摘要
冰草(Agropyron cristatum)作为小麦重要野生近缘植物之一,含有许多可以改良小麦的优异基因。小麦-冰草附加系含有一对完整的冰草染色体,是利用冰草P基因组优异基因的重要工具材料。由于冰草为多年生四倍体异交植物,其部分同源群的P染色体结构存在差别,从而使得同一部分同源群的小麦-冰草附加系材料在农艺性状中表现出不同。本研究通过细胞学鉴定、分子标记检测、农艺性状考察、抗病性鉴定等手段对3份小麦-冰草不同2P附加系的抽穗期、株型、穗部性状、籽粒性状、抗白粉病和叶锈病等主要特性进行了鉴定与分析。结果表明,小麦-冰草2P附加系II-9-3遗传稳定、株型紧凑、免疫叶锈病、高抗白粉病,可以用于小麦的株型改良和抗病育种。小麦-冰草2P附加系II-3-1b的株高降低效应明显、较早抽穗、免疫叶锈病,可用于小麦株高改良和抗叶锈病育种。小麦-冰草2P附加系II-23-72对叶锈病和白粉病流行小种近免疫,可用于抗病育种。3份2P附加系为小麦-冰草2P易位系、缺失系的创制提供了材料;不同2P附加系在株型、株高和抗病性等性状上表现不同的优异特性,不仅为在小麦改良中有效利用2P染色体优异基因提供了依据,并且为进一步对2P染色体优异基因的定位奠定了重要基础。
小麦野生近缘植物具有广泛的遗传多样性,是天然的外源基因库,含有丰产基因、优质基因、抗叶锈病、赤霉病等抗病和抗逆基
小麦异源二体附加系,既拥有小麦遗传基础,又含有外源优异基
冰草具有多年生异交习性,冰草P染色体组同源染色体的结构存在差
供试的3份小麦-冰草2P二体异源附加系II-9-3(2n=44)、II-3-1b(2n=44)、II-23-72(2n=44),均来自小麦(Fukuho)与冰草杂交和回交的后代,由中国农业科学院作物科学研究所资源中心小麦研究室原创。普通小麦Fukuhokomugi(简写Fukuho)、普通小麦中作9504和郑州5389也由该研究室保存和提供。
小麦根尖染色体制片参考Li
原位杂交技术参考Li
采用CTAB
引物名称 Primer name | 引物序列(5′-3′) Primer sequences(5′-3′) | 引物位置 Primer position | 退火温度(℃)Tm |
---|---|---|---|
Agc1846 |
F:ATGCATTTCTCCTG CCAGAC | 2PS | 59 |
R:GGACACTGGTGTT GATGTGC | |||
Agc54388 |
F:ATGCCCTACAGTC CTGCAAC | 2PS | 59 |
R:ATTTCACAGAAGC CGCTACG | |||
Agc32544 |
F:TTCGTCTTCGTCG GCAGACT | 2PL | 59 |
R:TGTCGCTGATCTC TCCAACG | |||
Agc11777 |
F:AGATCCAGGTGGT CTTTGGA | 2PL | 59 |
R:GCAGCATCAGTTC CCACTTT |
F:正向引物;R:反向引物
F:Forward primer;R:Reverse primer
2020‒2022年在中国农业科学院作物科学研究所北京和新乡试验基地播种小麦-冰草不同2P附加系和亲本Fukuho,3个重复,行长2.0 m,行距0.3 m,株距0.1 m。对分子标记鉴定含有2P染色体的植株进行农艺性状调查,包括分蘖夹角、株高、分蘖数、穗长、穗下茎、小穗数、穗粒数、小穗粒数、千粒重、粒长、粒宽等性状,考察方法参照《小麦种质资源描述规范和数据标准
白粉菌接种:将3份小麦-冰草2P附加系材料、普通小麦Fukuho、感病对照中作9504的种子播种于白色塑料盆中,每份材料15~20粒种子。待第一片叶完全展开时,采用抖接法接种白粉菌流行生理小种E2
叶锈菌接种:参考Liu
调查表明,3份附加系材料的抽穗期时间不同,II-3-1b从播种到抽穗期共167 d左右,II-9-3和II-23-72共173 d左右,Fukuho共170 d左右。这表明附加系II-9-3和II-23-72推迟抽穗约3 d,附加系II-3-1b提前抽穗约3 d。
对两年(2020‒2021年、2021‒2022年)两地(北京、新乡)的考种数据进行分析,多重比较结果表明(
株系 Strain | 年份 Year | 株高(cm) Plant height | 分蘖数 Tillering number | 穗长(cm) Spike length | 小穗数 Spikelet number per spike | 小穗粒数 Kernel number per spikelet | 穗粒数 Kernel number per spike | 穗下茎(cm) Stems long ears | 千粒重(g) 1000-kernel weight | 粒长(mm) Grain length | 粒宽(mm) Grain width |
---|---|---|---|---|---|---|---|---|---|---|---|
II-9-3 | 2020‒2021 | 80.43±4.19b | 10.75±2.12a | 8.21±0.76c | 19.88±1.13ab | 3.75±0.89a | 57.00±3.03b | 18.58±3.68b | 28.77±0.96b | 6.05±0.25b | 2.61±0.03b |
2021‒2022 | 79.05±2.91b | 10.90±3.08a | 7.73±1.12c | 19.92±1.41ab | 4.12±0.82a | 49.83±3.64b | 18.63±3.69b | 27.55±2.49b | 5.99±0.15b | 2.64±0.13b | |
II-3-1b | 2020‒2021 | 66.62±2.79c | 14.30±1.95a | 8.35±0.68c | 18.60±1.17b | 3.90±0.32a | 41.00±3.20c | 19.83±1.09b | 27.12±1.14b | 5.91±0.23b | 2.61±0.07b |
2021‒2022 | 65.44±3.06c | 15.57±2.99a | 7.83±0.88c | 18.71±1.11b | 4.43±6.02a | 34.71±2.97c | 19.89±1.06b | 24.74±1.53b | 5.92±0.11b | 2.59±0.15b | |
II-23-72 | 2020‒2021 | 83.27±2.51b | 13.33±2.06a | 10.41±0.87b | 20.67±0.87a | 4.67±0.50a | 69.00±3.74a | 25.47±1.49a | 18.45±1.44c | 5.10±0.26c | 2.48±0.09c |
2021‒2022 | 81.94±1.96b | 12.70±2.57a | 8.59±1.38b | 20.80±1.28a | 3.85±0.99a | 64.25±3.82a | 25.75±3.44a | 18.33±3.36c | 5.55±0.31c | 2.42±0.12c | |
Fukuho | 2020‒2021 | 93.22±1.72a | 13.40±1.67a | 12.06±0.94a | 20.60±0.89a | 4.00±0.71a | 71.83±3.13a | 16.64±2.70b | 31.30±0.90a | 6.54±0.21a | 2.78±0.01a |
2021‒2022 | 93.63±1.49a | 12.70±3.82a | 11.78±0.69a | 20.67±1.03a | 4.50±0.55a | 68.33±2.58a | 16.80±2.49b | 31.02±1.70a | 6.45±0.14a | 2.79±0.07a |
同一行中不同字母表示不同材料间差异显著(P<0.05);下同
Different letters in the same line indicate significant differences between different materials(P<0.05);The same as below
株系 Strain | 年份 Year | 株高(cm) Plant height | 分蘖数 Tillering number | 穗长(cm) Spike length | 小穗数 Spikelet number per spike | 小穗粒数 Kernel number per spikelet | 穗粒数 Kernel number per spike | 穗下茎(cm) Stems long ears | 千粒重(g) 1000-kernel weight | 粒长(mm) Grain length | 粒宽(mm) Grain width |
---|---|---|---|---|---|---|---|---|---|---|---|
II-9-3 | 2020‒2021 | 79.06±3.00b | 10.56±1.63a | 7.88±0.67c | 19.94±1.44ab | 3.81±0.66a | 49.83±3.71b | 18.66±4.39b | 24.33±1.88b | 5.89±0.24b | 2.65±0.09b |
2021‒2022 | 79.83±2.66b | 10.92±1.62a | 7.88±0.57c | 19.92±1.00ab | 3.92±0.29a | 53.75±3.05b | 18.58±1.97b | 28.92±1.44b | 6.08±0.16b | 2.65±0.09b | |
II-3-1b | 2020‒2021 | 65.60±2.24c | 15.83±1.47a | 7.87±1.66c | 18.83±1.47b | 3.83±0.75a | 33.80±3.27c | 19.85±2.70b | 23.93±2.66b | 5.84±0.32b | 2.64±0.08b |
2021‒2022 | 67.67±3.04c | 15.33±1.87a | 8.26±0.60c | 18.78±1.09b | 3.89±0.60a | 37.44±2.74c | 19.92±2.50b | 27.38±1.82b | 6.02±0.16b | 2.64±0.06b | |
II-23-72 | 2020‒2021 | 81.75±3.04b | 12.50±1.87a | 9.00±1.12b | 20.83±1.17a | 4.33±0.82a | 70.50±2.81a | 25.62±3.02a | 17.79±3.08c | 5.13±0.32c | 2.40±0.13c |
2021‒2022 | 82.00±3.04b | 13.78±1.09a | 9.36±0.92b | 20.78±0.83a | 3.89±0.78a | 65.11±2.80a | 25.80±3.22a | 18.92±4.24c | 5.31±0.12c | 2.44±0.10c | |
Fukuho | 2020‒2021 | 93.48±3.62a | 12.40±2.22a | 10.55±0.90a | 20.70±0.82a | 4.20±0.63a | 71.90±2.96a | 16.67±2.94b | 30.52±6.47a | 6.26±0.27a | 2.94±0.27a |
2021‒2022 | 94.80±3.15a | 12.60±2.46a | 10.91±0.85a | 20.50±0.97a | 4.30±0.48a | 68.40±2.76a | 16.80±2.91b | 32.10±2.49a | 6.36±0.25a | 2.86±0.13a |

图1 2020-2022年小麦-冰草不同2P附加系主要农艺性状分析
Fig.1 Analysis of main agronomic characters of different 2P addition lines in 2020-2022
图中X轴1、2、3、4分别代表2020-2021年北京、2021‒2022年北京、2020‒2021年新乡和2021‒2022年新乡。图中误差线以标准差表示,不同字母表示不同材料间差异显著(P<0.05)
In the figure, the X axis 1, 2, 3 and 4 represent 2020‒2021 Beijing, 2021-2022 Beijing, 2020‒2021 Xinxiang and 2021‒2022 Xinxiang respectively.The error line in the figure is represented by standard deviation, and different letters indicate significant differences among different materials (P<0.05)

图2 小麦-冰草2P附加系的GISH、植株、穗及籽粒图
Fig.2 GISH patterns, plants, ears and grains of 2P additional lines
A1、A2、A3分别为附加系II-9-3、II-3-1b、II-23-72根尖细胞染色体GISH图(标尺=10µm);B:小麦-冰草2P附加系的植株形态图,从左到右依次为Fukuho、II-9-3、II-3-1b、II-23-72;C1、C2分别为小麦-冰草2P附加系的穗子正面图和侧面图, 顺序同B;D1、D2、D3、D4:分别为II-9-3、II-3-1b、II-23-72、Fukuho的籽粒图
A1, A2, A3 were addition lines II-9-3, II-3-1b, and II-23-72 root tip cell chromosome GISH maps (Scale bar=10µm), respectively. B: Plant morphology of wheat-A. cristatum 2P addition line, from left to right are Fukuho, II-9-3, II-3-1b, II-23-72; C1 and C2 are the front and side images of the fringe of 2P addition line respectively, the same order as B. D1, D2, D3, D4: The grain plots of II-9-3, II-3-1b, II-23-72 and Fukuho, respectively
从
3份附加系材料的穗部性状考种数据分析结果表明(
附加系II-9-3、II-23-72与Fukuho的小穗数无显著差异,但II-3-1b的小穗数显著低于Fukuho(
3份附加系材料在千粒重、粒长、粒宽和粒色存在差异(
3份附加系材料苗期接种白粉菌流行生理小种E20,经抗性调查显示,附加系II-9-3对E20表现为高抗,附加系II-23-72对E20表现为近免疫,附加系II-3-1b对E20表现为高感(
材料 Material | 抗病性 Disease resistance | 反应型 Reaction type |
---|---|---|
中作9504 Zhongzuo9504 | 高感 | 4 |
Fukuho | 高感 | 4 |
II-9-3 | 高抗 | 2 |
II-3-1b | 高感 | 4 |
II-23-72 | 近免疫 | 0; |

图3 小麦-冰草2P附加系苗期白粉病(左)和叶锈病(右)接种鉴定
Fig.3 Identification of powdery mildew(left) and leaf rust(right) at seedling stage of 2P additional lines
选取冰草2P染色体长短臂上的4个特异STS标记,对田间种植的3份附加系材料中含有2P染色体的情况进行连续追踪和GISH确认(

图4 部分小麦-冰草2P附加系后代材料STS标记图
Fig.4 STS marker map of some 2P addition lines
M:Maker;1:冰草Z559;2:Fukuho;3~12:II-9-3自交后代材料;13~22:II-23-72自交后代材料;23~32:II-9-1b自交后代材料
M:Maker ; 1:Z559 ; 2:Fukuho ; 3-12 : II-9-3 selfing progeny materials ; 13-22:II-23-72 selfing progeny material ; 23-32:II-9-1b selfing progeny materials
小麦近缘种中有些物种是多倍体,其部分同源染色体之间高度相似,所以远源杂交产生异附加系时人们主要关注部分同源染色体中一对染色体的作
本研究所用材料均是普通小麦Fukuho与四倍体冰草Z559杂交和回交后获得的小麦-冰草2P异源二体附加系。这3份附加系材料的农艺性状表现既有差别也存在共性。在株高和株型方面,附加系II-3-1b显著低于其他2份材料,附加系II-9-3株型更紧凑;附加系II-23-72的穗粒数和穗下茎显著高于其他2份材料;抽穗期方面,附加系II-9-3和II-23-72推迟约3 d抽穗,而II-3-1b提前约3 d抽穗;在千粒重、粒长、粒宽和稳定性方面,附加系II-9-3的表现更加优异,并且能够稳定遗传;附加系II-9-3和II-23-72对白粉病有抗性。3份附加系材料在分蘖和小穗粒数方面没有显著差异,且均对叶锈病有近免疫的抗性。不同附加系的特性差异显示了不同2P染色体的结构存在一定的遗传分化,同时拓宽了遗传基础,更有利于后续对优异基因的挖掘。
在小麦中导入外源染色体后,部分外源染色体会对小麦的农艺性状产生影响,且不良影响居
白粉病和叶锈病均为小麦主要病害,由于栽培品种遗传基础狭窄,气候异常变化和病原菌生理小种的不断变异,使得栽培品种对病害的抗性会逐渐丧失。小麦近缘属中含有丰富的抗病基
参考文献
张洁, 蒋云, 郭元林, 王颖, 邓光兵, 宣朴, 龙海. 普通小麦川麦60-簇毛麦3V(3D)代换系的分子细胞学鉴定. 麦类作物学报, 2022, 42(2): 139-146 [百度学术]
Zhang J, Jiang Y, Guo Y L, Wang Y, Deng G B, Xuan P, Long H. Molecelar and cytological identification of common wheat Chuanmai 60-Dasypyrumvillosum 3V(3D) substitution line. Journal of Triticeae Crops, 2022, 42(2): 139-146 [百度学术]
Bai S S, Zhang H B, Han J, Wu J H, Li J C, Geng X X, Lü B Y, Xie S F, Han D J, Zhao J X, Yang Q H, Wu J, Chen X H. Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148. Journal of Integrative Agriculture, 2021, 20(12): 3101-3113 [百度学术]
李立会, 杨欣明, 李秀全, 董玉琛. 中国小麦野生近缘植物的研究与利用. 中国农业科技导报, 2000(6): 73-76 [百度学术]
Li L H, Yang X M, Li X Q, Dong Y C. Study and utilization of wild relatives of wheat in China. China Agricultural Science and Technology Review, 2000(6): 73-76 [百度学术]
孙洋洋, 陈红新, 刘伟华, 韩海明, 周升辉, 杨欣明, 李秀全, 张锦鹏, 李立会. 小麦—冰草T7PL·7AL罗伯逊易位系的分子细胞学鉴定. 植物遗传资源学报, 2018, 19(6): 1038-1044 [百度学术]
Sun Y Y, Chen H X, Liu W H, Han H M, Zhou S H, Yang X M, Li X Q, Zhang J P, Li L H. Cytological identification of wheat-A.cristatum T7PL. 7AL Robertsonian translocation Line. Journal of Plant Genetic Resources, 2018, 19(6): 1038-1044 [百度学术]
Ochoa V, Madrid E, Said M, Rubiales A, Cabrere A. Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica, 2015,201: 89-95 [百度学术]
Ezatollah F, Rahmani S, Jowkar M, Shabani A. Estimation of genetic parameters and chromosomal localization of QTLs controlling agro-physiological indicators of drought tolerance in agropyron using wheat-agropyron disomic addition lines. Australian Journal of Crop Science, 2014, 8: 133-139 [百度学术]
韩冉, 刁瑞宁, 梁海凡, 訾妍, 汪晓璐. 小麦遗传改良中的重要基因源——冰草. 山东农业科学, 2019, 51(8): 1-9 [百度学术]
Han R, Diao R N, Liang H F, Xi Y, Wang X L. Important gene source for wheat genetic improvement-Agropyron cristatum. Shandong Agricultural Sciences, 2019, 51(8): 1-9 [百度学术]
王峰, 丁云花, 李成琼, 简元才. 植物异源附加系研究进展. 北方园艺, 2012 (19):195-199 [百度学术]
Wang F, Ding Y H, Li C Q, Jian Y C. Research progress in alien plant additional lines. Northern Horticulture, 2012 (19):195-199 [百度学术]
陈士强, 黄泽峰, 张勇, 葛江燕, 朱雪, 高勇, 陈建民. 中国春背景下长穗偃麦草抗赤霉病相关基因的染色体定位. 麦类作物学报, 2012, 32(5): 839-845 [百度学术]
Chen S Q, Huang Z F, Zhang Y, Ge J Y, Zhu X, Gao Y, Chen J M. Chromosomal location of the genes associated with FHB resistance of Lophopyrum elongatum in Chinese Spring background. Journal of Triticeae Crops, 2012, 32(5): 839-845 [百度学术]
赵继新, 武军, 程雪妮, 董剑, 陈新宏, 刘淑会, 杜万里, 庞玉辉, 杨群慧, 吉万全, 傅杰. 普通小麦-华山新麦草1Ns二体异附加系的农艺性状和品质. 作物学报, 2010, 36(9): 1610-1614 [百度学术]
Zhao J X, Wu J, Cheng X N, Dong J, Chen X H, Liu S H, Du W L, Pang Y H, Yang Q H, Ji W Q, Fu J. Agronomic and quality traits of a wheat-Psathyrostachys huashanica 1Ns disomic addition line. Acta Agrinomica Sinica, 2010, 36(9): 1610-1614 [百度学术]
Yang W J, Wang C Y, Chen C H, Wang Y J, Zhang H, Liu X L, Ji W Q. Molecular cytogenetic identification of a wheat-rye 1R addition line with multiple spikelets and resistance to powdery mildew. Genome, 2016,59: 277-288 [百度学术]
郑瑗, 李欣, 贾举庆, 郭慧娟, 雷梦林, 张树伟, 常利芳, 畅志坚, 乔麟轶, 陈芳, 张晓军. 抗条锈病小偃麦附加系CH366的FISH鉴定. 山西农业科学, 2021, 49(3): 278-280,284 [百度学术]
Zheng Y, Li X, Jia J Q, Guo H J, Lei M L, Zhang S W, Chang L F, Chang Z J, Qiao L Y, Chen F, Zhang X J. FISH identification of wheat-Thinopyrum intermedium addition line CH366 with resistance to stripe rust. Journal of Shanxi Agricultural Sciences, 2021, 49(3): 278-280,284 [百度学术]
宋全昊, 金艳, 宋佳静, 陈杰, 赵立尚, 白冬, 陈亮, 朱统泉. 61份小麦异源附加系种质的表型多样性分析. 江苏农业科学, 2022, 50(16): 79-86 [百度学术]
Song Q H, Jin Y, Song J J, Chen J, Zhao L S, Bai D, Chen L, Zhu T Q. Phenotypic diversity analysis of 61 wheat addition lines germplasm resources. Jiangsu Agricultural Sciences, 2022, 50(16): 79-86 [百度学术]
Han H M, Liu W H, Zhang J P, Zhou S H, Yang X M, Li X Q, Li L H. Identification of P genome chromosomes in Agropyron cristatum and wheat-A. cristatum derivative lines by FISH. Scientific Reports, 2019,9: 9712 [百度学术]
Luan Y, Wang X G, Liu W H, Li C Y, Zhang J P, Gao A N, Wang Y D, Yang X M, Li L H. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta, 2010,232:501-510 [百度学术]
Han H M, Li B, Su J J, Zhang J P, Song L Q, Gao A N, Yang X M, Li X Q, Liu W H, Li L H. Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. Public Library of Science, 2014, 9: e91066 [百度学术]
Li Q F, Lu Y Q, Pan C L, Zhang J P, Liu W H, Yang X M, Li X Q, Xi Y J, Li L H. Characterization of a novel wheat-Agropyron cristatum 2P disomic addition line with powdery mildew resistance. Crop Science, 2016,56: 2390-2400 [百度学术]
Chen H X, Han H M, Li Q F, Zhang J P, Lu Y Q, Yang X M, Li X Q, Liu W H, Li L H. Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat. Journal of Integrative Agriculture, 2018,17: 1697-1705 [百度学术]
Pan C L, Li Q F, Lu Y Q, Zhang J P, Yang X M, Li X Q, Li L H, Liu W H. Chromosomal localization of genes conferring desirable agronomic traits from Agropyron cristatum chromosome 1P. Public Library of Science, 2017,12: e0175265 [百度学术]
Li H H, Lv M J, Song L Q, Zhang J P, Gao A N, Li L H, Liu W H. Production and identification of wheat-Agropyron cristatum 2P translocation lines. Public Library of Science, 2016,11: e0145928 [百度学术]
Li H H, Jiang B, Wang J C, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li L H. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theoretical and Applied Genetics, 2017,130: 109-121 [百度学术]
李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9): 14-16 [百度学术]
Li R H, Yan Y S, Liu S X, Sun L L, Guo P G, Miao S Y, Chen J H. CTAB-improved method of DNA extraction in plant. Laboratory Research and Exploration, 2009, 28(9): 14-16 [百度学术]
Zhang J P, Liu W H, Lu Y Q, Yang X M, Li X Q, Li L H. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences. Scientific Reports, 2017,7: 11942 [百度学术]
李立会,李秀全,杨欣明. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 2-3 [百度学术]
Li L H, Li X Q, Yang X M. Descriptive specifications and data standards for wheat germplasm resources. Beijing: China Agriculture Press, 2006: 2-3 [百度学术]
Zhao D H, Li Yang, Xu K J, Cao S H, Tian Y B, Yan J, He Z H, Xia X C, Song X Y, Zhang Y. Identification and validation of genetic loci for tiller angle in bread wheat. Theoretical and Applied Genetics, 2020,133: 3037-3047 [百度学术]
马超, 董振杰, 田修斌, 王贝麟, 张玥琦, 李欢欢, 刘文轩. 来自西尔斯山羊草的抗小麦白粉病基因Pm57抗性丧失突变体的筛选与鉴定. 植物遗传资源学报, 2020, 21(2): 386-393 [百度学术]
Ma C, Dong Z J, Tian X B, Wang B L, Zhang Y Q, Li H H, Liu W X. Screening and identification of Pm57 mutants with loss of resistance to powdery mildew derived from Aegilops searsii. Journal of Plant Genetic Resources, 2020, 21(2): 386-393 [百度学术]
盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988(1): 49 [百度学术]
Sheng B Q. Record wheat powdery mildew at seedling stage by reactive type. Plant protection, 1988(1): 49 [百度学术]
Liu T G, Chen W Q. Race and virulence dynamics of Puccinia triticina in China during 2000-2006. Plant Disease, 2012, 96(11): 1601-1607 [百度学术]
Roefls A P. Race specificity and methods of study. The Cereal Rust, 1985,1: 131-164 [百度学术]
张德时, 王斯文, 王长有, 王艳珍, 陈春环, 吉万全, 张宏. 小麦-华山新麦草异附加系的细胞遗传学和分子标记辅助鉴定.麦类作物学报, 2020, 40(1): 12-20 [百度学术]
Zhang D S, Wang S W, Wang C Y, Wang Y Z, Chen C H, Ji W Q, Zhang H. Cytogenetics and marker assisted identification of wheat-Psathyrostachys huashanica alien addition lines. Journal of Triticeae Crops, 2020, 40(1): 12-20 [百度学术]
程舒唯, 王惠, 赵心宇, 于晓宁, 高岐玉, 宋维富, 杨雪峰, 宋庆杰, 丁佳蕊, 张会新, 张延明. 小偃麦的创制及应用研究进展. 植物遗传资源学报, 2023, 24(1): 86-101 [百度学术]
Chen S W, Wang H, Zhao X Y, Yu X N, Gao Q Y, Song W F, Yang X F, Song Q J, Ding J R, Zhang H X, Zhang Y M. Progress on the development and application of trititrigia in wheat. Journal of Plant Genetic Resources, 2023, 24(1): 86-101 [百度学术]
吕博雅, 张珍悦, 赵李, 李晓萍, 李家创, 白宇皓, 刁慧珊, 刘洋, 杨群慧, 刘淑会, 武军, 陈新宏. 华山新麦草2Ns染色体SCAR标记的开发. 麦类作物学报, 2022, 42(5): 539-545 [百度学术]
Lü B Y, Zhang Z Y, Zhao L, Li X P, Li J C, Bai Y H, Diao H S, Liu Y, Yang Q H, Liu S H, Wu J, Chen X H. Development of a new SCAR marker on chromosome 2Ns of Psathyrostachys huashanica keng. Journal of Triticeae Crops, 2022, 42(5): 539-545 [百度学术]
于军伟, 王斯文, 姚广平, 赵继新, 陈春环, 吉万全, 王长有. 抗条锈病普通小麦-中间偃麦草7St二体异附加系的分子细胞遗传学鉴定. 麦类作物学报, 2021, 41(10): 1189-1196 [百度学术]
Yu J W, Wang S W, Yao G P, Zhao J X, Chen C H, Ji W Q, Wang C Y. Molecular cytogenetic identification of wheat-Thinopyrum intermedium 7St disomic alien addition line conferring stripe rust resistance. Journal of Triticeae Crops, 2021, 41(10): 1189-1196 [百度学术]
李立会, 董玉琛. 冰草属研究进展. 遗传, 1993, 15(1): 45-48 [百度学术]
Li L H, Dong Y C. Progress in studies of Agropyron Gaertn. Genetic, 1993, 15(1): 45-48 [百度学术]
刘成, 韩冉, 汪晓璐, 宫文萍, 程敦公, 曹新有, 刘爱峰, 李豪圣, 刘建军. 小麦远缘杂交现状、抗病基因转移及利用研究进展. 中国农业科学, 2020, 53(7): 1287-1308 [百度学术]
Liu C, Han R, Wang X L, Gong W P, Cheng D G, Cao X Y, Liu A F, Li H S, Liu J J. Research progress of wheat wild hybridization, disease resistance genes transfer and utilization. Scientia Agricultural Sinica, 2020, 53(7): 1287-1308 [百度学术]
杨兆生, 许红霞, 梁文科. 小麦超高产紧凑型新品种的选育. 麦类作物学报, 1996, 16(2): 17-18 [百度学术]
Yang Z S, Xu H X, Liang W K. Selection and breeding of new compact wheat varieties with super high yield. Journal of Triticeae Crops, 1996, 16(2): 17-18 [百度学术]
Kowalski A M, Gooding M, Ferrante A, Slafer S, Orford S, Gasperini D, Griffiths S. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Research, 2016,191: 150-160 [百度学术]
Divashuk M G, Vasil′ev A V, Bespalova L A, Karlov G I. Identity of the Rht-11 and Rht-B1e reduced plant height genes. Russian Journal of Genetics, 2012, 48(7): 761-763 [百度学术]
Goudia B D, Liang C, Hu Y G. Agronomic traits affected by dwarfing gene Rht-5 in common wheat (Triticum aestivum L.). Australian Journal of Crop Science, 2013, 7(9): 1270-1276 [百度学术]
刘畅, 李仕金, 王轲, 叶兴国, 林志珊. 簇毛麦6VS特异转录序列P21461及P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用. 作物学报, 2017, 43(7): 983-992 [百度学术]
Liu C, Li S J, Wang K, Ye X G,Lin Z S. Developing of specific transcription squences P21461 and P33259 on dasypyrum villosum 6VS and application of molecular markers in identifying wheat-D.villosum breeding materials with powdery mildew resistance. Acta Agrinomica Sinica, 2017, 43(7): 983-992 [百度学术]
Fang Z W, Sun C, Lu T, Xu Z, Huang W D, Ma D F, Yin J L. Molecular mapping of stripe rust resistance gene YrH922 in a derivative of wheat(Triticum aestivum)-Psathyrostachys huashanica. Crop and Pasture Science, 2019, 70(11): 939-945 [百度学术]
闫红飞, 杨文香, 褚栋, 刘大群. 小麦抗叶锈基因Lr38的一个新标记. 中国农业科学, 2008(11): 3604-3609 [百度学术]
Yan H F, Yang W X, Chu D, Liu D Q. A New marker tagged to the leaf rust resistance gene Lr38. Scientia Agricultura Sinica, 2008(11): 3604-3609 [百度学术]
魏学军, 张海涛, 张娜, 胡亚亚, 谢欢, 赵丽娟, 杨文香. 粗山羊草苗期抗叶锈性离体鉴定及抗叶锈基因推导. 麦类作物学报, 2013, 33(5): 907-911 [百度学术]
Wei X J, Zhang H T, Zhang N, Hu Y Y,Xin H, Zhao L J, Yang W X. Surveying resistance to wheat leaf rust and postulation of resistant genes by detached leaves in Aegilops tauschii. Journal of Triticeae Crops, 2013, 33(5): 907-911 [百度学术]
王佳荣, 董瑞, 张梦宇, 高璞, 张培培, 李在峰, 刘大群. 40份CIMMYT小麦品系苗期及成株抗叶锈病基因鉴定.华北农学报, 2022, 37(2): 201-210 [百度学术]
Wang J R, Dong R, Zhang M Y, Gao P, Zhang P P, Li Z F, Liu D Q. Identification of leaf rust resistance genes in 40 CIMMYT wheat lines at seeding stage and adult plant. Acta Agriculturae Boreali-sinica, 2022, 37(2): 201-210 [百度学术]