摘要
小麦籽粒大小和形态是决定产量的主要因素之一,挖掘籽粒大小和形态性状的关联位点,筛选相关候选基因对于提高小麦产量具有重要意义。本研究以国内外具有代表性的300份冬小麦自然群体为研究材料,对千粒重、粒长、粒宽、粒厚、籽粒长宽比、籽粒面积、籽粒周长、籽粒形状和籽粒饱满度等9个籽粒性状进行表型鉴定,利用小麦90 K SNP芯片进行基因型采集,通过混合线性模型(MLM+Q+K)对籽粒大小和形态性状进行全基因组关联分析。研究结果表明,小麦籽粒大小和形态性状表现出丰富的表型变异,变异系数范围3.80%~26.06%,广义遗传力在56.25%~91.98%之间。通过GWAS检测出66个与籽粒大小和形态相关的稳定关联位点(P≤0.001),分布在除3D、4D、5D外的18条染色体上,可解释3.74%~14.34%的表型变异。检测到37个与两个及以上籽粒性状关联的一因多效位点,其中3B染色体的BS00022512_51标记同时与4个籽粒性状(粒长、粒宽、粒厚和籽粒长宽比)关联,具有最大的表型贡献率(7.06%~14.34%),6D染色体的wsnp_Ex_c4480_8055475标记同时与除粒厚、籽粒形状和籽粒饱满度以外的6个籽粒性状关联,表型贡献率为3.81%~8.25%。将BS00022512_51和wsnp_Ex_c4480_8055475标记进行单倍型分析,发现位于6D染色体上的wsnp_Ex_c4480_8055475位点存在GC-Hap1、AT-Hap2和AC-Hap3三种单倍型,单倍型GC-Hap1为籽粒较大的高千粒重单倍型。3种单倍型的整体分布频率分别为65.58%、32.25%和2.17%,单倍型GC-Hap1在中国4个冬麦区品种(系)中被大量选育。对37个一因多效位点进行发掘,筛选到9个籽粒大小和形态性状相关的候选基因。
小麦(Triticum aestivum L.)是全球分布最广的粮食作物之一,以蛋白质含量高、口感好、品质优良著
标记辅助选择(MAS, marker-assisted selection)能从分子水平上快速准确地分析个体的遗传组成,其有效性取决于可用基因的数目和标记-性状的关联程
虽然已经报道了一些小麦籽粒大小和形态相关的QTL,但鉴于小麦基因组的规模庞大(约17 G)及复杂性,对籽粒大小和形态相关性状的分子调控机制的研究还是非常有限的,还需要进一步挖掘其调控基因及进行标记鉴定。本研究以国内外300份小麦品种(系)为研究材料,对小麦籽粒大小和形态相关性状进行全基因组关联分析,挖掘影响小麦籽粒大小和形态的稳定QTL位点,将挖掘到的与多性状显著关联的稳定主效QTL位点进行二次挖掘,寻找对籽粒性状有利的单倍型,并分析影响籽粒性状的单倍型在不同生态区的分布规律,同时根据基因注释筛选潜在候选基因,以期为小麦籽粒大小和形态的遗传改良和标记辅助选择提供理论依据。
用于关联分析的试验材料为300份冬小麦品种(系)组成的自然群体。该群体包含65份国外引进品种(系),121份黄淮冬麦区的品种(系),51份北部冬麦区的品种(系),41份长江中下游冬麦区品种(系)和22份西南冬麦区品种(系),均具有较好的代表性。上述试验材料由中国农业科学院作物科学研究所小麦品质课题组夏先春研究员惠赠,所有材料均于2018-2019年和2019-2020年连续两个年度种植于新疆农业科学院玛纳斯综合试验站(44°17′N,86°15′E,海拔400 m),两个环境分别记为E1和E2。田间试验采用随机区组设计,设置3次重复,3行种植,行长2.0 m,行间距20.0 cm,播种量525万粒/h
小麦成熟时各品种(系)随机选择30个代表性穗进行人工脱粒,使用万深SC-G自动考种分析仪检测千粒重、粒长、粒宽、籽粒长宽比、籽粒面积和籽粒周长,每份材料选择不少于500粒;使用数显游标卡尺(精读为0.02 mm)测量粒厚。
参照《小麦种质资源描述规范和数据标准
采用Excel 2019、IBM SPSS Statistics 20和Origin 2021软件对千粒重、粒长、粒宽、粒厚、籽粒面积、籽粒周长、籽粒长宽比、籽粒形状和籽粒饱满度9个小麦籽粒大小和形态相关性状进行统计分析和相关性分析。采用QTL IciMapping v4.1软件中的ANOVA功能进行遗传力的估算。
采用小麦90 K SNP芯片对300份冬小麦品种(系)进行基因型测定,90 K SNP芯片由Illumina公司开发,包含81587个SNP标记。课题组前期完成300份品种(系)的数据质量控制,将杂合基因型作为缺失数据、过滤掉缺失率大于20%的标记,并去除最小等位基因频率(MAF, minor allele frequency)小于5%的标记,最后保留16710个高质量SNP标记用于进行全基因组关联分析。以
采用Power Maker V3.25软件计算多态性信息量(PIC,polymorphic information content
基于筛选获得的高质量SNP标记,对300份小麦品种(系)的籽粒大小和形态相关性状在每个环境下的均值及BLUE值进行GWAS。为避免亲缘关系和群体结构造成假阳性,采用TASSEL v5.0软件中的混合线性模型(MLM, mixed linear model)进行关联分析。以-log10(p)=3作为SNP标记与目标性状关联结果的显著性阈值,将至少在两个环境中检测到与单个籽粒性状显著关联的位点视为稳定位点,将染色体组平均LD衰减距离内位点视为一因多效位点。GWAS结果基于R v4.2.0中的CMplot程序包绘制,曼哈顿图(Manhattan plot)展示标记的分布情况,Q-Q图(Quantile-quantile plot)用于评估关联分析结果的准确性。
利用Haploview v4.2软件对表型贡献率大于8%,且同时与4个及以上籽粒性状显著关联的SNP位点进行单倍型分析,通过在线网站HIPLOT(https://hiplot-academic.com/)对籽粒表型值进行小提琴图绘制,剔除SNP杂合的材料。将检测到与多个籽粒性状关联的SNP序列作为探针,在小麦基因组数据库(IWGSC, CS RefSeq v2.1,https://www.wheatgenome.org/)、NCBI(http://www.ncbi.nlm.nih.gov/)及ENA(https://www.ebi.ac.uk/ena)等数据库中检索比对,确定候选基因并对其进行功能注释。
通过对小麦籽粒大小和形态性状的表型数据分析(
性状Traits | 环境Environment | 变异范围Range | 均值±标准差Mean±SD | 偏度Ske. | 峰度Kur. | 变异系数(%)CV | 广义遗传力(%) |
---|---|---|---|---|---|---|---|
千粒重(g) TKG | E1 | 24.71~53.84 | 42.40±4.58 | -0.38 | 0.40 | 10.81 | 84.75 |
E2 | 26.54~57.49 | 43.64±4.54 | -0.46 | 0.73 | 10.41 | ||
BLUE | 25.58~53.11 | 42.97±4.27 | -0.60 | 0.73 | 9.95 | ||
粒长(mm) GL | E1 | 5.60~7.52 | 6.63±0.29 | 0.07 | 0.38 | 4.39 | 91.98 |
E2 | 5.23~7.11 | 6.30±0.29 | -0.03 | 0.69 | 4.62 | ||
BLUE | 5.47~7.20 | 6.47±0.28 | -0.02 | 0.50 | 4.35 | ||
粒宽(mm) GW | E1 | 2.90~3.79 | 3.47±0.16 | -0.64 | 0.39 | 4.54 | 86.40 |
E2 | 2.82~3.76 | 3.36±0.15 | -0.56 | 0.77 | 4.45 | ||
BLUE | 2.86~3.71 | 3.42±0.14 | -0.76 | 0.83 | 4.21 | ||
粒厚(mm) GT | E1 | 2.62~3.68 | 3.13±0.16 | -0.20 | 0.59 | 5.12 | 75.69 |
E2 | 2.64~3.68 | 3.12±0.16 | -0.12 | 0.86 | 5.09 | ||
BLUE | 2.65~3.52 | 3.12±0.14 | -0.36 | 0.37 | 4.50 | ||
籽粒面积(m GA | E1 | 12.53~21.14 | 17.89±1.29 | -0.35 | 0.67 | 7.23 | 84.74 |
E2 | 11.51~23.49 | 16.41±1.35 | 0.56 | 3.89 | 8.20 | ||
BLUE | 12.14~21.38 | 17.15±1.22 | -0.17 | 1.49 | 7.12 | ||
籽粒周长(mm) GC | E1 | 14.73~19.44 | 17.55±0.68 | -0.19 | 0.83 | 3.86 | 87.55 |
E2 | 14.25~20.36 | 17.04±0.73 | 0.08 | 2.16 | 4.28 | ||
BLUE | 14.55~19.33 | 17.29±0.66 | -0.23 | 1.29 | 3.80 | ||
籽粒长宽比 LWR | E1 | 1.68~2.35 | 1.94±0.10 | 0.40 | 0.89 | 5.08 | 90.64 |
E2 | 1.69~2.31 | 1.90±0.09 | 0.58 | 1.30 | 4.81 | ||
BLUE | 1.68~2.33 | 1.92±0.09 | 0.50 | 1.38 | 4.73 | ||
籽粒形状 KS | E1 | 1.00~4.00 | 2.36±0.54 | -0.36 | 0.28 | 22.83 | 61.94 |
E2 | 1.00~4.00 | 2.33±0.61 | 0.01 | 0.00 | 26.06 | ||
BLUE | 1.00~3.63 | 2.34±0.47 | -0.34 | 0.46 | 20.03 | ||
籽粒饱满度 GP | E1 | 1.00~3.00 | 2.15±0.52 | -0.46 | -0.17 | 24.17 | 56.25 |
E2 | 1.00~3.00 | 2.26±0.57 | -0.39 | -0.52 | 25.06 | ||
BLUE | 0.97~3.07 | 2.21±0.43 | -0.51 | -0.08 | 19.42 |
E1:2018-2019年度玛纳斯环境点;E2:2019-2020年度玛纳斯环境点;BLUE: 最佳线性无偏估计;TKG:千粒重;GL:粒长;GW:粒宽;GT:粒厚;GA:籽粒面积;GC:籽粒周长;LWR:籽粒长宽比;KS:籽粒形状;GP:籽粒饱满度;下同
E1: Manas 2018-2019 environmental point; E2: Manas 2019-2020 environmental point; BLUE: Best linear unbiased estimate; TKG: Thousand-kernel weight; GL: Grain length; GW: Grain width; GT: Grain thickness; GA: Grain area; GC: Grain circumference; LWR: Grain length-width ratio, KS: Kernel shape; GP: Grain plumpness; The same as below

图1 小麦籽粒大小和形态性状相关性分析
Fig.1 Correlation analysis of grain size and morphological characters in wheat
TKG:千粒重;GL:粒长;GW:粒宽;GT:粒厚;GA:籽粒面积;GC:籽粒周长;LWR:籽粒长宽比;KS:籽粒形状;GP:籽粒饱满度;*表示P≤0.05 水平上相关显著;**表示P≤0.01 水平上相关显著;***表示P≤0.001 水平上相关显著;下同
TKG: Thousand-kernel weight; GL: Grain length; GW: Grain width; GT: Grain thickness; GA: Grain area; GC: Grain circumference; LWR: Grain length-width ratio; KS: Kernel shape; GP: Grain plumpness; *: Significant at P≤0.05; **: Significant at P≤0.01; ***: Significant at P≤0.001; The same as below
对300份小麦品种(系)的连锁不平衡分析得到,A、B和D亚基因组LD衰减距离分别为5、5和8 Mb,全基因组水平上LD衰减距离为8 Mb。依据全基因组水平将物理图谱上小于8 Mb区间内的位点划分为同一位点,每个位点选择重复检测到或者显著性最高的标记作为代表性标记。采用Structure v2.3.4软件进行群体结构分析,由

图2 群体结构及主成分分析图
Fig.2 Population structure and principal component analysis diagram
A:群体结构示意图;B:群体结构分析ΔK随K值变化;C:主成分分析
A: Schematic of population structure; B: Population structure analysis Δ K as a function of K value; C: Principal component analysis
采用混合线性模型对两个环境及BLUE值的9个小麦籽粒大小和形态性状进行标记-性状关联分析。由

图3 部分性状曼哈顿图及Q-Q图展示
Fig.3 Manhattan and Q-Q plot display of partial traits
左侧曼哈顿图中纵坐标为3时的黑实线代表阈值(-log10(p)=3),大于3代表存在显著关联位点
The black solid line at an ordinate of 3 in the left Manhattan plot represents the threshold (-log10(P)=3), and a value greater than 3 represents the presence of a significant association site
将染色体组平均衰减距离8 Mb内位点视为一因多效位点,本研究共检测出37个与多个籽粒大小和形态性状显著关联的一因多效位点(
序号Number | 性状Traits | 位点Marker | 染色体Chr. | 物理位置(Mb)Physical position | P 值P value | 表型贡献率(%) |
---|---|---|---|---|---|---|
1 | GL/LWR | Tdurum_contig60037_441 | 1A | 23.97~28.62 | 1.54E-04~6.92E-04 | 4.15~5.65 |
2 | TKG/GW | Ex_c15768_799 | 1A | 517.48 | 1.18E-04~9.59E-04 | 3.74~5.10 |
3 | GT/KS | wsnp_Ex_c5780_10153638 | 1B | 20.18~26.19 | 3.73E-04~7.88E-04 | 4.12~4.60 |
4 | GL/GT/LWR | BS00033332_51 | 1B | 38.83~40.19 | 1.45E-04~9.56E-04 | 3.93~5.38 |
5 | GW/GT/LWR | GENE-0403_301 | 1B | 109.73 | 2.72E-05~8.54E-04 | 3.89~6.24 |
6 | GL/LWR | Kukri_c19641_753 | 1B | 275.67 | 4.65E-06~3.44E-04 | 4.36~7.36 |
7 | GL/GC/LWR | Excalibur_c10111_127 | 1B | 637.62~642.68 | 1.70E-05~9.30E-04 | 3.80~6.50 |
8 | GT/GP | wsnp_Ex_c38849_46284348 | 1B | 661.63~668.25 | 3.59E-04~7.70E-04 | 3.95~4.64 |
9 | LWR/GP | IAAV426 | 1D | 16.79 | 4.77E-06~6.51E-04 | 7.74~13.07 |
10 | GL/LWR | RAC875_c259_1339 | 2A | 759.83~760.56 | 4.69E-04~9.67E-04 | 4.12~5.79 |
11 | TKG/GW/GA | BS00099658_51 | 2B | 24.91 | 3.59E-06~7.97E-04 | 5.15~9.11 |
12 | LWR/KS | BS00081406_51 | 2B | 140.85~142.45 | 1.11E-04~9.23E-04 | 3.83~5.21 |
13 | LWR/KS | Excalibur_c42512_584 | 2D | 577.11~580.19 | 3.34E-04~8.25E-04 | 3.94~4.55 |
14 | TKG/GP | Kukri_c14029_117 | 3A | 53.34~55.09 | 6.68E-06~8.93E-04 | 3.76~7.19 |
15 | GW/KS | IAAV8990 | 3A | 375.82 | 7.11E-04~7.87E-04 | 4.03~4.43 |
16 | TKG/GP | BS00097939_51 | 3A | 729.58~732.04 | 1.29E-04~8.84E-04 | 4.65~5.84 |
17 | GL/GC | Excalibur_c18641_1849 | 3B | 230.34~235.87 | 1.12E-04~8.32E-04 | 3.80~5.19 |
18 | GL/GW/GT/LWR | BS00022512_51 | 3B | 687.76 | 4.05E-09~8.17E-05 | 7.06~14.34 |
19 | TKG/GW | Tdurum_contig31852_251 | 4A | 734~734.07 | 1.24E-04~9.62E-04 | 5.07~6.76 |
20 | TKG/GW | IAAV971 | 4B | 37.69~40.75 | 3.45E-04~9.04E-04 | 3.82~4.44 |
21 | TKG/GW/GT | Excalibur_c56787_95 | 4B | 59.21 | 2.40E-04~8.59E-04 | 4.11~5.88 |
22 | GW/GT | Excalibur_c52517_464 | 4B | 167.35 | 6.01E-05~6.48E-04 | 4.01~5.59 |
23 | LWR/GT | wsnp_Ex_c25373_34639805 | 4B | 480.59~482.65 | 3.51E-04~6.10E-04 | 4.12~5.53 |
24 | TKG/GW | GENE-2771_327 | 4B | 526.73~526.93 | 6.66E-04~9.37E-04 | 3.74~4.26 |
25 | GL/GA/GC | wsnp_Ex_c831_1625061 | 5B | 10.53 | 2.51E-04~8.32E-04 | 4.97~5.83 |
26 | TKG/GW/GA | BobWhite_c14575_323 | 6A | 129.74 | 1.65E-04~6.06E-04 | 4.11~4.97 |
27 | GW/GT/KS | RFL_Contig6053_3082 | 6A | 594.99~597.79 | 4.47E-04~8.11E-04 | 3.94~4.31 |
28 | GA/GC/LWR/KS | Jagger_c555_287 | 6B | 188.19~191.99 | 3.75E-04~9.48E-04 | 3.81~5.08 |
29 | TKG/KS | Kukri_c50603_164 | 6B | 451.93~456.76 | 3.41E-04~7.98E-04 | 4.05~4.75 |
30 | GL/GA/GC | Kukri_c65194_111 | 6D | 98.13 | 1.56E-04~9.22E-04 | 3.89~5.04 |
31 | TKG/GL/GW/GA/GC/LWR | wsnp_Ex_c4480_8055475 | 6D | 461.92~464.94 | 1.07E-04~9.95E-04 | 3.81~8.25 |
32 | TKG/GT | BobWhite_c5396_296 | 7A | 442.27~443.96 | 1.38E-04~9.95E-04 | 3.77~5.18 |
33 | TKG/GC | Kukri_c24408_743 | 7A | 670.82 | 3.21E-04~9.55E-04 | 3.85~4.67 |
34 | GW/GT/LWR | Tdurum_contig29240_206 | 7A | 702.40 | 3.50E-05~6.28E-04 | 4.02~5.97 |
35 | GL/GA/GC/GP | CAP7_c1383_548 | 7B | 23.44~26.24 | 1.16E-04~9.62E-04 | 3.74~5.17 |
36 | TKG/GA/GP | wsnp_Ku_c665_1371121 | 7B | 58.25~58.73 | 5.23E-04~8.78E-04 | 3.95~5.18 |
37 | LWR/KS | Excalibur_c32138_394 | 7D | 633.20~633.60 | 1.45E-04~7.64E-04 | 4.10~6.29 |
加粗位点为新发现位点
With bold sites as newly discovered sites
将同时与4个及以上籽粒性状显著关联且具有较大表型贡献率的BS00022512_51(7.06%~14.34%)和wsnp_Ex_c4480_8055475(3.81%~8.25%)位点进行单倍型分析。结果发现,3D染色体的BS00022512_51标记处不存在单倍型,位于6D染色体的wsnp_Ex_c4480_8055475标记与其右翼标记wsnp_Ex_c4480_8056354形成一个约1 kb的单倍域(

图4 wsnp_Ex_c4480_8055475的单倍型分析
Fig.4 Haplotype analysis of wsnp_Ex_c4480_8055475
A:千粒重、粒长、粒宽、籽粒面积、籽粒周长、籽粒长宽比的小提琴图。B:6D染色体的wsnp_Ex_c4480_8055475标记关联的连锁区域。C: 3种单倍型在国内外300份小麦品种(系)的分布频率及3种单倍型在中国4个冬麦区和国外品种的分布频率;I: 3种单倍型整体的分布频率;II:黄淮冬麦区;III:北部冬麦区;IV:长江中下游冬麦区;V:西南冬麦区;VI:国外品种
A: Violin diagram of 1000-grain weight, grain length, grain width, grain area, grain perimeter and grain length-width ratio. B: Linked regions associated with wsnp_Ex_c4480_8055475 markers on chromosome 6D. C: The distribution frequencies of three haplotypes in 300 wheat varieties (lines), and the distribution frequencies of three haplotypes in four winter wheat regions in China and foreign varieties; I: The overall distribution frequency of three haplotypes; II: Huang-Huai winter wheat region; III: Northern winter wheat region; IV: Middle and lower Yangtze River winter wheat region; V: Southwest winter wheat region; VI: Foreign varieties
从单倍型整体分布频率看,具GC-Hap1单倍型的品种(系)占65.58%,具AT-Hap2单倍型的品种(系)占32.25%,具AC-Hap3单倍型的品种(系)占2.17%,具GC-Hap1单倍型的品种(系)分布频率明显大于具AT-Hap2和AC-Hap3单倍型的品种(系)。从单倍型分布频率看,具GC-Hap1单倍型的品种(系)分布频率表现为西南冬麦区(90.00%)>长江中下游冬麦区(89.74%)>黄淮冬麦区(69.73%)>北部冬麦区(69.57%)>国外品种(32.26%);具AT-Hap2单倍型的品种(系)分布频率表现为国外品种(67.74%)>黄淮冬麦区(27.52%)>北部冬麦区(26.09%)>西南冬麦区(10.00%)>长江中下游冬麦区(7.69%);具AC-Hap3单倍型的品种(系)仅在北部冬麦区、黄淮冬麦区和长江中下游冬麦区分布,且在各麦区分布频率不超过5%(
结合普通小麦中国春基因组数据库(IWGSC,https://www.wheatgenome.org/),本研究对与多个籽粒大小和形态性状显著关联SNP标记进行序列检索比对,发现了9个可能的候选基因(
序号 Number | 性状Traits | SNP标记SNP marker | 染色体Chr. | 物理位置(Mb) Physical position | 候选基因Gene ID | 功能注释Functional annotation |
---|---|---|---|---|---|---|
1 | GW/GT/LWR | GENE-0403_301 | 1B | 115.97 | TraesCS1B03G0270700 | MYB转录因子 |
2 | GL/GC/LWR | Excalibur_c10111_127 | 1B | 644.63 | TraesCS1B03G1104100 | 激酶,推定 |
3 | LWR/GP | IAAV426 | 1D | 18.15 | TraesCS1D03G0071600 | 富含半胱氨酸的受体激酶样蛋白 |
4 | TKG/GW/GA | BS00099658_51 | 2B | 27.54 | TraesCS2B03G0104000 | 细胞色素 P450 |
5 | TKG/GP | Kukri_c14029_117 | 3A | 53.51 | TraesCS3A03G0182600 | 富含半胱氨酸的受体样激酶 |
6 | GL/GW/GT/LWR | BS00022512_51 | 3B | 703.84 | TraesCS3B03G1107600 | 含有五肽重复序列的蛋白质 |
7 | GA/GC/LWR/KS | Jagger_c555_287 | 6B | 198.25 | TraesCS6B03G0448200 | 泛素,推定 |
8 | TKG/GL/GW/GA/GC/LWR | wsnp_Ex_c4480_8055475 | 6D | 484.02 | TraesCS6D03G0893200 | RING/U-box 超家族蛋白,推定 |
9 | GW/GT/LWR | Tdurum_contig29240_206 | 7A | 707.89 | TraesCS7A03G1260500 | F-box家族蛋白 |
小麦籽粒大小和形态是影响籽粒产量、磨粉品质和市场价值的重要因素,其遗传解析对于我国粮食安全具有重要意
GWAS作为检测基因特征和表型变异的有力工具,在植物遗传育种中发挥越来越多的作
虽然前人利用不同群体已定位到较多的小麦籽粒性状QTL,但小麦基因组庞大而复杂,因此克隆的基因数目有
近年来,全基因组关联分析已经成为分析复杂性状的首选方
在作物育种中,已经验证了一些与籽粒大小和形态相关的候选基因。例如,细胞色素P450通过影响小麦种皮数量的多少影响籽粒大小,其沉默可导致小麦籽粒大小下降11
本研究利用小麦90 K SNP芯片,对国内外300份小麦品种(系)的籽粒大小和形态相关性状进行全基因组关联分析。在两个及以上环境中共检测到66个稳定显著的SNP标记,37个一因多效位点,与前人研究对比后发现了13个新位点。对表型贡献率大且同时与4个及以上性状的位点进行单倍型分析,于6D染色体的wsnp_Ex_c4480_8055475标记处发现了籽粒较大的高千粒重单倍型GC-Hap1;对发现的与多性状显著关联的SNP进行候选基因筛选后,鉴定出9个候选基因。
参考文献
Pask A J D, Reynolds M P. Breeding for yield potential has increased deep soil water extraction capacity in irrigated wheat. Crop Science, 2013, 53(5): 2090-2104 [百度学术]
Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317 [百度学术]
Tekeu H, Ngonkeu E L M, Bélanger S, Djocgoué P F, Abed A, Torkamaneh D, Boyle B, Tsimi P M, Tadesse W, Jean M, Belzile F. GWAS identifies an ortholog of the rice D11 gene as a candidate gene for grain size in an international collection of hexaploid wheat. Scientific Reports, 2021, 11(1): 19483 [百度学术]
Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. A genetic framework for grain size and shape variation in wheat. The Plant Cell, 2010, 22(4): 1046-1056 [百度学术]
张芳, 任毅, 曹俊梅, 李法计, 夏先春, 耿洪伟. 基于SNP标记的小麦籽粒性状全基因组关联分析. 中国农业科学, 2021, 54(10): 2053-2064 [百度学术]
Zhang F, Ren Y, Cao J M, Li F J, Xia X C, Geng H W. Genome-wide association analysis of wheat grain size related traits based on SNP markers. Scientia Agricultura Sinica, 2021, 54(10): 2053-2064 [百度学术]
Wu W, Li C J, Ma B L, Shah F, Liu Y, Liao Y C. Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica, 2014, 196(2): 155-168 [百度学术]
Cornish P S, So H B, Mcwilliam J R. Effects of soil bulk density and water regimen on root growth and uptake of phosphorus by ryegrass. Australian Journal of Agricultural Research, 1984, 35(5): 631-644 [百度学术]
Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129(10): 1843-1860 [百度学术]
Edae E A, Byrne P F, Haley S D, Lopes M S, Reynolds M P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theoretical and Applied Genetics, 2014, 127(4): 791-807 [百度学术]
周小鸿, 马建, 罗伟, 蒋云峰, 孙敏, 杨宇杰, 江千涛, 刘亚西, 陈国跃, 魏育明, 郑有良, 兰秀锦. 西藏半野生小麦粒型性状的QTL定位. 麦类作物学报, 2016, 36(1): 27-35 [百度学术]
Zhou X H, Ma J, Luo W, Jiang Y F, Sun M, Yang Y J, Jiang Q T, Liu Y X, Chen G Y, Wei Y M, Zheng Y L, Lan X J. QTL mapping for kernel morphology traits of tibetan Semi-wild wheat. Journal of Triticeae Crops, 2016, 36(1): 27-35 [百度学术]
邹林翰, 周新颖, 张泽源, 蔚睿, 袁梦, 宋晓朋, 简俊涛, 张传量, 韩德俊, 宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析. 中国农业科学, 2022, 55(18): 3473-3483 [百度学术]
Zou L H, Zhou X Y, Zhang Z Y, Yu R, Yuan M, Song X P, Jian J T, Zhang C L, Han D J, Song Q H. QTL mapping of thousand-grain-weight and its related traits in Zhou 8425B × Xiaoyan81 population and haplotype analysis. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483 [百度学术]
Cortes L T, Zhang Z W, Yu J M. Status and prospects of genome-wide association studies in plants. Plant Genome, 2021, 14(1): e20077 [百度学术]
Chen G F, Zhang H, Deng Z Y, Wu R G, Li D M, Wang M Y , Tian J C. Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Euphytica, 2016, 212, 173-185 [百度学术]
Muhammad A, Hu W C, Li Z Y, Li J G, Xie G S, Wang J B, Wang L Q. Appraising the genetic architecture of kernel traits in hexaploid wheat using GWAS. International Journal of Molecular Sciences, 2020, 21(16): 5649 [百度学术]
Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44(1): 32-39 [百度学术]
张爱民, 阳文龙, 方红曼, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才. 作物种质资源研究态势分析. 植物遗传资源学报, 2018, 19(3): 377-382 [百度学术]
Zhang A M, Yang W L, Fang H M, Lv H Y, Deng X D, Ge Y Q, Wei X, Yang W C. Current status of research on crop genetic germplasms. Journal of Plant Genetic Resources, 2018, 19(3): 377-382 [百度学术]
Wang P, Tian T, Ma J F, Liu Y, Zhang P P, Chen T, Shahinnia F, Yang D L. Genome-wide association study of kernel traits using a 35K SNP array in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 13: 905660 [百度学术]
Zhao X P, Lv L L, Li J H, Ma F F, Bai S L, Zhou Y, Zhang D L, Li S P, Song C P. Genome-wide association study of grain shapes in Aegilops tauschii. Euphytica, 2021, 217(7): 144 [百度学术]
李立会, 李秀全, 杨欣明. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 33-81 [百度学术]
Li L H, Li X Q, Yang X M. Descriptors and data standard for wheat (Triticum aestivum L.). Beijing: China Agricultural Press, 2006: 33-81 [百度学术]
Wang S X, Zhu Y L, Zhang D X, Shao H, Liu P, Hu J B, Zhang H, Zhang H P, Chang C, Lu J, Xia X C, Sun G L, Ma C X. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE, 2017, 12(11): e188662 [百度学术]
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635 [百度学术]
Li N, Li Y H. Ubiquitin-mediated control of seed size in plants. Frontiers in Plant Science, 2014, 5: 332 [百度学术]
Abdipour M, Ebrahimi M, Izadi-Darbandi A, Mastrangelo A M, Najafian G, Arshad Y, Mirniyam G. Association between grain size and shape and quality traits, and path analysis of thousand grain weight in iranian bread wheat landraces from different geographic regions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44(1): 228-236 [百度学术]
Simmonds J, Scott P, Brinton J, Mestre T C, Bush M, Del Blanco A, Dubcovsky J, Uauy C. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theoretical and Applied Genetics, 2016, 129(6): 1099-1112 [百度学术]
Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. A genetic framework for grain size and shape variation in wheat. Plant Cell, 2010, 22(4): 1046-1056 [百度学术]
Marshall D R, Mares D J, Moss H J, Ellison F W. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Crop and Pasture Science, 1986, 37(4): 331-342 [百度学术]
李嘉琦, 逄洪波, 解元坤, 李玥莹, 陈强. 基于农艺植物粒型相关性状探讨GWAS分析方法研究进展. 福建农林大学学报:自然科学版, 2020, 49(2): 153-158 [百度学术]
Li J Q, Pang H B, Xie Y K, Li Y Y, Chen Q. Advances on GWAS analysis methods based on studies on grain size related traits for agronomic plants. Journal of Fujian Agriculture and Forestry University : Natural Science Edition, 2020, 49(2): 153-158 [百度学术]
Gao Y T, Xu X R, Jin J J, Duan S N, Zhen W C, Xie C J, Ma J. Dissecting the genetic basis of grain morphology traits in Chinese wheat by genome wide association study. Euphytica, 2021, 217(4): 56 [百度学术]
严勇亮, 张恒, 张金波, 时晓磊, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦主要籽粒性状的全基因组关联分析. 麦类作物学报, 2022, 42(10): 1182-1191 [百度学术]
Yan Y L, Zhang H, Zhang J B, Shi X L, Geng H W, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain traits of spring wheat. Journal of Triticeae Crops, 2022, 42(10): 1182-1191 [百度学术]
Yue A Q, Li A, Mao X G, Chang X P, Li R Z, Jing R L. Identification and development of a functional marker from 6-SFT-A2 associated with grain weight in wheat. Molecular Breeding, 2015, 35(2): 63 [百度学术]
Daba S D, Tyagi P, Brown-Guedira G, Mohammadi M. Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical united states wheat population. Frontiers in Plant Science, 2018, 9: 1045 [百度学术]
Malik P, Kumar J, Sharma S, Meher P K, Balyan H S, Gupta P K, Sharma S. GWAS for main effects and epistatic interactions for grain morphology traits in wheat. Physiology and Molecular Biology of Plants, 2022, 28(3): 651-668 [百度学术]
Sun X Y, Wu K, Zhao Y, Kong F M, Han G H, Jiang H M, Huang X J, Li R J, Wang H G, Li S S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165(3): 615-624 [百度学术]
Li Y Y, Tang J Q, Liu W L, Yan W Y, Sun Y, Che J Y, Tian C, Zhang H J, Yu L H. The genetic architecture of grain yield in spring wheat based on genome-wide association study. Frontiers in Genetics, 2021, 12: 728472 [百度学术]
Yang L, Zhao D H, Meng Z L, Xu K J, Yan J, Xia X C, Cao S H, Tian Y B, He Z H, Zhang Y. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theoretical and Applied Genetics, 2020, 133(3): 857-872 [百度学术]
Qian L W, Hickey L T, Stahl A, Werner C R, Hayes B, Snowdon R J, Voss-Fels K P. Exploring and harnessing haplotype diversity to improve yield stability in crops. Frontiers in Plant Science, 2017, 8: 1534 [百度学术]
朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关. 作物学报, 2022, URL:https://kns.cnki.net/kcms/detail/11.1809.S.20220826.1455.002.html: 1-12 [百度学术]
Zhu Z, Li L, Li C N, Mao X G, Hao C Y, Zhu T, Wang J Y, Chang J Z, Jing R L. Transcription factor TaMYB5-3B is associated with plant height and 1000-grain weight in wheat. Acta Agronomica Sinica, 2022, URL:https://kns.cnki.net/kcms/detail/11.1809.S.20220826.1455.002.html: 1-12 [百度学术]
何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37(2): 202-215 [百度学术]
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica, 2011, 37(2): 202-215 [百度学术]
周阳. 中国冬小麦产量潜力及重要农艺性状的遗传改良. 杨凌:西北农林科技大学, 2005 [百度学术]
Zhou Y. Genetic improvement in yield and its associated traits of winter wheat in China. Yangling: Northwest A&F University, 2005 [百度学术]
Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. The Plant Journal, 2015, 83(2): 312-325 [百度学术]
Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: From upstream activators to downstream target substrates. Journal of Experimental Botany, 2009, 60(4): 1109-1121 [百度学术]
Li Z F, Zhang X G, Zhao K K, Zhao K, Qu C X, Gao G Q, Gong F P, Ma X L, Yin D M. Comprehensive transcriptome analyses reveal candidate genes for variation in seed size/weight during peanut (Arachis hypogaea L.) domestication. Frontiers in Plant Science, 2021, 12: 666483 [百度学术]