关基因发掘以拟南芥、羽衣甘蓝、棉花等研究较多,而果树开展此类研究较少。传统果树种植业在经济社会的快速发展的背景下陷入发展瓶颈,果树的观赏价值将成为产业发展的一个新增长
参考文献
Kessler S, Sinha N. Shaping up: The genetic control of leaf shape. Current Opinion in Plant Biology, 2004, 7(1): 65-72 [百度学术]
Kidner C A, Umbreen S. Why is leaf shape so variable. International Journal of Plant Developmental Biology, 2010, 4(1): 64-75 [百度学术]
Nicotra A B, Leigh A, Boyce C K, Jones C S, Niklas K J, Royer D L, Tsukaya H. The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 2011, 38(7): 535-552 [百度学术]
王江民, 陈发棣, 房伟民, 陈素梅, 管志勇, 唐海艳. 基于叶形特征的切花菊品种鉴别. 植物学报, 2013, 48(6): 608-615 [百度学术]
Wang J M, Chen F D, Fang W M, Chen S M, Guan Z Y, Tang H Y. Differentiation of cut chrysanthemum cultivars based on multiple foliar morphological parameters. Chinese Bulletin of Botany, 2013, 48(6): 608-615 [百度学术]
祝朋芳, 冯馨, 程明明, 潘志超. 羽衣甘蓝裂叶相关性状遗传分析. 西北植物学报, 2016, 36(2): 288-295 [百度学术]
Zhu P F, Feng X, Cheng M M, Pan Z C. Genetic analysis of feathered-leaved related traits in Brassica oleracea var. acephala. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 288-295 [百度学术]
Heng S, Huang H, Cui M, Liu M, Lv Q, Hu P, Ren S, Li X, Fu T, Wan Z. Rapid identification of the BjRCO gene associated with lobed leaves in Brassica juncea via bulked segregant RNA-seq. Molecular Breeding, 2020, 40(4): 42 [百度学术]
Semchenko M, Zobel K. The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria (Asteraceae). Annals of Botany, 2007, 100(1): 83-90 [百度学术]
Ackerly D, Knight C, Weiss S, Barton K, Starmer K. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 2002, 130(3): 449-457 [百度学术]
Vogel S. Leaves in the lowest and highest winds: Temperature, force and shape. New Phytologist, 2009, 183(1): 13-26 [百度学术]
Sisó S, Camarero J J, Gil-Pelegrín E. Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: A new interpretation of leaf lobation. Trees, 2001, 15(6): 341-345 [百度学术]
Peppe D J, Royer D L, Cariglino B, Oliver S Y, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams J M, Correa E, Currano E D, Erickson J M, Hinojosa L F, Hoganson J W, Iglesias A, Jaramillo C A, Johnson K R, Jordan G J, Kraft N J, Lovelock E C, Lusk C H, Niinemets U, Penuelas J, Rapson G, Wing S L, Wright I J. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytologist, 2011, 190(3): 724-739 [百度学术]
高兴旺, 王贤磊, 宁雪飞, 张自强, 卢浩, 李冠. 甜瓜掌状裂叶基因pll的精细定位. 北方园艺, 2015(6): 98-102 [百度学术]
Gao X W, Wang X L, Ning X F, Zhang Z Q, Lu H, Li G. Fine mapping of palmately lobed leaf gene pll in melon. Northern Horticulture, 2015(6): 98-102 [百度学术]
张雪林, 韩世杰, 彭凡嘉, 周德桂, 巩养仓. 鸡脚叶陆地棉育种研究进展. 中国棉花, 2016, 43(10): 17-20 [百度学术]
Zhang X L, Han S J, Peng F J, Zhou D G, Gong Y C. Breeding progress in Okra-leaf in upland cotton. China Cotton, 2016, 43(10): 17-20 [百度学术]
Kawamura E, Horiguchi G, Tsukaya H. Mechanisms of leaf tooth formation in Arabidopsis. The Plant Journal, 2010, 62(3): 429-441 [百度学术]
Kasprzewska A, Carter R, Swarup R, Bennett M, Monk N, Hobbs J K, Fleming A. Auxin influx importers modulate serration along the leaf margin. The Plant Journal, 2015, 83(4): 705-718 [百度学术]
Bilsborough G D, Runions A, Barkoulas M, Jenkins H W, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proceedings of the National Academy of Sciences, 2011, 108(8): 3424-3429 [百度学术]
Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N. Auxin patterns Solanum lycopersicum leaf morphogenesis. Development, 2009, 136(17): 2997-3006 [百度学术]
Zhou C, Han L, Hou C, Metelli A, Qi L, Tadege M, Mysore K S, Wang Z. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development. The Plant Cell, 2012, 23(6): 2106-2124 [百度学术]
Kong X, Huang G, Xiong Y, Zhao C, Wang J, Song X, Giri J, Zuo K. IBR5 regulates leaf serrations development via modulation of the expression of PIN1. International Journal of Molecular Sciences, 2019, 20(18): 4429 [百度学术]
Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. The Plant Cell, 2006, 18(11): 2929-2945 [百度学术]
Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez J P, Zinder M, Samach A, Eshed Y, Ori N. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development, 2009, 136(5): 823-832 [百度学术]
Sha S, Chen D, Liu M, Li K, Jiang C, Wang D, Guo Y. To be serrate or pinnate: Diverse leaf forms of yarrows (Achillea) are linked to differential expression patterns of NAM genes. Annals of Botany, 2018, 121(2): 255-266 [百度学术]
Zheng M, Liu X, Liang S, Fu S, Qi Y, Zhao J, Shao J, An L, Yu F. Chloroplast translation initiation factors regulate leaf variegation and development. Plant Physiology, 2016, 172(2): 1117-1130 [百度学术]
Tang L P, Yang Y, Wang H, Li L, Liu L, Liu Y, Yuan J, Zhao X Y, Palme K, Su Y H, Li X. AtNSF regulates leaf serration by modulating intracellular trafficking of PIN1 in Arabidopsis thaliana. Journal of Integrative Plant Biology, 2021, 63(4): 737-755 [百度学术]
杨溢. 拟南芥NSF调控叶边缘锯齿发育的分子机理研究. 泰安:山东农业大学, 2022 [百度学术]
Yang Y. Molecular mechanism of Arabidopsis NSF in regulating leaf serration development. Taian: Shandong Agricultural University, 2022 [百度学术]
Shao J, Meng J, Wang F, Shou B, Chen Y, Xue H, Zhao J, Qi Y, An L, Yu F, Liu X. NGATHA-LIKEs Control leaf margin development by repressing CUP-SHAPED COTYLEDON2 transcription. Plant Physiology, 2020, 184(1): 345-358 [百度学术]
Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 2007, 39(6): 787-791 [百度学术]
Rubio-Somoza I, Zhou C, Confraria A, Martinho C, von Born P, Baena-Gonzalez E, Wang J, Weigel D. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes. Current Biology, 2014, 24(22): 2714-2719 [百度学术]
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. The Plant Cell, 2010, 22(11): 3574-3588 [百度学术]
Yu H, Zhang L, Wang W, Tian P, Wang W, Wang K, Gao Z, Liu S, Zhang Y, Irish V F, Huang T. TCP5 controls leaf margin development by regulating the KNOX and BEL-like transcription factors in Arabidopsis. Journal of Experimental Botany, 2021, 5(72): 1809-1821 [百度学术]
Tao Q, Guo D, Wei B, Zhang F, Pang C, Jiang H, Zhang J, Wei T, Gu H, Qu L, Qin G. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. The Plant Cell, 2013, 25(2): 421-437 [百度学术]
Zhang J, Wei B, Yuan R, Wang J, Ding M, Chen Z, Yu H, Qin G. The Arabidopsis RING-Type E3 Ligase TEAR1 controls leaf development by targeting the TIE1 transcriptional repressor for degradation. The Plant Cell, 2017, 29(2): 243-259 [百度学术]
Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Current Biology, 2002, 12(18): 1557-1565 [百度学术]
Fleishon S, Shani E, Ori N, Weiss D. Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytologist, 2011, 190(3): 609-617 [百度学术]
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology, 2005, 15(17): 1566-1571 [百度学术]
Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N. Cytokinin regulates compound leaf development in tomato. The Plant Cell, 2010, 22(10): 3206-3217 [百度学术]
Piazza P, Bailey C D, Cartolano M, Krieger J, Cao J, Ossowski S, Schneeberger K, He F, de Meaux J, Hall N, MacLeod N, Filatov D, Hay A, Tsiantis M. Arabidopsis thaliana leaf form evolved via loss of KNOX expression in leaves in association with a selective sweep. Current Biology, 2010, 20(24): 2223-2228 [百度学术]
Ma J, Mei G, Liu H, Li H. Overexpression of a novel LcKNOX transcription factor from Liriodendron chinense induces lobed leaves in Arabidopsis thaliana. Forests, 2020, 11(1): 33 [百度学术]
Wang M, Lavelle D, Yu C, Zhang W, Chen J, Wang X, Michelmore R W, Kuang H. The upregulated LsKN1 gene transforms pinnately to palmately lobed leaves through auxin, gibberellin, and leaf dorsiventrality pathways in lettuce. Plant Biotechnology Journal, 2022, 20(9): 1756-1769 [百度学术]
Furumizu C, Alvarez J P, Sakakibara K, Bowman J L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genetics, 2015, 11(2): e1004980 [百度学术]
Hay A. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development, 2006, 133(20): 3955-3961 [百度学术]
Li Z, Li B, Liu J, Guo Z, Liu Y, Li Y, Shen W, Huang Y, Huang H, Zhang Y, Dong A. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis. Journal of Integrative Plant Biology, 2016, 58(12): 959-970 [百度学术]
Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wiley Interdisciplinary Reviews-Developmental Biology, 2015, 4(6): 655-671 [百度学术]
Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig R S, Huang H. Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis. Plant and Cell Physiology, 2006, 47(7): 853-863 [百度学术]
Kumar R, Kushalappa K, Godt D, Pidkowich M S, Pastorelli S, Hepworth S R, Haughn G W. The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. The Plant Cell, 2007, 19(9): 2719-2735 [百度学术]
Alvarez J P, Furumizu C, Efroni I, Eshed Y, Bowman J L. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife, 2016, 5 :e15023 [百度学术]
Jeon H, Byrne M E. SAW homeodomain transcription factors regulate initiation of leaf margin serrations. Journal of Experimental Botany, 2021, 72(5): 1738-1747 [百度学术]
Vlad D, Kierzkowski D, Rast M I, Vuolo F, Dello Ioio R, Galinha C, Gan X, Hajheidari M, Hay A, Smith R S, Huijser P, Bailey C D, Tsiantis M. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 2014, 343(6172): 780-783 [百度学术]
Hajheidari M, Wang Y, Bhatia N, Vuolo F, Franco-Zorrilla J M, Karady M, Mentink R A, Wu A, Oluwatobi B R, Müller B, Dello Ioio R, Laurent S, Ljung K, Huijser P, Gan X, Tsiantis M. Autoregulation of RCO by low-affinity binding modulates cytokinin action and shapes leaf diversity. Current Biology, 2019, 29(24): 4183-4192 [百度学术]
Andres R J, Coneva V, Frank M H, Tuttle J R, Samayoa L F, Han S, Kaur B, Zhu L, Fang H, Bowman D T, Rojas-Pierce M, Haigler C H, Jones D C, Holland J B, Chitwood D H, Kuraparthy V. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of upland cotton (Gossypium hirsutum L.). Proceedings of the National Academy of Sciences, 2017, 114(1): E57-E66 [百度学术]
Ni X, Liu H, Huang J, Zhao J. LMI1-like genes involved in leaf margin development of Brassica napus. Genetica, 2017, 145(3): 269-274 [百度学术]
Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska A, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith R S, Tsiantis M. A growth-based framework for leaf shape development and diversity. Cell (Cambridge), 2019, 177(6): 1405-1418 [百度学术]
Miguel V N, Manavella P A, Chan R L, Capella M A. The AtHB1 transcription factor controls the miR164-CUC2 regulatory node to modulate leaf development. Plant and Cell Physiology, 2020, 61(3):659-670 [百度学术]
Palatnik J F, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington J C, Weigel D. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Developmental Cell, 2007(13): 115-125 [百度学术]
Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology, 2017, 175(2): 874-885 [百度学术]
Yanai O, Shani E, Russ D, Ori N. Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal, 2011, 68(4): 571-582 [百度学术]
Cheng Y, Wang L, Abbas M, Huang X, Li Q. MicroRNA319-mediated gene regulatory network impacts leaf development and morphogenesis in poplar. Forestry Research, 2021, 1: 4 [百度学术]
李晓屿. Polycomb group在拟南芥叶缘发育中的生物学功能研究. 哈尔滨:东北林业大学, 2019 [百度学术]
Li X Y. The role of polycomb group in regulation of leaf margin development in Arabidopsis. Harbin:Northeast Forestry University, 2019 [百度学术]
Zhang X, Clarenz O, Cokus S, Bernatavichute Y V, Pellegrini M, Goodrich J, Jacobsen S E. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biology, 2007, 5(5): e129 [百度学术]
Lafos M, Kroll P, Hohenstatt M L, Thorpe F L, Clarenz O, Schubert D. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genetics, 2011, 7(4): e1002040 [百度学术]
Engelhorn J, Reimer J J, Leuz I, Gobel U, Huettel B, Farrona S, Turck F. DEVELOPMENT-RELATED PcG TARGET IN THE APEX 4 controls leaf margin architecture in Arabidopsis thaliana. Development, 2012, 139(14): 2566-2575 [百度学术]
Feng X, Li X, Yang X, Zhu P. Fine mapping and identification of the leaf shape gene BoFL in ornamental kale. Theoretical and Applied Genetics, 2020, 133(4): 1303-1312 [百度学术]
Feng X, Yang X, Zhong M, Li X, Zhu P. BoALG10, an alpha-1,2 glycosyltransferase, plays an essential role in maintaining leaf margin shape in ornamental kale. Horticulture Research, 2022, 9: uhac137 [百度学术]
Farid A, Pabst M, Schoberer J, Altmann F, Glössl J, Strasser R. Arabidopsis thaliana alpha1,2‐glucosyltransferase (ALG10) is required for efficient N‐glycosylation and leaf growth. The Plant Journal, 2011, 68(2): 314-325 [百度学术]
Nakayama H, Nakayama N, Seiki S, Kojima M, Sakakibara H, Sinha N, Kimura S. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American Lake Cress. The Plant Cell, 2015, 26(12): 4733-4748 [百度学术]
Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Current Biology, 2002, 12(18): 1557-1565 [百度学术]
Nakayama H, Kimura S. Leaves may function as temperature sensors in the heterophylly of Rorippa aquatica (Brassicaceae). Plant Signaling & Behavior, 2015, 10(12): e1091909 [百度学术]
Song K, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theoretical and Applied Genetics, 1995, 90(1): 1-10 [百度学术]
曾国平,曹寿椿. 不结球白菜主要经济性状遗传规律的研究Ⅰ、11个质量性状的遗传分析. 南京农业大学学报, 1996(3): 26-29 [百度学术]
Zeng G P, Cao S C. Genetic studies on some important characters of non-heading Chinese cabbage Ⅰ. genetic analysis of 11 qualitative traits. Journal of Nanjing Agricultural University, 1996(3): 26-29 [百度学术]
刘静. 萝卜败蕾的细胞形态学和小白菜裂叶性状分子标记研究. 杨凌:西北农林科技大学, 2008 [百度学术]
Liu J. Studies on the cytomorphology of abortion floral bud in radish and molecular marker for dehiscent leaf in no-heading Chinese cabbage. Yangling: Northwest Agriculture and Forestry Technology University, 2008 [百度学术]
富春元. 不结球白菜叶缘裂刻突变体的生理特性分析和基因精细定位. 杨凌:西北农林科技大学, 2014 [百度学术]
Fu C Y. Physiological characteristics and fine mapping of a lobed-leaf mutant in non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Yangling: Northwest Agriculture and Forestry Technology University, 2014 [百度学术]
仪泽会. 白菜SSR和InDel标记的开发及叶缘裂刻突变体的基因定位. 杨凌:西北农林科技大学, 2012 [百度学术]
Yi Z H. Developing SSR and InDel markers and mapping of lobed leaf mutant in non-heading Chinese cabbage. Yangling: Northwest Agriculture and Forestry Technology University, 2012 [百度学术]
王玉刚, 李萌, 吕晓雯, 张翠庭, 屈巍巍, 冯辉. 白菜叶裂数性状主基因+多基因遗传分析. 西北植物学报, 2012, 32(2): 252-256 [百度学术]
Wang Y G, Li M, Lü X W, Zhang C T, Qu W W, Feng H. Genetic analysis of leaf lobes in Brassica rapa using mixed major gene plus polygene model. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(2): 252-256 [百度学术]
鱼昭君. 白菜裂叶基因BrcLL1的克隆与功能初步分析. 杨凌:西北农林科技大学, 2016 [百度学术]
Yu Z J. Clone and preliminary functional analysis of a lobed-leaf gene BrcLL1 in Chinese cabbage (Brassica rapa ssp. chinensis). Yangling: Northwest Agriculture and Forestry Technology University, 2016 [百度学术]
Hu L, Zhang H, Yang Q, Meng Q, Han S, Nwafor C C, Khan M H U, Fan C, Zhou Y. Promoter variations in a homeobox gene, BnA10.LMI1, determine lobed leaves in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2018, 131(12): 2699-2708 [百度学术]
Ni X, Huang J, Ali B, Zhou W, Zhao J. Genetic analysis and fine mapping of the LOBED-LEAF 1 (BnLL1) gene in rapeseed (Brassica napus L.). Euphytica, 2015, 204(1): 29-38 [百度学术]
涂玉琴, 张洋, 辛佳佳, 涂伟凤, 汤洁, 戴兴临. 基于SLAF-seq技术鉴定甘蓝型油菜叶缘裂刻性状候选基因. 植物遗传资源学报, 2019, 20(2): 426-435 [百度学术]
Tu Y Q, Zhang Y, Xin J J, Tu W F, Tang J, Dai X L. Identification of candidate genes for lobed-leaf trait in Brassica napus L. by SLAF-seq method. Journal of Plant Genetic Resources, 2019, 20(2): 426-435 [百度学术]
Zhang B, Chen W, Li X, Ren W, Chen L, Han F, Fang Z, Yang L, Zhuang M, Lv H, Wang Y, Zhang Y. Map-based cloning and promoter variation analysis of the lobed leaf gene BoLMI1a in ornamental kale (Brassica oleracea L. var. acephala). BMC Plant Biology, 2021, 21(1):456 [百度学术]
Zhang Y, Xu A, Lang L, Wang Y, Liu X, Liang F, Zhang B, Qin M, Dalelhan J, Huang Z. Genetic mapping of a lobed-leaf gene associated with salt tolerance in Brassica napus L.. Plant Science, 2018, 269: 75-84 [百度学术]
文雁成, 鲁丽萍, 张书芬, 王建平, 朱家成, 何俊平, 赵磊, 曹金华. 利用十字花科种间杂交创造甘蓝型油菜种质资源的研究. 河南农业科学, 2014, 43(6): 30-34 [百度学术]
Wen Y C, Lu L P, Zhang S F, Wang J P, Zhu J C, He J P, Zhao L, Cao J H. Novel germplasm creation in Brassica napes by cruciferous interspecific hybridization. Journal of Henan Agricultural Sciences, 2014, 43(6): 30-34 [百度学术]
余晨, 袁贞贞, 沙爱华, 万正杰. 叶用芥菜叶缘裂刻性状的遗传与相关基因表达分析. 北方园艺, 2019(6): 12-17 [百度学术]
Yu C, Yuan Z Z, Sha A H, Wan Z J. Genetic and related gene expression analysis of leaf marginal traits in Brassica juncea. Northern Horticulture, 2019(6): 12-17 [百度学术]
袁焕然,潘江鹏,陈炯炯. 莴苣叶裂性状的遗传定位. 园艺学报, 2017, 44(8): 1496-1504 [百度学术]
Yuan H R, Pan J P, Chen J J. Genetic analysis and mapping of genes controlling lettuce lobed leaf. Acta Horticulturae Sinica, 2017, 44(8): 1496-1504 [百度学术]
Wei C, Chen X, Wang Z, Liu Q, Li H, Zhang Y, Ma J, Yang J, Zhang X. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS ONE, 2017, 12(7): e180741 [百度学术]
Gao X, Ning X, Wang Y, Wang X, Yan W, Zhang Z, Li G. Fine mapping of a gene that confers palmately lobed leaf (pll) in melon (Cucumis melo L.). Euphytica, 2014, 200(3): 337-347 [百度学术]
Andres R J, Bowman D T, Kaur B, Kuraparthy V. Mapping and genomic targeting of the major leaf shape gene (L) in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2014, 127(1): 167-177 [百度学术]
Andres R J, Coneva V, Frank M, Tuttle J R, Sang-Won H, Samayoa L F, Kaur B, Zhu L, Fang H, Bowman D T, Rojas-Pierce M, Haigler C H, Jones D C, Holland J B, Chitwood D H, Kuraparthy V. Modifications to a LATE MERISTEM IDENTITY-1 gene are responsible for the major leaf shapes of upland cotton (Gossypium hirsutum L.). Proceedings of the National Academy of Sciences, 2017, 114(1):E57-E66 [百度学术]
Jiao K, Li X, Guo W, Yuan X, Cui X, Chen X. Genome re-sequencing of two accessions and fine mapping the locus of lobed leaflet margins in mungbean. Molecular Breeding, 2016, 36(9): 1-12 [百度学术]
田世龙, 马庆, 王阳, 林昕, 杨蕴力, 葛梦妍, 顾宸瑞, 刘桂丰. 紫叶桦与裂叶桦杂交子代的种子活力及叶片性状分离. 林业科学研究, 2019, 32(3): 40-48 [百度学术]
Tian S L, Ma Q, Wang Y, Lin X, Yang Y L, Ge M Y, Gu C R, Liu G F. Segregation of seed vigor and leaf traits in hybrid progenies of Betula pendula 'Purple Rain' and Betula pendula 'Dplecprlicp'. Forest Research, 2019, 32(3): 40-48 [百度学术]
石璐, 吕小龙, 张明方. 植物叶缘形态研究进展. 分子植物育种, 2022,URL:http://kns.cnki.net/kcms/detail/46.1068.S.20220406.1707.008.html. [百度学术]
Shi L, Lü X L, Zhang M F. Advances in research on morphology of plant leaf edges. Molecular Plant Breeding, 2022,URL:http://kns.cnki.net/kcms/detail/46.1068.S.20220406.1707.008.html [百度学术]
朱彬彬, 陶良如, 孔德政. 果树的观赏利用价值及其应用分析. 中国果树, 2020(2): 117-121 [百度学术]
Zhu B B, Tao L R, Kong D Z. Analysis on ornamental value and application of fruit trees. China Fruits, 2020(2): 117-121 [百度学术]
Lambert P, Confolent C, Heurtevin L, Dlalah N, Signoret V, Quilot-Turion B, Pascal T. Insertion of a mMoshan transposable element in PpLMI1, is associated with the absence or globose phenotype of extrafloral nectaries in peach [Prunus persica (L.) Batsch.] .Horticulture Research, 2022, 9: uhab044 [百度学术]
Zeng R F, Fu L M, Deng L, Liu M F, Gan Z M, Zhou H, Hu S F, Hu C G, Zhang J Z. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. The Plant Journal, 2022, 110(3): 828-848 [百度学术]